Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 63504    https://doi.org/10.1007/s11467-022-1189-7
RESEARCH ARTICLE
Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states
Jia-En Yang1, Hang Xie2,3()
1. School of Electronics and IoT, Chongqing College of Electronic Engineering, Chongqing 401331, China
2. College of Physics, Chongqing University, Chongqing 401331, China
3. Chongqing Key Laboratory for Strongly-Coupled Physics, Chongqing University, Chongqing 401331, China
 Download: PDF(9182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Topological edge states have crucial applications in the future nano spintronics devices. In this work, circularly polarized light is applied on the zigzag silicene-like nanoribbons resulting in the anisotropic chiral edge modes. An energy-dependent spin filter is designed based on the topological-insulator (TI) junctions with anisotropic chiral edge states. The resonance transmission has been observed in the TI junctions by calculating the local current distributions. And some strong Fabry−Perot resonances are found leading to the sharp transmission peaks. Whereas, the weak and asymmetric resonance corresponds to the broad transmission peaks. In addition, a qualitative relation between the resonant energy separation TR and group velocity vf is derived: TRhvfn/L, that indicated TR is proportional to vf and inversely proportional to the length L of the conductor. The different TR between the spin-up and spin-down cases results in the energy-resolved spin filtering effect. Moreover, the intensity of the circularly polarized light can modulate the group velocity vf. Thus, the intensity of circularly polarized light, as well as the conductor-length, play very vital roles in designing the energy-dependent spin filter. Since the transmission gap root in the Fabry−Perot resonances, the thermoelectric (TE) property can be enhanced by adjusting the gap. A schedule to enhance the TE performance in the TI-junction is proposed by modulating the electric field (Ez). The TE dependence on Ez in the nanojunction is investigated, where the appropriate Ez leads to a very high spin thermopower and spin figure of merit. These TI junctions have potential usages in the nano spintronics and thermoelectric devices.

Keywords electron transport      topological edge states      2D materials      spintronics      thermoelectric effects     
Corresponding Author(s): Hang Xie   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 15 August 2022
 Cite this article:   
Jia-En Yang,Hang Xie. Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states[J]. Front. Phys. , 2022, 17(6): 63504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1189-7
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/63504
Fig.1  Schematic diagram for the ZSiNRs-based two-terminal system. The device consists of three ZSiNRs (Lead 1, Conductor, Lead 2). The real size parameters in our study are Ny = 16, and Nx changes with the need of our study. The temperature gradient ΔT =T LTR is applied on two leads for the thermoelectric property calculations of the TI junctions.
Fig.2  Three types of TI edge states and their energy bands for ZSiNRs. (a) QSH state with Chern number (0, 1); (b) QAH state with Chern numbers (2, 0) ( λ Ω= 0.15t); (c) QAH state with Chern numbers (−2, 0) ( λ Ω= 0.15t). The red (blue) arrows or bands in the figures denote the spin-up (down) case and the red and blue bands overlap in (a). The other fixed parameters in all the cases are: Ny = 16, λso=0.03t.
Fig.3  (a) Transmission spectra from Lead 1 to Lead 2 (red: spin-up; blue: spin-down; magenta: spin-polarizability). (b) Cartoon diagram of the edge states in ZSiNRs-based spin filter. (c) Local current distribution of the spin filter around the Fermi level (at E = 0.01373 eV). The fixed parameters are: Ny = 16, Nx = 40, t = 1.6 eV, λΩ= 0.15t and λso=0.03t.
Fig.4  Local current distribution for the TI junctions in Fig. 3 for different energy peaks (a) n = 2, (b) n = 3, (c) n = 4, and (d) n= 5 peaks.
Fig.5  (a−c) Transmission spectra for different lengths of conductor with a fixed light intensity: (a) 20-TI, (b) 60-TI and (c) 80-TI; (d−f) Transmission spectra for different light intensity with a fixed length of conductor (d) λ Ω= 0.08t, (e) λΩ= 0.12t and (f) λΩ= 0.25t. Other fixed parameters are the same as Fig.3.
Fig.6  (a) Spin-dependent thermopower ( Sσ) and spin thermopower ( Ss) vs. the Fermi energy (EF); (b) Spin figure of merit (ZsT) vs. the Fermi energy EF. The system is of 40-TI junctions with T= 50 K. Other parameters are the same as Fig. 3.
Fig.7  (a−c) The dependence of spin thermopower S s on the Fermi energy (EF) with different electric fields (EZ). (a1) and (a2) for EZ = 0.07t/(el); (b1) and (b2) for EZ = 0.14t/(el); (c1) and (c2) for EZ = 0.16t/(el).
Fig.8  The spin figure of merit (ZsT) as a function of the Fermi energy EF with different EZ values for 40-TI junctions.
1 C. Liu C., X. Feng W., G. Yao Y.. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. , 2011, 107( 7): 076802
https://doi.org/10.1103/PhysRevLett.107.076802
2 C. Liu C., Jiang H., G. Yao Y.. Low-energy effective Hamiltonian involving spin−orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B , 2011, 84( 19): 195430
https://doi.org/10.1103/PhysRevB.84.195430
3 Meng L., L. Wang Y., Z. Zhang L., X. Du S., T. Wu R., F. Li L., Zhang Y., Li G., T. Zhou H., A. Hofer W., J. Gao H.. Buckled silicene formation on Ir(111). Nano Lett. , 2013, 13( 2): 685
https://doi.org/10.1021/nl304347w
4 C. Zhai X., W. Gu J., Wen R., W. Liu R., Zhu M., F. Zhou X., Y. Gong L., A. Li X.. Giant Seebeck magnetoresistance triggered by electric field and assisted by a valley through a ferromagnetic/antiferromagnetic junction in heavy group-IV monolayers. Phys. Rev. B , 2019, 99( 8): 085421
https://doi.org/10.1103/PhysRevB.99.085421
5 X. Zhao C., F. Jia J.. Stanene: A good platform for topological insulator and topological superconductor. Front. Phys. , 2020, 15( 5): 53201
https://doi.org/10.1007/s11467-020-0965-5
6 L. Lü X., Xie H.. Spin filters and switchers in topological-insulator junctions. Phys. Rev. Appl. , 2019, 12( 6): 064040
https://doi.org/10.1103/PhysRevApplied.12.064040
7 Y. Tian H., K. Wang S., G. Hu J., Wang J.. The chirality dependent spin filter design in the graphene-like junction. J. Phys.: Condens. Matter , 2015, 27( 12): 125005
https://doi.org/10.1088/0953-8984/27/12/125005
8 E. Yang J., L. Lu X., Xie H.. Three-terminal spin/charge current router. J. Phys.: Condens. Matter , 2020, 32( 32): 325301
https://doi.org/10.1088/1361-648X/ab82d0
9 E. Yang J., L. Lu X., X. Zhang C., Xie H.. Topological spin-valley filtering effects based on hybrid silicene-like nanoribbons. New J. Phys. , 2020, 22( 5): 053034
https://doi.org/10.1088/1367-2630/ab84b4
10 Zhai X., Wen R., Zhou X., Chen W., Yan W., Y. Gong L., Pu Y., Li X.. Valley-mediated and electrically switched bipolar−unipolar transition of the spin-diode effect in heavy group-IV monolayers. Phys. Rev. Appl. , 2019, 11( 6): 064047
https://doi.org/10.1103/PhysRevApplied.11.064047
11 Zheng J., Chi F., Guo Y.. Spin-current diodes based on germanene and stanene subjected to local exchange fields. Appl. Phys. Lett. , 2018, 113( 11): 112404
https://doi.org/10.1063/1.5041899
12 Zheng J., Xiang Y., Li C., Yuan R., Chi F., Guo Y.. All-optically controlled topological transistor based on Xenes. Phys. Rev. Appl. , 2020, 14( 3): 034027
https://doi.org/10.1103/PhysRevApplied.14.034027
13 Zheng J., Xiang Y., Li C., Yuan R., Chi F., Guo Y.. Multichannel depletion-type field-effect transistor based on ferromagnetic germanene. Phys. Rev. Appl. , 2021, 16( 2): 024046
https://doi.org/10.1103/PhysRevApplied.16.024046
14 Ezawa M.. Monolayer topological insulators: Silicene, germanene, and stanene. J. Phys. Soc. Jpn. , 2015, 84( 12): 121003
https://doi.org/10.7566/JPSJ.84.121003
15 C. Liu C., Jiang H., Yao Y.. Low-energy effective Hamiltonian involving spin−orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B , 2011, 84( 19): 195430
https://doi.org/10.1103/PhysRevB.84.195430
16 Ezawa M.. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. , 2012, 109( 5): 055502
https://doi.org/10.1103/PhysRevLett.109.055502
17 Pan H., S. Li Z., C. Liu C., B. Zhu G., H. Qiao Z., G. Yao Y.. Valley-polarized quantum anomalous Hall effect in silicene. Phys. Rev. Lett. , 2014, 112( 10): 106802
https://doi.org/10.1103/PhysRevLett.112.106802
18 Mei J., Shao L., Xu H., Zhu X., Xu N.. Photomodulated edge states and multiterminal transport in silicenelike nanoribbons. Phys. Rev. B , 2019, 99( 4): 045444
https://doi.org/10.1103/PhysRevB.99.045444
19 E. Yang J., L. Lü X., Xie H.. Current propagation behaviors and spin filtering effects in three-terminal topological-insulator junctions. New J. Phys. , 2020, 22( 10): 103018
https://doi.org/10.1088/1367-2630/abbbd2
20 Zheng J., Chi F., Guo Y.. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. J. Phys.: Condens. Matter , 2015, 27( 29): 295302
https://doi.org/10.1088/0953-8984/27/29/295302
21 W. Chuan M., A. Riyadi M., Hamzah A., E. Alias N., Mohamed Sultan S., S. Lim C., L. P. Tan M.. Impact of phonon scattering mechanisms on the performance of silicene nanoribbon field-effect transistors. Results Phys. , 2021, 29 : 104714
https://doi.org/10.1016/j.rinp.2021.104714
22 Qi X., Zhang S.. Topological insulators and superconductors. Rev. Mod. Phys. , 2011, 83( 4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
23 Qin D., Pan F., Zhou J., Xu Z., Deng Y.. High ZT and performance controllable thermoelectric devices based on electrically gated bismuth telluride thin films. Nano Energy , 2021, 89 : 106472
https://doi.org/10.1016/j.nanoen.2021.106472
24 Solomon G., Song E., Gayner C., A. Martinez J., Amouyal Y.. Effects of microstructure and neodymium doping on Bi2Te3 nanostructures: Implications for thermoelectric performance. ACS Appl. Nano Mater. , 2021, 4( 5): 4419
https://doi.org/10.1021/acsanm.0c03472
25 H. Wang T., T. Jeng H.. Topological insulator nanoribbons – A new paradigm for high thermoelectric performance. Nano Energy , 2019, 66 : 104092
https://doi.org/10.1016/j.nanoen.2019.104092
26 X. Yang N., Yan Q., F. Sun Q.. Linear and nonlinear thermoelectric transport in a magnetic topological insulator nanoribbon with a domain wall. Phys. Rev. B , 2020, 102( 24): 245412
https://doi.org/10.1103/PhysRevB.102.245412
27 L. Lü X., Xie Y., Xie H.. Topological and magnetic phase transition in silicene-like zigzag nanoribbons. New J. Phys. , 2018, 20( 4): 043054
https://doi.org/10.1088/1367-2630/aabc6e
28 Jatiyanon K., Soodchomshom B.. Spin-valley and layer polarizations induced by topological phase transitions in bilayer silicene. Superlatt. Microstruct. , 2018, 120 : 540
https://doi.org/10.1016/j.spmi.2018.06.021
29 Wei M., Zhou M., Wang B., Xing Y.. Thermoelectric transport properties of ferromagnetic graphene with CT-invariant quantum spin Hall effect. Phys. Rev. B , 2020, 102( 7): 075432
https://doi.org/10.1103/PhysRevB.102.075432
30 Z. Yu Z. H. Xiong G. F. Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 ( 2021)
31 R. Power S., R. Thomsen M., P. Jauho A., G. Pedersen T.. Electron trajectories and magnetotransport in nanopatterned graphene under commensurability conditions. Phys. Rev. B , 2017, 96( 7): 075425
https://doi.org/10.1103/PhysRevB.96.075425
32 Stegmann T., Szpak N.. Current splitting and valley polarization in elastically deformed graphene. 2D Mater. , 2019, 6( 1): 015024
https://doi.org/10.1088/2053-1583/aaea8d
33 Calvo M., de Juan F., Ilan R., Fox E., Bestwick A., Mühlbauer M., Wang J., Ames C., Leubner P., Brüne C., C. Zhang S., Buhmann H., W. Molenkamp L., Goldhaber-Gordon D.. Interplay of chiral and helical states in a quantum spin Hall insulator lateral junction. Phys. Rev. Lett. , 2017, 119( 22): 226401
https://doi.org/10.1103/PhysRevLett.119.226401
34 Zhou B., Zhou B., Chen X., Liao W., Zhou G.. Symmetry-dependent spin-charge transport and thermopower through a ZSiNR-based FM/normal/FM junction. J. Phys.: Condens. Matter , 2015, 27( 46): 465301
https://doi.org/10.1088/0953-8984/27/46/465301
[1] Xue Gong, Ruijie Qian, Huanyi Xue, Weikang Lu, Zhenghua An. Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques[J]. Front. Phys. , 2022, 17(2): 23201-.
[2] Sabir Hussain, Rui Xu, Kunqi Xu, Le Lei, Shuya Xing, Jianfeng Guo, Haoyu Dong, Adeel Liaqat, Rashid Iqbal, Muhammad Ahsan Iqbal, Shangzhi Gu, Feiyue Cao, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Liming Xie, Shanshan Chen, Zhihai Cheng. Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy[J]. Front. Phys. , 2021, 16(5): 53504-.
[3] Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201-.
[4] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[5] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[6] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[7] Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy[J]. Front. Phys. , 2019, 14(3): 33401-.
[8] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[9] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[10] Mosayeb Naseri, Shiru Lin, Jaafar Jalilian, Jinxing Gu, Zhongfang Chen. Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction[J]. Front. Phys. , 2018, 13(3): 138102-.
[11] Shiru Lin, Yanchao Wang, Zhongfang Chen. Two-dimensional aluminum monoxide nanosheets: A computational study[J]. Front. Phys. , 2018, 13(3): 138109-.
[12] Gang Luo, Zhuo-Zhi Zhang, Hai-Ou Li, Xiang-Xiang Song, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures[J]. Front. Phys. , 2017, 12(4): 128502-.
[13] P. James Schuck,Wei Bao,Nicholas J. Borys. A polarizing situation: Taking an in-plane perspective for next-generation near-field studies[J]. Front. Phys. , 2016, 11(2): 117804-.
[14] Lei Jin-Cheng(雷进程), Zhang Xu(张旭), Zhou Zhen(周震). Recent advances in MXene: Preparation, properties, and applications[J]. Front. Phys. , 2015, 10(3): 107303-.
[15] Yong-qing Li, Ke-hui Wu, Jun-ren Shi, Xin-cheng Xie. Electron transport properties of three-dimensional topological insulators[J]. Front. Phys. , 2012, 7(2): 165-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed