Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 61505    https://doi.org/10.1007/s11467-022-1192-z
RESEARCH ARTICLE
Collisional dynamics of symmetric two-dimensional quantum droplets
Yanming Hu1, Yifan Fei2, Xiao-Long Chen2(), Yunbo Zhang2()
1. Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China
2. Department of Physics and Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
 Download: PDF(2827 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The collisional dynamics of two symmetric droplets with equal intraspecies scattering lengths and particle number density for each component is studied by solving the corresponding extended Gross−Pitaevskii equation in two dimensions by including a logarithmic correction term in the usual contact interaction. We find the merging droplet after collision experiences a quadrupole oscillation in its shape and the oscillation period is found to be independent of the incidental momentum for small droplets. With increasing collision momentum the colliding droplets may separate into two, or even more, and finally into small pieces of droplets. For these dynamical phases we manage to present boundaries determined by the remnant particle number in the central area and the damped oscillation of the quadrupole mode. A stability peak for the existence of droplets emerges at the critical particle numberNc ≃ 48 for the quasi-Gaussian and flat-top shapes of the droplets.

Keywords ultracold atoms      quantum droplets      collisions     
Corresponding Author(s): Xiao-Long Chen,Yunbo Zhang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 18 August 2022
 Cite this article:   
Yanming Hu,Yifan Fei,Xiao-Long Chen, et al. Collisional dynamics of symmetric two-dimensional quantum droplets[J]. Front. Phys. , 2022, 17(6): 61505.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1192-z
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/61505
Fig.1  The density plots of the collisional dynamics of two droplets showing three different phases after the collision: (a) merging, (b) separation, and (c) evaporation, depending on the relative incident momentum k=0.2,0.4, and 1.8, respectively, from top to bottom panels. Both droplets are initially normalized to a total particle number N1=N2=200 and all three cases correspond to the in-phase collisions with ?=0.
Fig.2  Typical quadrupole mode oscillation of the droplet in the merging phase and the damped oscillation in the separation phase. In the merging case ( k=0.2) the droplet widths Px (blue solid circle) and Py (open red circle) oscillate periodically with time. In the separation case ( k=0.4) the oscillation in Px (green solid circle) is quickly damped after the collision and the small fluctuation never exceeds half of the maximum value of droplet width Px. Here N1=N2=200.
Fig.3  Period of quadrupole oscillation as a function of the particle number in the merging region for different incident momenta k=0.1,0.15,0.2,0.3. For k=0.3, the colliding droplets will not merge for N>150. The calculation is done in a 2D space with a sufficiently large length L=100x0 to assure the accuracy for large N.
Fig.4  Phase diagram of the in-phase collisional dynamics of two droplets with equal particle number N1=N2=N and ?=0. The boundaries between merging, separation and evaporation phases are determined by the remnant particle number in the central area and the damped oscillation of the quadrupole mode, respectively. A stability peak for the existence of droplets emerges at the critical value Nc?48 for the quasi-Gaussian and flat-top shapes of the droplets.
1 Margenau H. . Van der Waals forces. Rev. Mod. Phys., 1939, 11( 1): 1
https://doi.org/10.1103/RevModPhys.11.1
2 Bulgac A. . Dilute quantum droplets. Phys. Rev. Lett., 2002, 89( 5): 050402
https://doi.org/10.1103/PhysRevLett.89.050402
3 D. Lee T. , Huang K. , N. Yang C. . Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev., 1957, 106( 6): 1135
https://doi.org/10.1103/PhysRev.106.1135
4 S. Petrov D. . Quantum mechanical stabilization of a collapsing Bose−Bose mixture. Phys. Rev. Lett., 2015, 115( 15): 155302
https://doi.org/10.1103/PhysRevLett.115.155302
5 S. Petrov D. , E. Astrakharchik G. . Ultradilute low-dimensional liquids. Phys. Rev. Lett., 2016, 117( 10): 100401
https://doi.org/10.1103/PhysRevLett.117.100401
6 Wang Y. , Guo L. , Yi S. , Shi T. . Theory for self-bound states of dipolar Bose−Einstein condensates. Phys. Rev. Res., 2020, 2( 4): 043074
https://doi.org/10.1103/PhysRevResearch.2.043074
7 Ma Y. , Peng C. , Cui X. . Borromean droplet in three-component ultracold Bose gases. Phys. Rev. Lett., 2021, 127( 4): 043002
https://doi.org/10.1103/PhysRevLett.127.043002
8 Li Y. , Chen Z. , Luo Z. , Huang C. , Tan H. , Pang W. , A. Malomed B. . Two-dimensional vortex quantum droplets. Phys. Rev. A, 2018, 98( 6): 063602
https://doi.org/10.1103/PhysRevA.98.063602
9 Hu H. , J. Liu X. . Consistent theory of self-bound quantum droplets with bosonic pairing. Phys. Rev. Lett., 2020, 125( 19): 195302
https://doi.org/10.1103/PhysRevLett.125.195302
10 H. Luo Z. , Pang W. , Liu B. , Y. Li Y. , A. Malomed B. . A new form of liquid matter: Quantum droplets. Front. Phys., 2021, 16( 3): 32201
https://doi.org/10.1007/s11467-020-1020-2
11 I. Mistakidis S. G. Volosniev A. E. Barfknecht R. Fogarty T. Busch Th. Foerster A. Schmelcher P. T. Zinner N., Cold atoms in low dimensions − a laboratory for quantum dynamics, arXiv: 2202.11071 ( 2022)
12 Ferrier-Barbut I. , Kadau H. , Schmitt M. , Wenzel M. , Pfau T. . Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett., 2016, 116( 21): 215301
https://doi.org/10.1103/PhysRevLett.116.215301
13 Schmitt M. , Wenzel M. , Böttcher F. , Ferrier-Barbut I. , Pfau T. . Self-bound droplets of a dilute magnetic quantum liquid. Nature, 2016, 539( 7628): 259
https://doi.org/10.1038/nature20126
14 Guo M. , Pfau T. . A new state of matter of quantum droplets. Front. Phys., 2021, 16( 3): 32202
https://doi.org/10.1007/s11467-020-1035-8
15 A. Malomed B. . The family of quantum droplets keeps expanding. Front. Phys., 2021, 16( 2): 22504
https://doi.org/10.1007/s11467-020-1024-y
16 Y. Zheng Y. , T. Chen S. , P. Huang Z. , X. Dai S. , Liu B. , Y. Li Y. , R. Wang S. . Quantum droplets in two-dimensional optical lattices. Front. Phys., 2021, 16( 2): 22501
https://doi.org/10.1007/s11467-020-1011-3
17 Chomaz L. Ferrier-Barbut I. Ferlaino F. Laburthe-Tolra B. L. Lev B. Pfau T., Dipolar physics: A review of experiments with magnetic quantum gases, arXiv: 2201.02672 ( 2022)
18 E. Wilson K. , Guttridge A. , Segal J. , L. Cornish S. . Quantum degenerate mixtures of Cs and Yb. Phys. Rev. A, 2021, 103( 3): 033306
https://doi.org/10.1103/PhysRevA.103.033306
19 R. Cabrera C. , Tanzi L. , Sanz J. , Naylor B. , Thomas P. , Cheiney P. , Tarruell L. . Quantum liquid droplets in a mixture of Bose−Einstein condensates. Science, 2018, 359( 6373): 301
https://doi.org/10.1126/science.aao5686
20 Baillie D. , B. Blakie P. . Droplet crystal ground states of a dipolar Bose gas. Phys. Rev. Lett., 2018, 121( 19): 195301
https://doi.org/10.1103/PhysRevLett.121.195301
21 A. Norcia M. , Politi C. , Klaus L. , Poli E. , Sohmen M. , J. Mark M. , N. Bisset R. , Santos L. , Ferlaino F. . Two-dimensional supersolidity in a dipolar quantum gas. Nature, 2021, 596( 7872): 357
https://doi.org/10.1038/s41586-021-03725-7
22 Cheiney P. , R. Cabrera C. , Sanz J. , Naylor B. , Tanzi L. , Tarruell L. . Bright soliton to quantum droplet transition in a mixture of Bose−Einstein condensates. Phys. Rev. Lett., 2018, 120( 13): 135301
https://doi.org/10.1103/PhysRevLett.120.135301
23 Semeghini G. , Ferioli G. , Masi L. , Mazzinghi C. , Wolswijk L. , Minardi F. , Modugno M. , Modugno G. , Inguscio M. , Fattori M. . Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett., 2018, 120( 23): 235301
https://doi.org/10.1103/PhysRevLett.120.235301
24 Ferioli G. , Semeghini G. , Masi L. , Giusti G. , Modugno G. , Inguscio M. , Gallemi A. , Recati A. , Fattori M. . Collisions of self-bound quantum droplets. Phys. Rev. Lett., 2019, 122( 9): 090401
https://doi.org/10.1103/PhysRevLett.122.090401
25 Cikojević V. , V. Markić L. , Pi M. , Barranco M. , Ancilotto F. , Boronat J. . Dynamics of equilibration and collisions in ultradilute quantum droplets. Phys. Rev. Res., 2021, 3( 4): 043139
https://doi.org/10.1103/PhysRevResearch.3.043139
26 Lao J. , Zhou Z. , Zhang X. , Ye F. , Zhong H. . Oscillatory stability of quantum droplets in PT-symmetric optical lattice. Commum. Theor. Phys., 2021, 73( 6): 065103
https://doi.org/10.1088/1572-9494/abf093
27 E. Astrakharchik G. , A. Malomed B. . Dynamics of one-dimensional quantum droplets. Phys. Rev. A, 2018, 98( 1): 013631
https://doi.org/10.1103/PhysRevA.98.013631
28 Parisi L. , Giorgini S. . Quantum droplets in one-dimensional Bose mixtures: A quantum Monte Carlo study. Phys. Rev. A, 2020, 102( 2): 023318
https://doi.org/10.1103/PhysRevA.102.023318
29 I. Mistakidis S. , Mithun T. , G. Kevrekidis P. , R. Sadeghpour H. , Schmelcher P. . Formation and quench of homonuclear and heteronuclear quantum droplets in one dimension. Phys. Rev. Res., 2021, 3( 4): 043128
https://doi.org/10.1103/PhysRevResearch.3.043128
30 B. Baizakov B. , A. Malomed B. , Salerno M. . Multidimensional solitons in a low-dimensional periodic potential. Phys. Rev. A, 2004, 70( 5): 053613
https://doi.org/10.1103/PhysRevA.70.053613
31 Lehtovaara L. , Toivanen J. , Eloranta J. . Solution of time-independent Schrödinger equation by the imaginary time propagation method. J. Comput. Phys., 2007, 221( 1): 148
https://doi.org/10.1016/j.jcp.2006.06.006
32 Ashgriz N. , Y. Poo J. . Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech., 1990, 221 : 183
https://doi.org/10.1017/S0022112090003536
33 Qian J. , K. Law C. . Regimes of coalescence and separation in droplet collision. J. Fluid Mech., 1997, 331 : 59
https://doi.org/10.1017/S0022112096003722
34 Pan Y. , Suga K. . Numerical simulation of binary liquid droplet collision. Phys. Fluids, 2005, 17( 8): 082105
https://doi.org/10.1063/1.2009527
[1] Yang Liu, Le Luo. Molecular collisions: From near-cold to ultra-cold[J]. Front. Phys. , 2021, 16(4): 42300-.
[2] Yi-Yin Zheng, Shan-Tong Chen, Zhi-Peng Huang, Shi-Xuan Dai, Bin Liu, Yong-Yao Li, Shu-Rong Wang. Quantum droplets in two-dimensional optical lattices[J]. Front. Phys. , 2021, 16(2): 22501-.
[3] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[4] Feng-Shou Zhang, Cheng Li, Long Zhu, Peiwei Wen. Production cross sections for exotic nuclei with multinucleon transfer reactions[J]. Front. Phys. , 2018, 13(6): 132113-.
[5] Jun Xu,Bao-An Li,Wen-Qing Shen,Yin Xia. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions[J]. Front. Phys. , 2015, 10(6): 102501-.
[6] Qiong-Yi He, Margaret D. Reid, Bogdan Opanchuk, Rodney Polkinghorne, Laura E. C. Rosales-Zárate, Peter D. Drummond. Quantum dynamics in ultracold atomic physics[J]. Front. Phys. , 2012, 7(1): 16-30.
[7] Dan-wei Zhang (张丹伟), Zi-dan Wang (汪子丹), Shi-liang Zhu (朱诗亮). Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Front. Phys. , 2012, 7(1): 31-53.
[8] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed