Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (4) : 44601    https://doi.org/10.1007/s11467-022-1191-0
VIEW & PERSPECTIVE
Imaging supermassive black hole shadows with a global very long baseline interferometry array
Lijing Shao1,2()
1. Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
2. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
 Download: PDF(2347 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The imaging of two supermassive black holes by the Event Horizon Telescope Collaboration proved to a new level the correctness of Einstein's general relativity, regarding its prediction of black hole shadows in the highly curved spacetime regime.

Keywords Event Horizon Telescope      very long baseline interferometry      black hole      black hole shadow     
Corresponding Author(s): Lijing Shao   
Issue Date: 28 July 2022
 Cite this article:   
Lijing Shao. Imaging supermassive black hole shadows with a global very long baseline interferometry array[J]. Front. Phys. , 2022, 17(4): 44601.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1191-0
https://academic.hep.com.cn/fop/EN/Y2022/V17/I4/44601
Fig.1  Representative black hole shadow images shown in units of brightness temperature for M87 (upper) [7] and Sgr A (lower) [8], produced from observations in the April 2017 campaign by the Event Horizon Telescope Collaboration. Reproduced by permission of the AAS.
1 Einstein A., The Field Equations of Gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin ( Math. Phys. ) 1915, 844 ( 1915)
2 Schwarzschild K., On the gravitational field of a mass point according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin ( Math. Phys .) 1916, 189 ( 1916), arXiv: physics/9905030
3 P. Kerr R.. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. , 1963, 11 : 237
https://doi.org/10.1103/PhysRevLett.11.237
4 Chandrasekhar S., The Mathematical Theory of Black Holes, Oxford University Press, 1983
5 P. Luminet J.. Image of a spherical black hole with thin accretion disk. Astron. Astrophys. , 1979, 75 : 228
6 Falcke H. Melia F. Agol E., Viewing the shadow of the black hole at the Galactic center, Astrophys. J. Lett . 528, L13 ( 2000), arXiv: astro-ph/9912263
7 Akiyama K. (Event Horizon Telescope) ., et al.., First M87 Event Horizon Telescope results (I): The shadow of the supermassive black hole, Astrophys. J. Lett . 875, L1 ( 2019), arXiv: 1906.11238 [astro-ph.GA]
8 Akiyama K., (Event Horizon Telescope) .. et al.. First Sagittarius A* Event Horizon Telescope results (I): The shadow of the supermassive black hole in the center of the Milky Way. Astrophys. J. Lett. , 2022, 930 : L12
https://doi.org/10.3847/2041-8213/ac6674
9 Doeleman S. Agol E. Backer D. Baganoff F. C. Bower G. Broderick A. Fabian A. Fish V. Gammie C. Ho P. Honman M. Krichbaum T. Loeb A. Marrone D. Reid M. Rogers A. Shapiro I. Strittmatter P. Tilanus R. Weintroub J. Whitney A. Wright M. Ziurys L., Imaging an event horizon: Submm-VLBI of a super massive black hole, in: Astro2010: The Astronomy and Astrophysics Decadal Survey, Vol. 2010, p. 68, arXiv: 0906.3899 [astro-ph.CO] (2009)
10 Akiyama K. (Event Horizon Telescope) ., et al.., First M87 Event Horizon Telescope results (VI): The shadow and mass of the central black hole, Astrophys. J. Lett . 875, L6 ( 2019), arXiv: 1906.11243 [astro-ph.GA]
11 Akiyama K., (Event Horizon Telescope) .. et al.. First Sagittarius A* Event Horizon Telescope results (III): Imaging of the Galactic center supermassive black hole. Astrophys. J. Lett. , 2022, 930 : L14
https://doi.org/10.3847/2041-8213/ac6429
12 Akiyama K., (Event Horizon Telescope) .. et al.. First Sagittarius A* Event Horizon Telescope results (IV): variability, morphology, and black hole mass. Astrophys. J. Lett. , 2022, 930 : L15
https://doi.org/10.3847/2041-8213/ac6736
13 Do T., et al.., Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole, Science 365, 664 ( 2019), arXiv: 1907.10731 [astro-ph.GA]
14 Abuter R. (GRAVITY) ., et al.., Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole, Astron. Astrophys . 636, L5 ( 2020), arXiv: 2004.07187 [astro-ph.GA]
15 Akiyama K., (Event Horizon Telescope) .. et al.. First Sagittarius A* Event Horizon Telescope results (VI): Testing the black hole metric. Astrophys. J. Lett. , 2022, 930 : L17
https://doi.org/10.3847/2041-8213/ac6756
16 Kocherlakota P. (Event Horizon Telescope) ., et al.., Constraints on black-hole charges with the 2017 EHT observations of M87*, Phys. Rev. D 103, 104047 ( 2021), arXiv: 2105.09343 [gr-qc]
17 Kormendy J. C. Ho L., Coevolution (Or not) of supermassive black holes and host galaxies, Ann. Rev. Astron. Astrophys . 51, 511 ( 2013), arXiv: 1304.7762 [astro-ph.CO]
18 Akiyama . (Event Horizon Telescope) K., et al.., First M87 Event Horizon Telescope results (VIII): Magnetic field structure near the Event Horizon, Astrophys. J. Lett . 910, L13 ( 2021), arXiv: 2105.01173 [astro-ph.HE]
19 M. Fromm C. Mizuno Y. Younsi Z. Olivares H. Porth O. De Laurentis M. Falcke H. Kramer M. Rezzolla L., Using space-VLBI to probe gravity around Sgr A*, Astron. Astrophys . 649, A116 ( 2021), arXiv: 2101.08618 [astro-ph.HE]
20 Abbott R. (LIGO Scientific . VIRGO KAGRA), et al.., GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run, arXiv: 2111.03606 [gr-qc] ( 2021)
21 Abbott R. (LIGO Scientific . VIRGO KAGRA), et al.., Tests of general relativity with GWTC-3, arXiv: 2112.06861 [gr-qc] ( 2021)
22 Psaltis D. Wex N. Kramer M., A quantitative test of the No-hair theorem with Sgr A* using stars, pulsars, and the Event Horizon Telescope, Astrophys. J . 818, 121 ( 2016), arXiv: 1510.00394 [astro-ph.HE]
23 C. Bower G. Chatterjee S. Cordes J. Demorest P. S. Deneva J. Dexter J. Kramer M. Lazio J. Ransom S. Shao L. Wex N. Wharton R., Galactic center pulsars with the ngVLA, ASP Conf. Ser . 517, 793 ( 2018), arXiv: 1810.06623 [astro-ph.HE]
24 Bower G., Chatterjee S., Cordes J., Demorest P., S. Deneva J., Dexter J., Eatough R., Kramer M., Lazio J., Liu K., Ransom S., Shao L., Wex N., Wharton R.. Fundamental physics with Galactic center pulsars. Bull. Am. Astron. Soc. , 2019, 51 : 438
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Deng Pan, Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light[J]. Front. Phys. , 2017, 12(5): 128102-.
[3] Mahamat Saleh,Bouetou Thomas Bouetou,Timoleon Crepin Kofane. Hawking radiation from a five-dimensional Lovelock black hole[J]. Front. Phys. , 2015, 10(5): 100401-.
[4] Wei-Zhen Pan(潘伟珍), Xue-Jun Yang(杨学军), Guo-Xiang Yu(余国祥). Quantum nonthermal effect of the Vaidya–Bonner–de Sitter black hole[J]. Front. Phys. , 2014, 9(1): 94-97.
[5] Shuang-Nan Zhang. Black hole binaries and microquasars[J]. Front. Phys. , 2013, 8(6): 630-660.
[6] Han DING (丁翰), Wen-biao LIU (刘文彪). Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method[J]. Front. Phys. , 2011, 6(1): 106-108.
[7] Ji-li HUANG(黄基利), Wen-biao LIU(刘文彪), . Fluctuation around horizon on a Schwarzschild black hole using the null geodesic method[J]. Front. Phys. , 2009, 4(4): 530-533.
[8] Qiao BI (毕桥), Li-li LIU(刘莉丽), Jin-qing FANG(方锦清). Condensation and evolution of a space–time network[J]. Front. Phys. , 2009, 4(2): 231-234.
[9] Bo LIU (刘博), Wen-biao LIU(刘文彪). The thermodynamics in a dynamical black hole[J]. Front. Phys. , 2009, 4(1): 94-96.
[10] WU Xue-bing. Weighing black holes in the universe[J]. Front. Phys. , 2006, 1(2): 125-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed