|
|
Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states |
Jia-En Yang1, Hang Xie2,3( ) |
1. School of Electronics and IoT, Chongqing College of Electronic Engineering, Chongqing 401331, China 2. College of Physics, Chongqing University, Chongqing 401331, China 3. Chongqing Key Laboratory for Strongly-Coupled Physics, Chongqing University, Chongqing 401331, China |
|
|
Abstract Topological edge states have crucial applications in the future nano spintronics devices. In this work, circularly polarized light is applied on the zigzag silicene-like nanoribbons resulting in the anisotropic chiral edge modes. An energy-dependent spin filter is designed based on the topological-insulator (TI) junctions with anisotropic chiral edge states. The resonance transmission has been observed in the TI junctions by calculating the local current distributions. And some strong Fabry−Perot resonances are found leading to the sharp transmission peaks. Whereas, the weak and asymmetric resonance corresponds to the broad transmission peaks. In addition, a qualitative relation between the resonant energy separation TR and group velocity vf is derived: TR=πhvfn/L, that indicated TR is proportional to vf and inversely proportional to the length L of the conductor. The different TR between the spin-up and spin-down cases results in the energy-resolved spin filtering effect. Moreover, the intensity of the circularly polarized light can modulate the group velocity vf. Thus, the intensity of circularly polarized light, as well as the conductor-length, play very vital roles in designing the energy-dependent spin filter. Since the transmission gap root in the Fabry−Perot resonances, the thermoelectric (TE) property can be enhanced by adjusting the gap. A schedule to enhance the TE performance in the TI-junction is proposed by modulating the electric field (Ez). The TE dependence on Ez in the nanojunction is investigated, where the appropriate Ez leads to a very high spin thermopower and spin figure of merit. These TI junctions have potential usages in the nano spintronics and thermoelectric devices.
|
Keywords
electron transport
topological edge states
2D materials
spintronics
thermoelectric effects
|
Corresponding Author(s):
Hang Xie
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 15 August 2022
|
|
1 |
C. Liu C., X. Feng W., G. Yao Y.. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. , 2011, 107( 7): 076802
https://doi.org/10.1103/PhysRevLett.107.076802
|
2 |
C. Liu C., Jiang H., G. Yao Y.. Low-energy effective Hamiltonian involving spin−orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B , 2011, 84( 19): 195430
https://doi.org/10.1103/PhysRevB.84.195430
|
3 |
Meng L., L. Wang Y., Z. Zhang L., X. Du S., T. Wu R., F. Li L., Zhang Y., Li G., T. Zhou H., A. Hofer W., J. Gao H.. Buckled silicene formation on Ir(111). Nano Lett. , 2013, 13( 2): 685
https://doi.org/10.1021/nl304347w
|
4 |
C. Zhai X., W. Gu J., Wen R., W. Liu R., Zhu M., F. Zhou X., Y. Gong L., A. Li X.. Giant Seebeck magnetoresistance triggered by electric field and assisted by a valley through a ferromagnetic/antiferromagnetic junction in heavy group-IV monolayers. Phys. Rev. B , 2019, 99( 8): 085421
https://doi.org/10.1103/PhysRevB.99.085421
|
5 |
X. Zhao C., F. Jia J.. Stanene: A good platform for topological insulator and topological superconductor. Front. Phys. , 2020, 15( 5): 53201
https://doi.org/10.1007/s11467-020-0965-5
|
6 |
L. Lü X., Xie H.. Spin filters and switchers in topological-insulator junctions. Phys. Rev. Appl. , 2019, 12( 6): 064040
https://doi.org/10.1103/PhysRevApplied.12.064040
|
7 |
Y. Tian H., K. Wang S., G. Hu J., Wang J.. The chirality dependent spin filter design in the graphene-like junction. J. Phys.: Condens. Matter , 2015, 27( 12): 125005
https://doi.org/10.1088/0953-8984/27/12/125005
|
8 |
E. Yang J., L. Lu X., Xie H.. Three-terminal spin/charge current router. J. Phys.: Condens. Matter , 2020, 32( 32): 325301
https://doi.org/10.1088/1361-648X/ab82d0
|
9 |
E. Yang J., L. Lu X., X. Zhang C., Xie H.. Topological spin-valley filtering effects based on hybrid silicene-like nanoribbons. New J. Phys. , 2020, 22( 5): 053034
https://doi.org/10.1088/1367-2630/ab84b4
|
10 |
Zhai X., Wen R., Zhou X., Chen W., Yan W., Y. Gong L., Pu Y., Li X.. Valley-mediated and electrically switched bipolar−unipolar transition of the spin-diode effect in heavy group-IV monolayers. Phys. Rev. Appl. , 2019, 11( 6): 064047
https://doi.org/10.1103/PhysRevApplied.11.064047
|
11 |
Zheng J., Chi F., Guo Y.. Spin-current diodes based on germanene and stanene subjected to local exchange fields. Appl. Phys. Lett. , 2018, 113( 11): 112404
https://doi.org/10.1063/1.5041899
|
12 |
Zheng J., Xiang Y., Li C., Yuan R., Chi F., Guo Y.. All-optically controlled topological transistor based on Xenes. Phys. Rev. Appl. , 2020, 14( 3): 034027
https://doi.org/10.1103/PhysRevApplied.14.034027
|
13 |
Zheng J., Xiang Y., Li C., Yuan R., Chi F., Guo Y.. Multichannel depletion-type field-effect transistor based on ferromagnetic germanene. Phys. Rev. Appl. , 2021, 16( 2): 024046
https://doi.org/10.1103/PhysRevApplied.16.024046
|
14 |
Ezawa M.. Monolayer topological insulators: Silicene, germanene, and stanene. J. Phys. Soc. Jpn. , 2015, 84( 12): 121003
https://doi.org/10.7566/JPSJ.84.121003
|
15 |
C. Liu C., Jiang H., Yao Y.. Low-energy effective Hamiltonian involving spin−orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B , 2011, 84( 19): 195430
https://doi.org/10.1103/PhysRevB.84.195430
|
16 |
Ezawa M.. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. , 2012, 109( 5): 055502
https://doi.org/10.1103/PhysRevLett.109.055502
|
17 |
Pan H., S. Li Z., C. Liu C., B. Zhu G., H. Qiao Z., G. Yao Y.. Valley-polarized quantum anomalous Hall effect in silicene. Phys. Rev. Lett. , 2014, 112( 10): 106802
https://doi.org/10.1103/PhysRevLett.112.106802
|
18 |
Mei J., Shao L., Xu H., Zhu X., Xu N.. Photomodulated edge states and multiterminal transport in silicenelike nanoribbons. Phys. Rev. B , 2019, 99( 4): 045444
https://doi.org/10.1103/PhysRevB.99.045444
|
19 |
E. Yang J., L. Lü X., Xie H.. Current propagation behaviors and spin filtering effects in three-terminal topological-insulator junctions. New J. Phys. , 2020, 22( 10): 103018
https://doi.org/10.1088/1367-2630/abbbd2
|
20 |
Zheng J., Chi F., Guo Y.. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. J. Phys.: Condens. Matter , 2015, 27( 29): 295302
https://doi.org/10.1088/0953-8984/27/29/295302
|
21 |
W. Chuan M., A. Riyadi M., Hamzah A., E. Alias N., Mohamed Sultan S., S. Lim C., L. P. Tan M.. Impact of phonon scattering mechanisms on the performance of silicene nanoribbon field-effect transistors. Results Phys. , 2021, 29 : 104714
https://doi.org/10.1016/j.rinp.2021.104714
|
22 |
Qi X., Zhang S.. Topological insulators and superconductors. Rev. Mod. Phys. , 2011, 83( 4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
|
23 |
Qin D., Pan F., Zhou J., Xu Z., Deng Y.. High ZT and performance controllable thermoelectric devices based on electrically gated bismuth telluride thin films. Nano Energy , 2021, 89 : 106472
https://doi.org/10.1016/j.nanoen.2021.106472
|
24 |
Solomon G., Song E., Gayner C., A. Martinez J., Amouyal Y.. Effects of microstructure and neodymium doping on Bi2Te3 nanostructures: Implications for thermoelectric performance. ACS Appl. Nano Mater. , 2021, 4( 5): 4419
https://doi.org/10.1021/acsanm.0c03472
|
25 |
H. Wang T., T. Jeng H.. Topological insulator nanoribbons – A new paradigm for high thermoelectric performance. Nano Energy , 2019, 66 : 104092
https://doi.org/10.1016/j.nanoen.2019.104092
|
26 |
X. Yang N., Yan Q., F. Sun Q.. Linear and nonlinear thermoelectric transport in a magnetic topological insulator nanoribbon with a domain wall. Phys. Rev. B , 2020, 102( 24): 245412
https://doi.org/10.1103/PhysRevB.102.245412
|
27 |
L. Lü X., Xie Y., Xie H.. Topological and magnetic phase transition in silicene-like zigzag nanoribbons. New J. Phys. , 2018, 20( 4): 043054
https://doi.org/10.1088/1367-2630/aabc6e
|
28 |
Jatiyanon K., Soodchomshom B.. Spin-valley and layer polarizations induced by topological phase transitions in bilayer silicene. Superlatt. Microstruct. , 2018, 120 : 540
https://doi.org/10.1016/j.spmi.2018.06.021
|
29 |
Wei M., Zhou M., Wang B., Xing Y.. Thermoelectric transport properties of ferromagnetic graphene with CT-invariant quantum spin Hall effect. Phys. Rev. B , 2020, 102( 7): 075432
https://doi.org/10.1103/PhysRevB.102.075432
|
30 |
Z. Yu Z. H. Xiong G. F. Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 ( 2021)
|
31 |
R. Power S., R. Thomsen M., P. Jauho A., G. Pedersen T.. Electron trajectories and magnetotransport in nanopatterned graphene under commensurability conditions. Phys. Rev. B , 2017, 96( 7): 075425
https://doi.org/10.1103/PhysRevB.96.075425
|
32 |
Stegmann T., Szpak N.. Current splitting and valley polarization in elastically deformed graphene. 2D Mater. , 2019, 6( 1): 015024
https://doi.org/10.1088/2053-1583/aaea8d
|
33 |
Calvo M., de Juan F., Ilan R., Fox E., Bestwick A., Mühlbauer M., Wang J., Ames C., Leubner P., Brüne C., C. Zhang S., Buhmann H., W. Molenkamp L., Goldhaber-Gordon D.. Interplay of chiral and helical states in a quantum spin Hall insulator lateral junction. Phys. Rev. Lett. , 2017, 119( 22): 226401
https://doi.org/10.1103/PhysRevLett.119.226401
|
34 |
Zhou B., Zhou B., Chen X., Liao W., Zhou G.. Symmetry-dependent spin-charge transport and thermopower through a ZSiNR-based FM/normal/FM junction. J. Phys.: Condens. Matter , 2015, 27( 46): 465301
https://doi.org/10.1088/0953-8984/27/46/465301
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|