Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 62504    https://doi.org/10.1007/s11467-022-1193-y
RESEARCH ARTICLE
Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit
Jin-Xuan Han1, Jin-Lei Wu2(), Zhong-Hui Yuan1, Yan Xia3, Yong-Yuan Jiang1,4,5,6, Jie Song1,4,5,6()
1. School of Physics, Harbin Institute of Technology, Harbin 150001, China
2. Department of Optoelectronics Science, Harbin Institute of Technology, Weihai 264209, China
3. Department of Physics, Fuzhou University, Fuzhou 350002, China
4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
5. Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Harbin 150001, China
6. Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(24236 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Topological pumping of edge states in the finite lattice with nontrivial topological phases provides a powerful means for robust excitation transfer, requiring extremely slow evolution to follow an adiabatic transfer. Here, we propose fast topological pumping via edge channels to generate large-scale Greenberger−Horne−Zeilinger (GHZ) states in a topological superconducting circuit with a sped-up evolution process. The scheme indicates a conceptual way of designing fast topological pumping related to the instantaneous energy spectrum characteristics rather than relying on the shortcuts to adiabaticity. Based on fast topological pumping, large-scale GHZ states show greater robustness against on-site potential defects, the fluctuation of couplings and losses of the system in comparison with the conventional adiabatic topological pumping. With experimentally feasible qutrit-resonator coupling strengths and moderate decay rates of qutrits and resonators, fast topological pumping drastically improves the scalability of GHZ states with a high fidelity. Our work opens up prospects for the realization of large-scale GHZ states based on fast topological pumping in the superconducting quantum circuit system, which provides potential applications of topological matters in quantum information processing.

Keywords topological pumping      superconducting ciruit      large-scale      Greenberger−Horne−Zeilinger states     
Corresponding Author(s): Jin-Lei Wu,Jie Song   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 20 September 2022
 Cite this article:   
Jin-Xuan Han,Jin-Lei Wu,Zhong-Hui Yuan, et al. Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit[J]. Front. Phys. , 2022, 17(6): 62504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1193-y
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/62504
Fig.1  (a) The diagrammatic sketch of a topological superconducting qutrit-resonator chain with the size of 2N. The chain belongs to an SSH model whose n-th unit cell contains one flux qutrit A n and one single-mode resonator Bn. The intra-cell and inter-cell coupling strengths are J 1 and J2, respectively. (b) Schematics of energy level transitions for qutrits A 1, An ( 1<n<N), and AN. The energy level structure of a flux qutrit holds two ground states ( |L? and |R?) and one excited state ( |e?). The coupling strengths between the resonator Bn and the qutrit An ( A n+1) is JL=J1 ( J R=J2) when n is odd, or JL=J 2 ( JR=J1) when n is even.
Fig.2  Two types of trajectories of the vector g(k) with different topologies when k runs across the Brillouin zone: (a) J1/J2<1 and (b) J1/J 2>1. The spectrum of the SSH model versus J1/J 2 for the even size L=2N=62 of chain in (c) and the odd size L=2N1=61 in (d).
Fig.3  Functions J 1,2 and the corresponding instantaneous energy spectrum as a function of time by setting different parameters α= 1 in (a) and (b), α= 6 in (c) and (d), and α= 11 in (e) and (f). We choose the total evolution time to be unity and the size of chain is L=2N1 =61.
Fig.4  The evolution process of zero-energy mode with different values of the parameters α=1 in (a), α =6 in (b) and α=11 in (c). (d) Numerical scatters of the minimum energy gap versus values of α with the size of chain L=2N1=61.
Fig.5  (a) Population evolution of states |r?61, |l?61, |G?61, |Ψ ideal? and |Ψ initial? based on fast topological pumping with exponential couplings and the conventional adiabatic topological pumping with Gauss couplings. (b) Final fidelity of 31-body GHZ state | Ψ ideal? as a function of the total evolution time T based on fast topological pumping with exponential couplings and the conventional adiabatic topological pumping with Gauss couplings. We choose the size of chain as L=2N1=61 and set the free parameter α= 6.
Fig.6  (a−c) Final fidelity of N-body GHZ state as a function of the total evolution time with different values of the parameter α by increasing the number of qutrits N=5 in (a), N=18 in (b) and N=31 in (c). (d−f) The corresponding instantaneous energy EN+1 as a function of time with different values of the parameter α by increasing the number of qutrits N=5 in (d), N=18 in (e) and N=31 in (f).
Fig.7  The fidelity of N-body GHZ state versus the varying α and the total evolution time T for (a) N=5, (b) N=18, (c) N=31 and (d) N=44. The red and blue solid lines represent 0.995 and 0.999 fidelity contour lines of N-body GHZ state, respectively.
Fig.8  (a) Fitting functions and numerical scatters between the number of qutrits and total evolution time with 99.9% fidelity for the conventional adiabatic topological pumping with Gauss couplings and the fast topological pumping with exponential couplings. (b) Time evolution of log10? (1F) for generating N-body GHZ states with N ranging from 10 to 30 at intervals of 5 based on the conventional adiabatic pumping with Gauss couplings and the fast topological pumping with exponential couplings, respectively.
Fig.9  Final fidelity of 31-body GHZ state against the unexpected coupling strength and the on-site potential defect for all A-type lattice sites and B-type lattice sites with disorder δ.
Fig.10  The fidelity of the 31-body GHZ state versus the varying δ and the total evolution time T for unexpected couplings with exponential couplings in (a) and with Gauss couplings in (b) and for on-site potential defect with A-type lattice sites in (c) and with B-type lattice sites in (d). The red (purple) and blue solid lines represent 0.995 (0.997) and 0.999 fidelity contour lines of N-body GHZ state, respectively.
Fig.11  Effects of losses on the final fidelity of 31-body GHZ state for the conventional adiabatic topological pumping with Gauss couplings and the fast pumping with exponential couplings. We choose J0/(2π) =10 MHz, the corresponding total evolution time TGaussN=31=106.42 μs and TExpN=31=5.04 μs with a 99.9% fidelity for generating a 31-body GHZ state.
Fig.12  Final fidelities of the GHZ state with the scalability of entanglement N under the coupling strengths (e.g., J0/(2π) =1 MHz, 10 MHz and 50 MHz) and decay rates of qutrits and resonators (e.g., γq/(2π )=κ /(2π)=1 kHz) for the conventional adiabatic topological pumping with Gauss couplings and the fast topological pumping with exponential couplings.
Fig.13  The diagrammatic sketch of two-dimensional square lattice with the size of L×L in superconducting qutrit-resonator system. N-body GHZ state is generated by the ith line and the (2N1)th column of SSH chain, including three steps: (i) Initialize from the qutrit A 1,N to A N,N in the (2N1)th column of SSH chain; (ii) The fast topological pumping from the qutrit A i,1 to A i,N in the ith line of SSH chain; (iii) The fast topological pumping from the qutrit Ai, N to AN, N in the (2N 1)th column of SSH chain.
Fig.14  Equivalent circuit of one unit cell in superconducting qutrit-resonator chain. Circuit elements are used to model the three-junction flux qutrit An the LC resonator Bn and the coupler with the additional Josephson junction and the coupler capacitor mounted in a dilution refrigerator (with a temperature T mK). The probe microwave signal is sent from a network analyzer and attenuated in the signal input line before arriving at the sample, which is placed in a magnetic shield. The transmitted signal from the sample is amplified by cryogenic LNA and measured by the network analyzer. The resonator Bn is an LC circuit composed of a spiral inductor L B and a capacitor C B. A flux qutrit An consists of a superconducting loop interrupted by three Josephson junctions. The flux qutrit An and the LC resonator Bn are coupled to the coupler by the capacitor C 1,2 and C 3,4, respectively. The coupling strength can be adjusted independently via changing the magnetic flux ΔΨ threading on the loop of coupler, which can add the flux basis line (FBL) to connect with an AWG by adopting controlled voltage pulses.
1 Y. Kitaev A., Unpaired Majorana fermions in quantum wires, Phys. Uspekhi . 44(103), 131 ( 2001)
2 L. Kane C. J. Mele E., Z2 topological order and the quantum spin Hall effect , Phys. Rev. Lett . 95(14), 146802 ( 2005)
3 J. Thouless D.. Quantization of particle transport. Phys. Rev. B , 1983, 27( 10): 6083
https://doi.org/10.1103/PhysRevB.27.6083
4 Niu Q., J. Thouless D.. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. Math. Gen. , 1984, 17( 12): 2453
https://doi.org/10.1088/0305-4470/17/12/016
5 E. Kraus Y., Lahini Y., Ringel Z., Verbin M., Zilberberg O.. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. , 2012, 109( 10): 106402
https://doi.org/10.1103/PhysRevLett.109.106402
6 Verbin M., Zilberberg O., Lahini Y., E. Kraus Y., Silberberg Y.. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B , 2015, 91( 6): 064201
https://doi.org/10.1103/PhysRevB.91.064201
7 Lang N. P. Büchler H., Topological networks for quantum commuication between distant qubits, npj Quantum Inf. 3, 47 ( 2017)
8 Mei F., Chen G., Tian L., L. Zhu S., Jia S.. Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys. Rev. A , 2018, 98( 1): 012331
https://doi.org/10.1103/PhysRevA.98.012331
9 L. Tambasco J., Corrielli G., J. Chapman R., Crespi A., Zilberberg O., Osellame R., Peruzzo A.. Quantum interference of topological states of light. Sci. Adv. , 2018, 4( 9): eaat3187
https://doi.org/10.1126/sciadv.aat3187
10 Boross P., K. Asbóth J., Széchenyi G., Oroszlány L., Pályi A.. Poor man’s topological quantum gate based on the Su−Schrieffer−Heeger model. Phys. Rev. B , 2019, 100( 4): 045414
https://doi.org/10.1103/PhysRevB.100.045414
11 Longhi S.. Topological pumping of edge states via adiabatic passage. Phys. Rev. B , 2019, 99( 15): 155150
https://doi.org/10.1103/PhysRevB.99.155150
12 E. Palaiodimopoulos N., Brouzos I., K. Diakonos F., Theocharis G.. Fast and robust quantum state transfer via a topological chain. Phys. Rev. A , 2021, 103( 5): 052409
https://doi.org/10.1103/PhysRevA.103.052409
13 M. D’Angelis F., A. Pinheiro F., Guéry-Odelin D., Longhi S., Impens F.. Fast and robust quantum state transfer in a topological Su−Schrieffer−Heeger chain with next-to-nearest-neighbor interactions. Phys. Rev. Res. , 2020, 2( 3): 033475
https://doi.org/10.1103/PhysRevResearch.2.033475
14 Mei F., Chen G., Tian L., L. Zhu S., Jia S.. Topology-dependent quantum dynamics and entanglement-dependent topological pumping in superconducting qubit chains. Phys. Rev. A , 2018, 98( 3): 032323
https://doi.org/10.1103/PhysRevA.98.032323
15 X. Han J., L. Wu J., Wang Y., Xia Y., Y. Jiang Y., Song J.. Large-scale Greenberger−Horne−Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain. Phys. Rev. A , 2021, 103( 3): 032402
https://doi.org/10.1103/PhysRevA.103.032402
16 Das Sarma S., Freedman M., Nayak C.. Topological quantum computation. Phys. Today , 2006, 59( 7): 32
https://doi.org/10.1063/1.2337825
17 H. Devoret M., J. Schoelkopf R.. Superconducting circuits for quantum information: An outlook. Science , 2013, 339( 6124): 1169
https://doi.org/10.1126/science.1231930
18 Q. You J. Nori F., Atomic physics and quantum optics using superconducting circuits, Nature 474(189), 8 ( 2005)
19 M. Martinis J., Qubit metrdogy for building a fault−tolerant quantum computer, npj Quantum Inf. 1, 15005 ( 2015)
20 Song C., Xu K., Li H., R. Zhang Y., Zhang X., Liu W., Guo Q., Wang Z., Ren W., Hao J., Feng H., Fan H., Zheng D., W. Wang D., Wang H., Y. Zhu S.. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science , 2019, 365( 6453): 574
https://doi.org/10.1126/science.aay0600
21 Kelly J., Barends R., G. Fowler A., Megrant A., Jeffrey E., C. White T., Sank D., Y. Mutus J., Campbell B., Chen Y., Chen Z., Chiaro B., Dunsworth A., C. Hoi I., Neill C., J. J. O’Malley P., Quintana C., Roushan P., Vainsencher A., Wenner J., N. Cleland A., M. Martinis J.. State preservation by repetitive error detection in a superconducting quantum circuit. Nature , 2015, 519( 7541): 66
https://doi.org/10.1038/nature14270
22 S. Otterbach J. Manenti R. Alidoust N. Bestwick A. Block M. Bloom B. Caldwell S. Didier N. S. Fried E. Hong S. Karalekas P. B. Osborn C. Papageorge A. C. Peterson E. Prawiroatmodjo G. Rubin N. A. Ryan C. Scarabelli D. Scheer M. A. Sete E. Sivarajah P. S. Smith R. T. A. Staley N. J. Zeng W. Hudson A. R. Johnson B. Reagor M. P. da Silva M. Rigetti C., Unsupervised machine learning on a hybrid quantum computer, arXiv: 1712.05771 ( 2017)
23 Kandala A., Mezzacapo A., Temme K., Takita M., Brink M., M. Chow J., M. Gambetta J.. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature , 2017, 549( 7671): 242
https://doi.org/10.1038/nature23879
24 Neill C. Roushan P. Kechedzhi K. Boixo S. V. Isakov S. Smelyanskiy V. Megrant A. Chiaro B. Dunsworth A. Arya K. Barends R. Burkett B. Chen Y. Chen Z. Fowler A. Foxen B. Giustina M. Graff R. Jeffrey E. Huang T. Kelly J. Klimov P. Lucero E. Mutus J. Neeley M. Quintana C. Sank D. Vainsencher A. Wenner J. C. White T. Neven H. M. Martinis J., A blueprint for demonstrating quantum supremacy with superconducting qubits, Science 360(6385), 195 ( 2018)
25 X. Wei K., Lauer I., Srinivasan S., Sundaresan N., T. McClure D., Toyli D., C. McKay D., M. Gambetta J., Sheldon S.. Verifying multipartite entangled Greenberger−Horne−Zeilinger states via multiple quantum coherences. Phys. Rev. A , 2020, 101( 3): 032343
https://doi.org/10.1103/PhysRevA.101.032343
26 Salathé Y., Mondal M., Oppliger M., Heinsoo J., Kurpiers P., Potočnik A., Mezzacapo A., Las Heras U., Lamata L., Solano E., Filipp S., Wallraff A.. Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X , 2015, 5( 2): 021027
https://doi.org/10.1103/PhysRevX.5.021027
27 Hacohen-Gourgy S., V. Ramasesh V., De Grandi C., Siddiqi I., M. Girvin S.. Cooling and autonomous feedback in a Bose−Hubbard chain with attractive interactions. Phys. Rev. Lett. , 2015, 115( 24): 240501
https://doi.org/10.1103/PhysRevLett.115.240501
28 J. J. O’Malley P., Babbush R., D. Kivlichan I., Romero J., R. McClean J., Barends R., Kelly J., Roushan P., Tranter A., Ding N., Campbell B., Chen Y., Chen Z., Chiaro B., Dunsworth A., G. Fowler A., Jeffrey E., Lucero E., Megrant A., Y. Mutus J., Neeley M., Neill C., Quintana C., Sank D., Vainsencher A., Wenner J., C. White T., V. Coveney P., J. Love P., Neven H., Aspuru-Guzik A., M. Martinis J.. Scalable quantum simulation of molecular energies. Phys. Rev. X , 2016, 6( 3): 031007
https://doi.org/10.1103/PhysRevX.6.031007
29 P. Zhong Y., Xu D., Wang P., Song C., J. Guo Q., X. Liu W., Xu K., X. Xia B., Y. Lu C., Han S., W. Pan J., Wang H.. Emulating anyonic fractional statistical behavior in a superconducting quantum circuit. Phys. Rev. Lett. , 2016, 117( 11): 110501
https://doi.org/10.1103/PhysRevLett.117.110501
30 Fitzpatrick M., M. Sundaresan N., C. Y. Li A., Koch J., A. Houck A.. Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys. Rev. X , 2017, 7( 1): 011016
https://doi.org/10.1103/PhysRevX.7.011016
31 Q. You J., F. Shi X., Hu X., Nori F.. Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B , 2010, 81( 1): 014505
https://doi.org/10.1103/PhysRevB.81.014505
32 Koch J., A. Houck A., L. Hur K., M. Girvin S.. Time−reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A , 2010, 82( 4): 043811
https://doi.org/10.1103/PhysRevA.82.043811
33 Hafezi M., Adhikari P., M. Taylor J.. Engineering three-body interaction and Pfaffian states in circuit QED systems. Phys. Rev. B , 2014, 90( 6): 060503
https://doi.org/10.1103/PhysRevB.90.060503
34 Kapit E., Hafezi M., H. Simon S.. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X , 2014, 4( 3): 031039
https://doi.org/10.1103/PhysRevX.4.031039
35 I. Tsomokos D., Ashhab S., Nori F.. Using superconducting qubit circuits to engineer exotic lattice systems. Phys. Rev. A , 2010, 82( 5): 052311
https://doi.org/10.1103/PhysRevA.82.052311
36 Mei F., Y. Xue Z., W. Zhang D., Tian L., Lee C., L. Zhu S.. Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice. Quantum Sci. Technol. , 2016, 1( 1): 015006
https://doi.org/10.1088/2058-9565/1/1/015006
37 Tangpanitanon J., M. Bastidas V., Al-Assam S., Roushan P., Jaksch D., G. Angelakis D.. Topological pumping of photons in nonlinear resonator arrays. Phys. Rev. Lett. , 2016, 117( 21): 213603
https://doi.org/10.1103/PhysRevLett.117.213603
38 Goren T., Plekhanov K., Appas F., Le Hur K.. Topological Zak phase in strongly coupled LC circuits. Phys. Rev. B , 2018, 97( 4): 041106
https://doi.org/10.1103/PhysRevB.97.041106
39 V. Ramasesh V., Flurin E., Rudner M., Siddiqi I., Y. Yao N.. Direct probe of topological invariants using Bloch oscillating quantum walks. Phys. Rev. Lett. , 2017, 118( 13): 130501
https://doi.org/10.1103/PhysRevLett.118.130501
40 Flurin E., V. Ramasesh V., Hacohen-Gourgy S., S. Martin L., Y. Yao N., Siddiqi I.. Observing topological invariants using quantum walks in superconducting circuits. Phys. Rev. X , 2017, 7( 3): 031023
https://doi.org/10.1103/PhysRevX.7.031023
41 D. Schroer M., H. Kolodrubetz M., F. Kindel W., Sandberg M., Gao J., R. Vissers M., P. Pappas D., Polkovnikov A., W. Lehnert K.. Measuring a topological transition in an artificial spin-1/2 system. Phys. Rev. Lett. , 2014, 113( 5): 050402
https://doi.org/10.1103/PhysRevLett.113.050402
42 Roushan P. Neill C. Chen Y. Kolodrubetz M. Quintana C. Leung N. Fang M. Barends R. Campbell B. Chen Z. Chiaro B. Dunsworth A. Jeffrey E. Kelly J. Megrant A. Mutus J. J. J. O’Malley P. Sank D. Vainsencher A. Wenner J. White T. Polkovnikov A. N. Cleland A. M. Martinis J., Observation of topological transitions in interacting quantum circuits, Nature 515(7526), 241 ( 2014)
43 Zhang Z., Wang T., Xiang L., Yao J., Wu J., Yin Y.. Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity. Phys. Rev. A , 2017, 95( 4): 042345
https://doi.org/10.1103/PhysRevA.95.042345
44 Tan X., W. Zhang D., Liu Q., Xue G., F. Yu H., Q. Zhu Y., Yan H., L. Zhu S., Yu Y.. Topological Maxwell metal bands in a superconducting qutrit. Phys. Rev. Lett. , 2018, 120( 13): 130503
https://doi.org/10.1103/PhysRevLett.120.130503
45 Song C., Xu D., Zhang P., Wang J., Guo Q., Liu W., Xu K., Deng H., Huang K., Zheng D., B. Zheng S., Wang H., Zhu X., Y. Lu C., W. Pan J.. Demonstration of topological robustness of anyonic braiding statistics with a superconducting quantum circuit. Phys. Rev. Lett. , 2018, 121( 3): 030502
https://doi.org/10.1103/PhysRevLett.121.030502
46 Cai W., Han J., Mei F., Xu Y., Ma Y., Li X., Wang H., P. Song Y., Y. Xue Z., Q. Yin Z., Jia S., Sun L.. Observation of topological magnon insulator states in a superconducting circuit. Phys. Rev. Lett. , 2019, 123( 8): 080501
https://doi.org/10.1103/PhysRevLett.123.080501
47 Viyuela O. Rivas A. Gasparinetti S. Wallraff A. Wallraff A. Filipp S. A. Martin-Delgado M., Observation of topological Uhlmann phases with superconduction qubits, npj Quantum Inform. 4, 10 ( 2018)
48 Horodecki R., Horodecki P., Horodecki M., Horodecki K.. Quantum entanglement. Rev. Mod. Phys. , 2009, 81( 2): 865
https://doi.org/10.1103/RevModPhys.81.865
49 W. Pan J., B. Chen Z., Y. Lu C., Weinfurter H., Zeilinger A., Żukowski M.. Multiphoton entanglement and interferometry. Rev. Mod. Phys. , 2012, 84( 2): 777
https://doi.org/10.1103/RevModPhys.84.777
50 Pezzè L., Smerzi A., K. Oberthaler M., Schmied R., Treutlein P.. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. , 2018, 90( 3): 035005
https://doi.org/10.1103/RevModPhys.90.035005
51 C. Rechtsman M., Lumer Y., Plotnik Y., Perez-Leija A., Szameit A., Segev M.. Topological protection of photonic path entanglement. Optica , 2016, 3( 9): 925
https://doi.org/10.1364/OPTICA.3.000925
52 Blanco-Redondo A., Bell B., Oren D., J. Eggleton B., Segev M.. Topological protection of biphoton states. Science , 2018, 362( 6414): 568
https://doi.org/10.1126/science.aau4296
53 Wang M., Doyle C., Bell B., J. Collins M., Magi E., J. Eggleton B., Segev M., Blanco-Redondo A.. Topologically protected entangled photonic states. Nanophotonics , 2019, 8( 8): 1327
https://doi.org/10.1515/nanoph-2019-0058
54 K. Hong C., Y. Ou Z., Mandel L.. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. , 1987, 59( 18): 2044
https://doi.org/10.1103/PhysRevLett.59.2044
55 Brouzos I., Kiorpelidis I., K. Diakonos F., Theocharis G.. Fast, robust, and amplified transfer of topological edge modes on a time-varying mechanical chain. Phys. Rev. B , 2020, 102( 17): 174312
https://doi.org/10.1103/PhysRevB.102.174312
56 X. Shen Y., S. Zeng L., G. Geng Z., G. Zhao D., G. Peng Y., F. Zhu X.. Acoustic adiabatic propagation based on topological pumping in a coupled multicavity chain lattice. Phys. Rev. Appl. , 2020, 14( 1): 014043
https://doi.org/10.1103/PhysRevApplied.14.014043
57 L. Wu J., Wang Y., X. Han J., K. Feng Y., L. Su S., Xia Y., Jiang Y., Song J.. One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness. Photon. Res. , 2021, 9( 5): 814
https://doi.org/10.1364/PRJ.415795
58 R. Huang X., X. Ding Z., S. Hu C., T. Shen L., Li W., Wu H., B. Zheng S.. Robust Rydberg gate via Landau−Zener control of Förster resonance. Phys. Rev. A , 2018, 98( 5): 052324
https://doi.org/10.1103/PhysRevA.98.052324
59 Guo Q., B. Zheng S., Wang J., Song C., Zhang P., Li K., Liu W., Deng H., Huang K., Zheng D., Zhu X., Wang H., Y. Lu C., W. Pan J.. Dephasing-insensitive quantum information storage and processing with superconducting qubits. Phys. Rev. Lett. , 2018, 121( 13): 130501
https://doi.org/10.1103/PhysRevLett.121.130501
60 Balachandran V., Gong J.. Adiabatic quantum transport in a spin chain with a moving potential. Phys. Rev. A , 2008, 77( 1): 012303
https://doi.org/10.1103/PhysRevA.77.012303
61 Allcock J., Linden N.. Quantum communication beyond the localization length in disordered spin chains. Phys. Rev. Lett. , 2009, 102( 11): 110501
https://doi.org/10.1103/PhysRevLett.102.110501
62 L. Wu J., Wang Y., X. Han J., L. Su S., Xia Y., Jiang Y., Song J.. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Front. Phys. , 2022, 17( 2): 22501
https://doi.org/10.1007/s11467-021-1104-7
63 R. Agundez R., D. Hill C., C. L. Hollenberg L., Rogge S., Blaauboer M.. Superadiabatic quantum state transfer in spin chains. Phys. Rev. A , 2017, 95( 1): 012317
https://doi.org/10.1103/PhysRevA.95.012317
64 L. Wu J., Wang Y., X. Han J., Jiang Y., Song J., Xia Y., L. Su S., Li W.. Systematic-error-tolerant multiqubit holonomic entangling gates. Phys. Rev. Appl. , 2021, 16( 6): 064031
https://doi.org/10.1103/PhysRevApplied.16.064031
65 Zhou Y., Y. Lü D., Y. Zeng W.. Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system. Photon. Res. , 2021, 9( 3): 405
https://doi.org/10.1364/PRJ.405246
66 M. Greenberger D. A. Horne M. Zeilinger A., Bell’s theorem, Quantum Theory, and Conceptions of the Universe, Kluwer Dordrecht, 1989
67 Hillery M., Bužek V., Berthiaume A.. Quantum secret sharing. Phys. Rev. A , 1999, 59( 3): 1829
https://doi.org/10.1103/PhysRevA.59.1829
68 Bose S., Vedral V., L. Knight P.. Multiparticle generalization of entanglement swapping. Phys. Rev. A , 1998, 57( 2): 822
https://doi.org/10.1103/PhysRevA.57.822
69 Knill E.. Quantum computing with realistically noisy devices. Nature , 2005, 434( 7029): 39
https://doi.org/10.1038/nature03350
70 Giovannetti V., Lloyd S., Maccone L.. Quantum-enhanced measurements: Beating the standard quantum limit. Science , 2004, 306( 5700): 1330
https://doi.org/10.1126/science.1104149
71 Leibfried D., Barrett M., Schaetz T., Britton J., Chiaverini J., Itano W., Jost J., Langer C., Wineland D.. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science , 2004, 304( 5676): 1476
https://doi.org/10.1126/science.1097576
72 P. Yang C., P. Su Q., B. Zheng S., Nori F.. Entangling superconducting qubits in a multi-cavity system. New J. Phys. , 2016, 18( 1): 013025
https://doi.org/10.1088/1367-2630/18/1/013025
73 Matsuo S. Ashhab S. Fujii T. Nori F. Nagai K. Hatakenaka N., Generation of Bell states and Greenberger−Horne−Zeilinger states in superconducting phase qubits, in: Quantum Communication, Measurement and Computing, No. 8, Ed.: O. Hirota et al. , Tokyo: NICT, 2006
74 F. Wei L., Liu Y., Nori F.. Generation and control of Greenberger−Horne−Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. , 2006, 96( 24): 246803
https://doi.org/10.1103/PhysRevLett.96.246803
75 L. Zhu S., D. Wang Z., Zanardi P.. Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. , 2005, 94( 10): 100502
https://doi.org/10.1103/PhysRevLett.94.100502
76 P. Yang C., P. Su Q., Han S.. Generation of Greenberger−Horne−Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A , 2012, 86( 2): 022329
https://doi.org/10.1103/PhysRevA.86.022329
77 P. Yang C., P. Su Q., B. Zheng S., Han S.. Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A , 2013, 87( 2): 022320
https://doi.org/10.1103/PhysRevA.87.022320
78 Aldana S., D. Wang Y., Bruder C.. Greenberger−Horne−Zeilinger generation protocol forN superconducting transmon qubits capacitively coupled to a quantum bus. Phys. Rev. B , 2011, 84( 13): 134519
https://doi.org/10.1103/PhysRevB.84.134519
79 Feng W., Wang P., Ding X., Xu L., Q. Li X.. Generating and stabilizing the Greenberger−Horne−Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback. Phys. Rev. A , 2011, 83( 4): 042313
https://doi.org/10.1103/PhysRevA.83.042313
80 L. Wu J., Song C., Xu J., Yu L., Ji X., Zhang S.. Adiabatic passage for one-step generation of n-qubit Greenberger–Horne–Zeilinger states of superconducting qubits via quantum Zeno dynamics. Quantum Inform. Process. , 2016, 15( 9): 3663
https://doi.org/10.1007/s11128-016-1366-0
81 T. Mo X., Y. Xue Z.. Single-step multipartite entangled states generation from coupled circuit cavities. Front. Phys. , 2019, 14( 3): 31602
https://doi.org/10.1007/s11467-019-0888-1
82 H. Kang Y., C. Shi Z., H. Huang B., Song J., Xia Y.. Deterministic conversions between Greenberger−Horne−Zeilinger states and W states of spin qubits via Lie-transform-based inverse Hamiltonian engineering. Phys. Rev. A , 2019, 100( 1): 012332
https://doi.org/10.1103/PhysRevA.100.012332
83 Liu T., P. Su Q., Zhang Y., L. Fang Y., P. Yang C.. Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities. Phys. Rev. A , 2020, 101( 1): 012337
https://doi.org/10.1103/PhysRevA.101.012337
84 M. Chow J., M. Gambetta J., Magesan E., W. Abraham D., W. Cross A., R. Johnson B., A. Masluk N., A. Ryan C., A. Smolin J., J. Srinivasan S., Steffen M.. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. , 2014, 5( 1): 4015
https://doi.org/10.1038/ncomms5015
85 DiCarlo L. D. Reed M. Sun L. R. Johnson B. M. Chow J. M. Gambetta J. Frunzio L. H. Girvin M., S. M. and Devoret, and R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconduction circuit, Nature 467(7315), 574 ( 2010)
86 Barends R., Kelly J., Megrant A., Veitia A., Sank D., Jeffrey E., C. White T., Mutus J., G. Fowler A., Campbell B., Chen Y., Chen Z., Chiaro B., Dunsworth A., Neill C., O’Malley P., Roushan P., Vainsencher A., Wenner J., N. Korotkov A., N. Cleland A., M. Martinis J.. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature , 2014, 508( 7497): 500
https://doi.org/10.1038/nature13171
87 Song C. Xu K. Liu W. Yang C. B. Zheng S. Deng H. Xie Q. Huang K. Guo Q. Zhang L. Zhang P. Xu D. Zheng D. Zhu X. Wang H. A. Chen Y. Y. Lu C. Han S. W. Pan J., 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett . 119(18), 180511 ( 2017)
88 Cervera-Lierta A., Krenn M., Aspuru-Guzik A., Galda A.. Experimental high-dimensional Greenberger−Horne−Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. , 2022, 17( 2): 024062
https://doi.org/10.1103/PhysRevApplied.17.024062
89 Chen X., Lizuain I., Ruschhaupt A., Guéry-Odelin D., G. Muga J.. Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. , 2010, 105( 12): 123003
https://doi.org/10.1103/PhysRevLett.105.123003
90 Guéry-Odelin D., Ruschhaupt A., Kiely A., Torrontegui E., Martínez-Garaot S., G. Muga J.. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. , 2019, 91( 4): 045001
https://doi.org/10.1103/RevModPhys.91.045001
91 Altland A., R. Zirnbauer M.. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B , 1997, 55( 2): 1142
https://doi.org/10.1103/PhysRevB.55.1142
92 Ryu S., Hatsugai Y.. Topological origin of zero-energy edge states in particle−hole symmetric systems. Phys. Rev. Lett. , 2002, 89( 7): 077002
https://doi.org/10.1103/PhysRevLett.89.077002
93 K. Asbóth J. Oroszlány L. Pályi A., A short course on topological insulators, Lect. Notes Phys . 919, 85 ( 2016)
94 Coutant A., Achilleos V., Richoux O., Theocharis G., Pagneux V.. Robustness of topological corner modes against disorder with application to acoustic networks. Phys. Rev. B , 2020, 102( 21): 214204
https://doi.org/10.1103/PhysRevB.102.214204
95 M. Greenberger D., A. Horne M., Shimony A., Zeilinger A.. Bell’s theorem without inequalities. Am. J. Phys. , 1990, 58( 12): 1131
https://doi.org/10.1119/1.16243
96 Mukherjee R., Xie H., Mintert F.. Bayesian optimal control of Greenberger−Horne−Zeilinger states in Rydberg lattices. Phys. Rev. Lett. , 2020, 125( 20): 203603
https://doi.org/10.1103/PhysRevLett.125.203603
97 Reiter F., Reeb D., S. Sørensen A.. Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. , 2016, 117( 4): 040501
https://doi.org/10.1103/PhysRevLett.117.040501
98 B. Zheng S.. One-step synthesis of multiatom Greenberger−Horne−Zeilinger states. Phys. Rev. Lett. , 2001, 87( 23): 230404
https://doi.org/10.1103/PhysRevLett.87.230404
99 Mundada P., Zhang G., Hazard T., Houck A.. Suppression of qubit crosstalk in a tunable coupling superconducting circuit. Phys. Rev. Appl. , 2019, 12( 5): 054023
https://doi.org/10.1103/PhysRevApplied.12.054023
100 P. Su W., R. Schrieffer J., J. Heeger A.. Solitons in Polyacetylene. Phys. Rev. Lett. , 1979, 42( 25): 1698
https://doi.org/10.1103/PhysRevLett.42.1698
101 Pachos J., Walther H.. Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. , 2002, 89( 18): 187903
https://doi.org/10.1103/PhysRevLett.89.187903
102 P. M. Place A., V. H. Rodgers L., Mundada P., M. Smitham B., Fitzpatrick M., Leng Z., Premkumar A., Bryon J., Vrajitoarea A., Sussman S., Cheng G., Madhavan T., K. Babla H., H. Le X., Gang Y., Jäck B., Gyenis A., Yao N., J. Cava R., P. de Leon N., A. Houck A.. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. , 2021, 12( 1): 1779
https://doi.org/10.1038/s41467-021-22030-5
103 Zhang H., Chakram S., Roy T., Earnest N., Lu Y., Huang Z., K. Weiss D., Koch J., I. Schuster D.. Universal fast-flux control of a coherent, low-frequency qubit. Phys. Rev. X , 2021, 11( 1): 011010
https://doi.org/10.1103/PhysRevX.11.011010
104 M. Pop I., Ansmann M., Catelani G., J. Schoelkopf R., I. Glazman L., H. Devoret M.. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature , 2014, 508( 7496): 7496
https://doi.org/10.1038/nature13017
105 Gu X., F. Kockum A., Miranowicz A., X. Liu Y., Nori F.. Microwave photonics with superconducting quantum circuits. Phys. Rep. , 2017, 718– 719,1
https://doi.org/10.1016/j.physrep.2017.10.002
106 Reagor M., Paik H., Catelani G., Sun L., Axline C., Holland E., M. Pop I., A. Masluk N., Brecht T., Frunzio L., H. Devoret M., Glazman L., J. Schoelkopf R.. Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Phys. Lett. , 2013, 102( 19): 192604
https://doi.org/10.1063/1.4807015
107 Reagor M., Pfaff W., Axline C., W. Heeres R., Ofek N., Sliwa K., Holland E., Wang C., Blumoff J., Chou K., J. Hatridge M., Frunzio L., H. Devoret M., Jiang L., J. Schoelkopf R.. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B , 2016, 94( 1): 014506
https://doi.org/10.1103/PhysRevB.94.014506
108 Axline C., Reagor M., Heeres R., Reinhold P., Wang C., Shain K., Pfaff W., Chu Y., Frunzio L., J. Schoelkopf R.. An architecture for integrating planar and 3D cQED devices. Appl. Phys. Lett. , 2016, 109( 4): 042601
https://doi.org/10.1063/1.4959241
109 E. Mooij J., P. Orlando T., Levitov L., Tian L., H. van der Wal C., Lloyd S.. Josephson persistent-current qubit. Science , 1999, 285( 5430): 1036
https://doi.org/10.1126/science.285.5430.1036
110 H. van der Wal C., C. J. ter Haar A., K. Wilhelm F., N. Schouten R., J. P. M. Harmans C., P. Orlando T., Lloyd S., E. Mooij J.. Quantum superposition of macroscopic persistent-current states. Science , 2000, 290( 5492): 773
https://doi.org/10.1126/science.290.5492.773
111 Peropadre B., Forn-Díaz P., Solano E., J. García-Ripoll J.. Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. , 2010, 105( 2): 023601
https://doi.org/10.1103/PhysRevLett.105.023601
112 S. Allman M. Altomare F. D. Whittaker J. Cicak K. Li D. Sirois A. Strong J. D. Teufel J. W. Simmonds R., RF-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator, Phys. Rev. Lett . 104(17), 177004 ( 2010)
113 S. Allman M., D. Whittaker J., Castellanos-Beltran M., Cicak K., da Silva F., P. DeFeo M., Lecocq F., Sirois A., D. Teufel J., Aumentado J., W. Simmonds R.. Tunable resonant and nonresonant interactions between a phase qubit and LC resonator. Phys. Rev. Lett. , 2014, 112( 12): 123601
https://doi.org/10.1103/PhysRevLett.112.123601
114 Bourassa J., M. Gambetta J., A. Abdumalikov A., Astafiev O., Nakamura Y., Blais A.. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys. Rev. A , 2009, 80( 3): 032109
https://doi.org/10.1103/PhysRevA.80.032109
115 P. Orlando T., E. Mooij J., Tian L., H. van der Wal C., S. Levitov L., Lloyd S., J. Mazo J.. Superconducting persistent-current qubit. Phys. Rev. B , 1999, 60( 22): 15398
https://doi.org/10.1103/PhysRevB.60.15398
116 X. Liu Y., Q. You J., F. Wei L., P. Sun C., Nori F.. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. , 2005, 95( 8): 087001
https://doi.org/10.1103/PhysRevLett.95.087001
117 Devoret M. Huard B. Schoelkopf R. F. Cugliandolo L., Quantum Machines: Measurement and Control of Engineered Quantum Systems, Oxford University Press, USA, 2014
118 E. Manucharyan V., Koch J., I. Glazman L., H. Devoret M.. Fluxonium: Single Cooper-pair circuit free of charge offsets. Science , 2009, 326( 5949): 113
https://doi.org/10.1126/science.1175552
119 DiCarlo L., M. Chow J., M. Gambetta J., S. Bishop L., R. Johnson B., I. Schuster D., Majer J., Blais A., Frunzio L., M. Girvin S., J. Schoelkopf R.. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature , 2009, 460( 7252): 240
https://doi.org/10.1038/nature08121
120 Wang T., Zhang Z., Xiang L., Jia Z., Duan P., Zong Z., Sun Z., Dong Z., Wu J., Yin Y., Guo G.. Experimental realization of a fast controlled-Z gate via a shortcut to adiabaticity. Phys. Rev. Appl. , 2019, 11( 3): 034030
https://doi.org/10.1103/PhysRevApplied.11.034030
121 A. Clerk A., W. Lehnert K., Bertet P., R. Petta J., Nakamura Y.. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. , 2020, 16( 3): 257
https://doi.org/10.1038/s41567-020-0797-9
122 Niemczyk T., Deppe F., Huebl H., P. Menzel E., Hocke F., J. Schwarz M., J. Garcia-Ripoll J., Zueco D., Hümmer T., Solano E., Marx A., Gross R.. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. , 2010, 6( 10): 772
https://doi.org/10.1038/nphys1730
123 Blais A., M. Girvin S., D. Oliver W.. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. , 2020, 16( 3): 247
https://doi.org/10.1038/s41567-020-0806-z
124 J. Mooney G., A. L. White G., D. Hill C., C. L. Hollenberg L.. Whole-device entanglement in a 65-qubit superconducting quantum computer. Adv. Quantum Technol. , 2021, 4( 10): 2100061
https://doi.org/10.1002/qute.202100061
125 Blais A., S. Huang R., Wallraff A., M. Girvin S., J. Schoelkopf R.. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A , 2004, 69( 6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
126 Clarke J., K. Wilhelm F.. Superconducting quantum bits. Nature , 2008, 453( 7198): 1031
https://doi.org/10.1038/nature07128
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed