|
|
Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit |
Jin-Xuan Han1, Jin-Lei Wu2( ), Zhong-Hui Yuan1, Yan Xia3, Yong-Yuan Jiang1,4,5,6, Jie Song1,4,5,6( ) |
1. School of Physics, Harbin Institute of Technology, Harbin 150001, China 2. Department of Optoelectronics Science, Harbin Institute of Technology, Weihai 264209, China 3. Department of Physics, Fuzhou University, Fuzhou 350002, China 4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China 5. Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Harbin 150001, China 6. Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Topological pumping of edge states in the finite lattice with nontrivial topological phases provides a powerful means for robust excitation transfer, requiring extremely slow evolution to follow an adiabatic transfer. Here, we propose fast topological pumping via edge channels to generate large-scale Greenberger−Horne−Zeilinger (GHZ) states in a topological superconducting circuit with a sped-up evolution process. The scheme indicates a conceptual way of designing fast topological pumping related to the instantaneous energy spectrum characteristics rather than relying on the shortcuts to adiabaticity. Based on fast topological pumping, large-scale GHZ states show greater robustness against on-site potential defects, the fluctuation of couplings and losses of the system in comparison with the conventional adiabatic topological pumping. With experimentally feasible qutrit-resonator coupling strengths and moderate decay rates of qutrits and resonators, fast topological pumping drastically improves the scalability of GHZ states with a high fidelity. Our work opens up prospects for the realization of large-scale GHZ states based on fast topological pumping in the superconducting quantum circuit system, which provides potential applications of topological matters in quantum information processing.
|
Keywords
topological pumping
superconducting ciruit
large-scale
Greenberger−Horne−Zeilinger states
|
Corresponding Author(s):
Jin-Lei Wu,Jie Song
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 20 September 2022
|
|
1 |
Y. Kitaev A., Unpaired Majorana fermions in quantum wires, Phys. Uspekhi . 44(103), 131 ( 2001)
|
2 |
L. Kane C. J. Mele E., Z2 topological order and the quantum spin Hall effect , Phys. Rev. Lett . 95(14), 146802 ( 2005)
|
3 |
J. Thouless D.. Quantization of particle transport. Phys. Rev. B , 1983, 27( 10): 6083
https://doi.org/10.1103/PhysRevB.27.6083
|
4 |
Niu Q., J. Thouless D.. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. Math. Gen. , 1984, 17( 12): 2453
https://doi.org/10.1088/0305-4470/17/12/016
|
5 |
E. Kraus Y., Lahini Y., Ringel Z., Verbin M., Zilberberg O.. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. , 2012, 109( 10): 106402
https://doi.org/10.1103/PhysRevLett.109.106402
|
6 |
Verbin M., Zilberberg O., Lahini Y., E. Kraus Y., Silberberg Y.. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B , 2015, 91( 6): 064201
https://doi.org/10.1103/PhysRevB.91.064201
|
7 |
Lang N. P. Büchler H., Topological networks for quantum commuication between distant qubits, npj Quantum Inf. 3, 47 ( 2017)
|
8 |
Mei F., Chen G., Tian L., L. Zhu S., Jia S.. Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys. Rev. A , 2018, 98( 1): 012331
https://doi.org/10.1103/PhysRevA.98.012331
|
9 |
L. Tambasco J., Corrielli G., J. Chapman R., Crespi A., Zilberberg O., Osellame R., Peruzzo A.. Quantum interference of topological states of light. Sci. Adv. , 2018, 4( 9): eaat3187
https://doi.org/10.1126/sciadv.aat3187
|
10 |
Boross P., K. Asbóth J., Széchenyi G., Oroszlány L., Pályi A.. Poor man’s topological quantum gate based on the Su−Schrieffer−Heeger model. Phys. Rev. B , 2019, 100( 4): 045414
https://doi.org/10.1103/PhysRevB.100.045414
|
11 |
Longhi S.. Topological pumping of edge states via adiabatic passage. Phys. Rev. B , 2019, 99( 15): 155150
https://doi.org/10.1103/PhysRevB.99.155150
|
12 |
E. Palaiodimopoulos N., Brouzos I., K. Diakonos F., Theocharis G.. Fast and robust quantum state transfer via a topological chain. Phys. Rev. A , 2021, 103( 5): 052409
https://doi.org/10.1103/PhysRevA.103.052409
|
13 |
M. D’Angelis F., A. Pinheiro F., Guéry-Odelin D., Longhi S., Impens F.. Fast and robust quantum state transfer in a topological Su−Schrieffer−Heeger chain with next-to-nearest-neighbor interactions. Phys. Rev. Res. , 2020, 2( 3): 033475
https://doi.org/10.1103/PhysRevResearch.2.033475
|
14 |
Mei F., Chen G., Tian L., L. Zhu S., Jia S.. Topology-dependent quantum dynamics and entanglement-dependent topological pumping in superconducting qubit chains. Phys. Rev. A , 2018, 98( 3): 032323
https://doi.org/10.1103/PhysRevA.98.032323
|
15 |
X. Han J., L. Wu J., Wang Y., Xia Y., Y. Jiang Y., Song J.. Large-scale Greenberger−Horne−Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain. Phys. Rev. A , 2021, 103( 3): 032402
https://doi.org/10.1103/PhysRevA.103.032402
|
16 |
Das Sarma S., Freedman M., Nayak C.. Topological quantum computation. Phys. Today , 2006, 59( 7): 32
https://doi.org/10.1063/1.2337825
|
17 |
H. Devoret M., J. Schoelkopf R.. Superconducting circuits for quantum information: An outlook. Science , 2013, 339( 6124): 1169
https://doi.org/10.1126/science.1231930
|
18 |
Q. You J. Nori F., Atomic physics and quantum optics using superconducting circuits, Nature 474(189), 8 ( 2005)
|
19 |
M. Martinis J., Qubit metrdogy for building a fault−tolerant quantum computer, npj Quantum Inf. 1, 15005 ( 2015)
|
20 |
Song C., Xu K., Li H., R. Zhang Y., Zhang X., Liu W., Guo Q., Wang Z., Ren W., Hao J., Feng H., Fan H., Zheng D., W. Wang D., Wang H., Y. Zhu S.. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science , 2019, 365( 6453): 574
https://doi.org/10.1126/science.aay0600
|
21 |
Kelly J., Barends R., G. Fowler A., Megrant A., Jeffrey E., C. White T., Sank D., Y. Mutus J., Campbell B., Chen Y., Chen Z., Chiaro B., Dunsworth A., C. Hoi I., Neill C., J. J. O’Malley P., Quintana C., Roushan P., Vainsencher A., Wenner J., N. Cleland A., M. Martinis J.. State preservation by repetitive error detection in a superconducting quantum circuit. Nature , 2015, 519( 7541): 66
https://doi.org/10.1038/nature14270
|
22 |
S. Otterbach J. Manenti R. Alidoust N. Bestwick A. Block M. Bloom B. Caldwell S. Didier N. S. Fried E. Hong S. Karalekas P. B. Osborn C. Papageorge A. C. Peterson E. Prawiroatmodjo G. Rubin N. A. Ryan C. Scarabelli D. Scheer M. A. Sete E. Sivarajah P. S. Smith R. T. A. Staley N. J. Zeng W. Hudson A. R. Johnson B. Reagor M. P. da Silva M. Rigetti C., Unsupervised machine learning on a hybrid quantum computer, arXiv: 1712.05771 ( 2017)
|
23 |
Kandala A., Mezzacapo A., Temme K., Takita M., Brink M., M. Chow J., M. Gambetta J.. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature , 2017, 549( 7671): 242
https://doi.org/10.1038/nature23879
|
24 |
Neill C. Roushan P. Kechedzhi K. Boixo S. V. Isakov S. Smelyanskiy V. Megrant A. Chiaro B. Dunsworth A. Arya K. Barends R. Burkett B. Chen Y. Chen Z. Fowler A. Foxen B. Giustina M. Graff R. Jeffrey E. Huang T. Kelly J. Klimov P. Lucero E. Mutus J. Neeley M. Quintana C. Sank D. Vainsencher A. Wenner J. C. White T. Neven H. M. Martinis J., A blueprint for demonstrating quantum supremacy with superconducting qubits, Science 360(6385), 195 ( 2018)
|
25 |
X. Wei K., Lauer I., Srinivasan S., Sundaresan N., T. McClure D., Toyli D., C. McKay D., M. Gambetta J., Sheldon S.. Verifying multipartite entangled Greenberger−Horne−Zeilinger states via multiple quantum coherences. Phys. Rev. A , 2020, 101( 3): 032343
https://doi.org/10.1103/PhysRevA.101.032343
|
26 |
Salathé Y., Mondal M., Oppliger M., Heinsoo J., Kurpiers P., Potočnik A., Mezzacapo A., Las Heras U., Lamata L., Solano E., Filipp S., Wallraff A.. Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X , 2015, 5( 2): 021027
https://doi.org/10.1103/PhysRevX.5.021027
|
27 |
Hacohen-Gourgy S., V. Ramasesh V., De Grandi C., Siddiqi I., M. Girvin S.. Cooling and autonomous feedback in a Bose−Hubbard chain with attractive interactions. Phys. Rev. Lett. , 2015, 115( 24): 240501
https://doi.org/10.1103/PhysRevLett.115.240501
|
28 |
J. J. O’Malley P., Babbush R., D. Kivlichan I., Romero J., R. McClean J., Barends R., Kelly J., Roushan P., Tranter A., Ding N., Campbell B., Chen Y., Chen Z., Chiaro B., Dunsworth A., G. Fowler A., Jeffrey E., Lucero E., Megrant A., Y. Mutus J., Neeley M., Neill C., Quintana C., Sank D., Vainsencher A., Wenner J., C. White T., V. Coveney P., J. Love P., Neven H., Aspuru-Guzik A., M. Martinis J.. Scalable quantum simulation of molecular energies. Phys. Rev. X , 2016, 6( 3): 031007
https://doi.org/10.1103/PhysRevX.6.031007
|
29 |
P. Zhong Y., Xu D., Wang P., Song C., J. Guo Q., X. Liu W., Xu K., X. Xia B., Y. Lu C., Han S., W. Pan J., Wang H.. Emulating anyonic fractional statistical behavior in a superconducting quantum circuit. Phys. Rev. Lett. , 2016, 117( 11): 110501
https://doi.org/10.1103/PhysRevLett.117.110501
|
30 |
Fitzpatrick M., M. Sundaresan N., C. Y. Li A., Koch J., A. Houck A.. Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys. Rev. X , 2017, 7( 1): 011016
https://doi.org/10.1103/PhysRevX.7.011016
|
31 |
Q. You J., F. Shi X., Hu X., Nori F.. Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B , 2010, 81( 1): 014505
https://doi.org/10.1103/PhysRevB.81.014505
|
32 |
Koch J., A. Houck A., L. Hur K., M. Girvin S.. Time−reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A , 2010, 82( 4): 043811
https://doi.org/10.1103/PhysRevA.82.043811
|
33 |
Hafezi M., Adhikari P., M. Taylor J.. Engineering three-body interaction and Pfaffian states in circuit QED systems. Phys. Rev. B , 2014, 90( 6): 060503
https://doi.org/10.1103/PhysRevB.90.060503
|
34 |
Kapit E., Hafezi M., H. Simon S.. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X , 2014, 4( 3): 031039
https://doi.org/10.1103/PhysRevX.4.031039
|
35 |
I. Tsomokos D., Ashhab S., Nori F.. Using superconducting qubit circuits to engineer exotic lattice systems. Phys. Rev. A , 2010, 82( 5): 052311
https://doi.org/10.1103/PhysRevA.82.052311
|
36 |
Mei F., Y. Xue Z., W. Zhang D., Tian L., Lee C., L. Zhu S.. Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice. Quantum Sci. Technol. , 2016, 1( 1): 015006
https://doi.org/10.1088/2058-9565/1/1/015006
|
37 |
Tangpanitanon J., M. Bastidas V., Al-Assam S., Roushan P., Jaksch D., G. Angelakis D.. Topological pumping of photons in nonlinear resonator arrays. Phys. Rev. Lett. , 2016, 117( 21): 213603
https://doi.org/10.1103/PhysRevLett.117.213603
|
38 |
Goren T., Plekhanov K., Appas F., Le Hur K.. Topological Zak phase in strongly coupled LC circuits. Phys. Rev. B , 2018, 97( 4): 041106
https://doi.org/10.1103/PhysRevB.97.041106
|
39 |
V. Ramasesh V., Flurin E., Rudner M., Siddiqi I., Y. Yao N.. Direct probe of topological invariants using Bloch oscillating quantum walks. Phys. Rev. Lett. , 2017, 118( 13): 130501
https://doi.org/10.1103/PhysRevLett.118.130501
|
40 |
Flurin E., V. Ramasesh V., Hacohen-Gourgy S., S. Martin L., Y. Yao N., Siddiqi I.. Observing topological invariants using quantum walks in superconducting circuits. Phys. Rev. X , 2017, 7( 3): 031023
https://doi.org/10.1103/PhysRevX.7.031023
|
41 |
D. Schroer M., H. Kolodrubetz M., F. Kindel W., Sandberg M., Gao J., R. Vissers M., P. Pappas D., Polkovnikov A., W. Lehnert K.. Measuring a topological transition in an artificial spin-1/2 system. Phys. Rev. Lett. , 2014, 113( 5): 050402
https://doi.org/10.1103/PhysRevLett.113.050402
|
42 |
Roushan P. Neill C. Chen Y. Kolodrubetz M. Quintana C. Leung N. Fang M. Barends R. Campbell B. Chen Z. Chiaro B. Dunsworth A. Jeffrey E. Kelly J. Megrant A. Mutus J. J. J. O’Malley P. Sank D. Vainsencher A. Wenner J. White T. Polkovnikov A. N. Cleland A. M. Martinis J., Observation of topological transitions in interacting quantum circuits, Nature 515(7526), 241 ( 2014)
|
43 |
Zhang Z., Wang T., Xiang L., Yao J., Wu J., Yin Y.. Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity. Phys. Rev. A , 2017, 95( 4): 042345
https://doi.org/10.1103/PhysRevA.95.042345
|
44 |
Tan X., W. Zhang D., Liu Q., Xue G., F. Yu H., Q. Zhu Y., Yan H., L. Zhu S., Yu Y.. Topological Maxwell metal bands in a superconducting qutrit. Phys. Rev. Lett. , 2018, 120( 13): 130503
https://doi.org/10.1103/PhysRevLett.120.130503
|
45 |
Song C., Xu D., Zhang P., Wang J., Guo Q., Liu W., Xu K., Deng H., Huang K., Zheng D., B. Zheng S., Wang H., Zhu X., Y. Lu C., W. Pan J.. Demonstration of topological robustness of anyonic braiding statistics with a superconducting quantum circuit. Phys. Rev. Lett. , 2018, 121( 3): 030502
https://doi.org/10.1103/PhysRevLett.121.030502
|
46 |
Cai W., Han J., Mei F., Xu Y., Ma Y., Li X., Wang H., P. Song Y., Y. Xue Z., Q. Yin Z., Jia S., Sun L.. Observation of topological magnon insulator states in a superconducting circuit. Phys. Rev. Lett. , 2019, 123( 8): 080501
https://doi.org/10.1103/PhysRevLett.123.080501
|
47 |
Viyuela O. Rivas A. Gasparinetti S. Wallraff A. Wallraff A. Filipp S. A. Martin-Delgado M., Observation of topological Uhlmann phases with superconduction qubits, npj Quantum Inform. 4, 10 ( 2018)
|
48 |
Horodecki R., Horodecki P., Horodecki M., Horodecki K.. Quantum entanglement. Rev. Mod. Phys. , 2009, 81( 2): 865
https://doi.org/10.1103/RevModPhys.81.865
|
49 |
W. Pan J., B. Chen Z., Y. Lu C., Weinfurter H., Zeilinger A., Żukowski M.. Multiphoton entanglement and interferometry. Rev. Mod. Phys. , 2012, 84( 2): 777
https://doi.org/10.1103/RevModPhys.84.777
|
50 |
Pezzè L., Smerzi A., K. Oberthaler M., Schmied R., Treutlein P.. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. , 2018, 90( 3): 035005
https://doi.org/10.1103/RevModPhys.90.035005
|
51 |
C. Rechtsman M., Lumer Y., Plotnik Y., Perez-Leija A., Szameit A., Segev M.. Topological protection of photonic path entanglement. Optica , 2016, 3( 9): 925
https://doi.org/10.1364/OPTICA.3.000925
|
52 |
Blanco-Redondo A., Bell B., Oren D., J. Eggleton B., Segev M.. Topological protection of biphoton states. Science , 2018, 362( 6414): 568
https://doi.org/10.1126/science.aau4296
|
53 |
Wang M., Doyle C., Bell B., J. Collins M., Magi E., J. Eggleton B., Segev M., Blanco-Redondo A.. Topologically protected entangled photonic states. Nanophotonics , 2019, 8( 8): 1327
https://doi.org/10.1515/nanoph-2019-0058
|
54 |
K. Hong C., Y. Ou Z., Mandel L.. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. , 1987, 59( 18): 2044
https://doi.org/10.1103/PhysRevLett.59.2044
|
55 |
Brouzos I., Kiorpelidis I., K. Diakonos F., Theocharis G.. Fast, robust, and amplified transfer of topological edge modes on a time-varying mechanical chain. Phys. Rev. B , 2020, 102( 17): 174312
https://doi.org/10.1103/PhysRevB.102.174312
|
56 |
X. Shen Y., S. Zeng L., G. Geng Z., G. Zhao D., G. Peng Y., F. Zhu X.. Acoustic adiabatic propagation based on topological pumping in a coupled multicavity chain lattice. Phys. Rev. Appl. , 2020, 14( 1): 014043
https://doi.org/10.1103/PhysRevApplied.14.014043
|
57 |
L. Wu J., Wang Y., X. Han J., K. Feng Y., L. Su S., Xia Y., Jiang Y., Song J.. One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness. Photon. Res. , 2021, 9( 5): 814
https://doi.org/10.1364/PRJ.415795
|
58 |
R. Huang X., X. Ding Z., S. Hu C., T. Shen L., Li W., Wu H., B. Zheng S.. Robust Rydberg gate via Landau−Zener control of Förster resonance. Phys. Rev. A , 2018, 98( 5): 052324
https://doi.org/10.1103/PhysRevA.98.052324
|
59 |
Guo Q., B. Zheng S., Wang J., Song C., Zhang P., Li K., Liu W., Deng H., Huang K., Zheng D., Zhu X., Wang H., Y. Lu C., W. Pan J.. Dephasing-insensitive quantum information storage and processing with superconducting qubits. Phys. Rev. Lett. , 2018, 121( 13): 130501
https://doi.org/10.1103/PhysRevLett.121.130501
|
60 |
Balachandran V., Gong J.. Adiabatic quantum transport in a spin chain with a moving potential. Phys. Rev. A , 2008, 77( 1): 012303
https://doi.org/10.1103/PhysRevA.77.012303
|
61 |
Allcock J., Linden N.. Quantum communication beyond the localization length in disordered spin chains. Phys. Rev. Lett. , 2009, 102( 11): 110501
https://doi.org/10.1103/PhysRevLett.102.110501
|
62 |
L. Wu J., Wang Y., X. Han J., L. Su S., Xia Y., Jiang Y., Song J.. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Front. Phys. , 2022, 17( 2): 22501
https://doi.org/10.1007/s11467-021-1104-7
|
63 |
R. Agundez R., D. Hill C., C. L. Hollenberg L., Rogge S., Blaauboer M.. Superadiabatic quantum state transfer in spin chains. Phys. Rev. A , 2017, 95( 1): 012317
https://doi.org/10.1103/PhysRevA.95.012317
|
64 |
L. Wu J., Wang Y., X. Han J., Jiang Y., Song J., Xia Y., L. Su S., Li W.. Systematic-error-tolerant multiqubit holonomic entangling gates. Phys. Rev. Appl. , 2021, 16( 6): 064031
https://doi.org/10.1103/PhysRevApplied.16.064031
|
65 |
Zhou Y., Y. Lü D., Y. Zeng W.. Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system. Photon. Res. , 2021, 9( 3): 405
https://doi.org/10.1364/PRJ.405246
|
66 |
M. Greenberger D. A. Horne M. Zeilinger A., Bell’s theorem, Quantum Theory, and Conceptions of the Universe, Kluwer Dordrecht, 1989
|
67 |
Hillery M., Bužek V., Berthiaume A.. Quantum secret sharing. Phys. Rev. A , 1999, 59( 3): 1829
https://doi.org/10.1103/PhysRevA.59.1829
|
68 |
Bose S., Vedral V., L. Knight P.. Multiparticle generalization of entanglement swapping. Phys. Rev. A , 1998, 57( 2): 822
https://doi.org/10.1103/PhysRevA.57.822
|
69 |
Knill E.. Quantum computing with realistically noisy devices. Nature , 2005, 434( 7029): 39
https://doi.org/10.1038/nature03350
|
70 |
Giovannetti V., Lloyd S., Maccone L.. Quantum-enhanced measurements: Beating the standard quantum limit. Science , 2004, 306( 5700): 1330
https://doi.org/10.1126/science.1104149
|
71 |
Leibfried D., Barrett M., Schaetz T., Britton J., Chiaverini J., Itano W., Jost J., Langer C., Wineland D.. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science , 2004, 304( 5676): 1476
https://doi.org/10.1126/science.1097576
|
72 |
P. Yang C., P. Su Q., B. Zheng S., Nori F.. Entangling superconducting qubits in a multi-cavity system. New J. Phys. , 2016, 18( 1): 013025
https://doi.org/10.1088/1367-2630/18/1/013025
|
73 |
Matsuo S. Ashhab S. Fujii T. Nori F. Nagai K. Hatakenaka N., Generation of Bell states and Greenberger−Horne−Zeilinger states in superconducting phase qubits, in: Quantum Communication, Measurement and Computing, No. 8, Ed.: O. Hirota et al. , Tokyo: NICT, 2006
|
74 |
F. Wei L., Liu Y., Nori F.. Generation and control of Greenberger−Horne−Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. , 2006, 96( 24): 246803
https://doi.org/10.1103/PhysRevLett.96.246803
|
75 |
L. Zhu S., D. Wang Z., Zanardi P.. Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. , 2005, 94( 10): 100502
https://doi.org/10.1103/PhysRevLett.94.100502
|
76 |
P. Yang C., P. Su Q., Han S.. Generation of Greenberger−Horne−Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A , 2012, 86( 2): 022329
https://doi.org/10.1103/PhysRevA.86.022329
|
77 |
P. Yang C., P. Su Q., B. Zheng S., Han S.. Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A , 2013, 87( 2): 022320
https://doi.org/10.1103/PhysRevA.87.022320
|
78 |
Aldana S., D. Wang Y., Bruder C.. Greenberger−Horne−Zeilinger generation protocol forN superconducting transmon qubits capacitively coupled to a quantum bus. Phys. Rev. B , 2011, 84( 13): 134519
https://doi.org/10.1103/PhysRevB.84.134519
|
79 |
Feng W., Wang P., Ding X., Xu L., Q. Li X.. Generating and stabilizing the Greenberger−Horne−Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback. Phys. Rev. A , 2011, 83( 4): 042313
https://doi.org/10.1103/PhysRevA.83.042313
|
80 |
L. Wu J., Song C., Xu J., Yu L., Ji X., Zhang S.. Adiabatic passage for one-step generation of n-qubit Greenberger–Horne–Zeilinger states of superconducting qubits via quantum Zeno dynamics. Quantum Inform. Process. , 2016, 15( 9): 3663
https://doi.org/10.1007/s11128-016-1366-0
|
81 |
T. Mo X., Y. Xue Z.. Single-step multipartite entangled states generation from coupled circuit cavities. Front. Phys. , 2019, 14( 3): 31602
https://doi.org/10.1007/s11467-019-0888-1
|
82 |
H. Kang Y., C. Shi Z., H. Huang B., Song J., Xia Y.. Deterministic conversions between Greenberger−Horne−Zeilinger states and W states of spin qubits via Lie-transform-based inverse Hamiltonian engineering. Phys. Rev. A , 2019, 100( 1): 012332
https://doi.org/10.1103/PhysRevA.100.012332
|
83 |
Liu T., P. Su Q., Zhang Y., L. Fang Y., P. Yang C.. Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities. Phys. Rev. A , 2020, 101( 1): 012337
https://doi.org/10.1103/PhysRevA.101.012337
|
84 |
M. Chow J., M. Gambetta J., Magesan E., W. Abraham D., W. Cross A., R. Johnson B., A. Masluk N., A. Ryan C., A. Smolin J., J. Srinivasan S., Steffen M.. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. , 2014, 5( 1): 4015
https://doi.org/10.1038/ncomms5015
|
85 |
DiCarlo L. D. Reed M. Sun L. R. Johnson B. M. Chow J. M. Gambetta J. Frunzio L. H. Girvin M., S. M. and Devoret, and R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconduction circuit, Nature 467(7315), 574 ( 2010)
|
86 |
Barends R., Kelly J., Megrant A., Veitia A., Sank D., Jeffrey E., C. White T., Mutus J., G. Fowler A., Campbell B., Chen Y., Chen Z., Chiaro B., Dunsworth A., Neill C., O’Malley P., Roushan P., Vainsencher A., Wenner J., N. Korotkov A., N. Cleland A., M. Martinis J.. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature , 2014, 508( 7497): 500
https://doi.org/10.1038/nature13171
|
87 |
Song C. Xu K. Liu W. Yang C. B. Zheng S. Deng H. Xie Q. Huang K. Guo Q. Zhang L. Zhang P. Xu D. Zheng D. Zhu X. Wang H. A. Chen Y. Y. Lu C. Han S. W. Pan J., 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett . 119(18), 180511 ( 2017)
|
88 |
Cervera-Lierta A., Krenn M., Aspuru-Guzik A., Galda A.. Experimental high-dimensional Greenberger−Horne−Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. , 2022, 17( 2): 024062
https://doi.org/10.1103/PhysRevApplied.17.024062
|
89 |
Chen X., Lizuain I., Ruschhaupt A., Guéry-Odelin D., G. Muga J.. Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. , 2010, 105( 12): 123003
https://doi.org/10.1103/PhysRevLett.105.123003
|
90 |
Guéry-Odelin D., Ruschhaupt A., Kiely A., Torrontegui E., Martínez-Garaot S., G. Muga J.. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. , 2019, 91( 4): 045001
https://doi.org/10.1103/RevModPhys.91.045001
|
91 |
Altland A., R. Zirnbauer M.. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B , 1997, 55( 2): 1142
https://doi.org/10.1103/PhysRevB.55.1142
|
92 |
Ryu S., Hatsugai Y.. Topological origin of zero-energy edge states in particle−hole symmetric systems. Phys. Rev. Lett. , 2002, 89( 7): 077002
https://doi.org/10.1103/PhysRevLett.89.077002
|
93 |
K. Asbóth J. Oroszlány L. Pályi A., A short course on topological insulators, Lect. Notes Phys . 919, 85 ( 2016)
|
94 |
Coutant A., Achilleos V., Richoux O., Theocharis G., Pagneux V.. Robustness of topological corner modes against disorder with application to acoustic networks. Phys. Rev. B , 2020, 102( 21): 214204
https://doi.org/10.1103/PhysRevB.102.214204
|
95 |
M. Greenberger D., A. Horne M., Shimony A., Zeilinger A.. Bell’s theorem without inequalities. Am. J. Phys. , 1990, 58( 12): 1131
https://doi.org/10.1119/1.16243
|
96 |
Mukherjee R., Xie H., Mintert F.. Bayesian optimal control of Greenberger−Horne−Zeilinger states in Rydberg lattices. Phys. Rev. Lett. , 2020, 125( 20): 203603
https://doi.org/10.1103/PhysRevLett.125.203603
|
97 |
Reiter F., Reeb D., S. Sørensen A.. Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. , 2016, 117( 4): 040501
https://doi.org/10.1103/PhysRevLett.117.040501
|
98 |
B. Zheng S.. One-step synthesis of multiatom Greenberger−Horne−Zeilinger states. Phys. Rev. Lett. , 2001, 87( 23): 230404
https://doi.org/10.1103/PhysRevLett.87.230404
|
99 |
Mundada P., Zhang G., Hazard T., Houck A.. Suppression of qubit crosstalk in a tunable coupling superconducting circuit. Phys. Rev. Appl. , 2019, 12( 5): 054023
https://doi.org/10.1103/PhysRevApplied.12.054023
|
100 |
P. Su W., R. Schrieffer J., J. Heeger A.. Solitons in Polyacetylene. Phys. Rev. Lett. , 1979, 42( 25): 1698
https://doi.org/10.1103/PhysRevLett.42.1698
|
101 |
Pachos J., Walther H.. Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. , 2002, 89( 18): 187903
https://doi.org/10.1103/PhysRevLett.89.187903
|
102 |
P. M. Place A., V. H. Rodgers L., Mundada P., M. Smitham B., Fitzpatrick M., Leng Z., Premkumar A., Bryon J., Vrajitoarea A., Sussman S., Cheng G., Madhavan T., K. Babla H., H. Le X., Gang Y., Jäck B., Gyenis A., Yao N., J. Cava R., P. de Leon N., A. Houck A.. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. , 2021, 12( 1): 1779
https://doi.org/10.1038/s41467-021-22030-5
|
103 |
Zhang H., Chakram S., Roy T., Earnest N., Lu Y., Huang Z., K. Weiss D., Koch J., I. Schuster D.. Universal fast-flux control of a coherent, low-frequency qubit. Phys. Rev. X , 2021, 11( 1): 011010
https://doi.org/10.1103/PhysRevX.11.011010
|
104 |
M. Pop I., Ansmann M., Catelani G., J. Schoelkopf R., I. Glazman L., H. Devoret M.. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature , 2014, 508( 7496): 7496
https://doi.org/10.1038/nature13017
|
105 |
Gu X., F. Kockum A., Miranowicz A., X. Liu Y., Nori F.. Microwave photonics with superconducting quantum circuits. Phys. Rep. , 2017, 718– 719,1
https://doi.org/10.1016/j.physrep.2017.10.002
|
106 |
Reagor M., Paik H., Catelani G., Sun L., Axline C., Holland E., M. Pop I., A. Masluk N., Brecht T., Frunzio L., H. Devoret M., Glazman L., J. Schoelkopf R.. Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Phys. Lett. , 2013, 102( 19): 192604
https://doi.org/10.1063/1.4807015
|
107 |
Reagor M., Pfaff W., Axline C., W. Heeres R., Ofek N., Sliwa K., Holland E., Wang C., Blumoff J., Chou K., J. Hatridge M., Frunzio L., H. Devoret M., Jiang L., J. Schoelkopf R.. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B , 2016, 94( 1): 014506
https://doi.org/10.1103/PhysRevB.94.014506
|
108 |
Axline C., Reagor M., Heeres R., Reinhold P., Wang C., Shain K., Pfaff W., Chu Y., Frunzio L., J. Schoelkopf R.. An architecture for integrating planar and 3D cQED devices. Appl. Phys. Lett. , 2016, 109( 4): 042601
https://doi.org/10.1063/1.4959241
|
109 |
E. Mooij J., P. Orlando T., Levitov L., Tian L., H. van der Wal C., Lloyd S.. Josephson persistent-current qubit. Science , 1999, 285( 5430): 1036
https://doi.org/10.1126/science.285.5430.1036
|
110 |
H. van der Wal C., C. J. ter Haar A., K. Wilhelm F., N. Schouten R., J. P. M. Harmans C., P. Orlando T., Lloyd S., E. Mooij J.. Quantum superposition of macroscopic persistent-current states. Science , 2000, 290( 5492): 773
https://doi.org/10.1126/science.290.5492.773
|
111 |
Peropadre B., Forn-Díaz P., Solano E., J. García-Ripoll J.. Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. , 2010, 105( 2): 023601
https://doi.org/10.1103/PhysRevLett.105.023601
|
112 |
S. Allman M. Altomare F. D. Whittaker J. Cicak K. Li D. Sirois A. Strong J. D. Teufel J. W. Simmonds R., RF-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator, Phys. Rev. Lett . 104(17), 177004 ( 2010)
|
113 |
S. Allman M., D. Whittaker J., Castellanos-Beltran M., Cicak K., da Silva F., P. DeFeo M., Lecocq F., Sirois A., D. Teufel J., Aumentado J., W. Simmonds R.. Tunable resonant and nonresonant interactions between a phase qubit and LC resonator. Phys. Rev. Lett. , 2014, 112( 12): 123601
https://doi.org/10.1103/PhysRevLett.112.123601
|
114 |
Bourassa J., M. Gambetta J., A. Abdumalikov A., Astafiev O., Nakamura Y., Blais A.. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys. Rev. A , 2009, 80( 3): 032109
https://doi.org/10.1103/PhysRevA.80.032109
|
115 |
P. Orlando T., E. Mooij J., Tian L., H. van der Wal C., S. Levitov L., Lloyd S., J. Mazo J.. Superconducting persistent-current qubit. Phys. Rev. B , 1999, 60( 22): 15398
https://doi.org/10.1103/PhysRevB.60.15398
|
116 |
X. Liu Y., Q. You J., F. Wei L., P. Sun C., Nori F.. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. , 2005, 95( 8): 087001
https://doi.org/10.1103/PhysRevLett.95.087001
|
117 |
Devoret M. Huard B. Schoelkopf R. F. Cugliandolo L., Quantum Machines: Measurement and Control of Engineered Quantum Systems, Oxford University Press, USA, 2014
|
118 |
E. Manucharyan V., Koch J., I. Glazman L., H. Devoret M.. Fluxonium: Single Cooper-pair circuit free of charge offsets. Science , 2009, 326( 5949): 113
https://doi.org/10.1126/science.1175552
|
119 |
DiCarlo L., M. Chow J., M. Gambetta J., S. Bishop L., R. Johnson B., I. Schuster D., Majer J., Blais A., Frunzio L., M. Girvin S., J. Schoelkopf R.. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature , 2009, 460( 7252): 240
https://doi.org/10.1038/nature08121
|
120 |
Wang T., Zhang Z., Xiang L., Jia Z., Duan P., Zong Z., Sun Z., Dong Z., Wu J., Yin Y., Guo G.. Experimental realization of a fast controlled-Z gate via a shortcut to adiabaticity. Phys. Rev. Appl. , 2019, 11( 3): 034030
https://doi.org/10.1103/PhysRevApplied.11.034030
|
121 |
A. Clerk A., W. Lehnert K., Bertet P., R. Petta J., Nakamura Y.. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. , 2020, 16( 3): 257
https://doi.org/10.1038/s41567-020-0797-9
|
122 |
Niemczyk T., Deppe F., Huebl H., P. Menzel E., Hocke F., J. Schwarz M., J. Garcia-Ripoll J., Zueco D., Hümmer T., Solano E., Marx A., Gross R.. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. , 2010, 6( 10): 772
https://doi.org/10.1038/nphys1730
|
123 |
Blais A., M. Girvin S., D. Oliver W.. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. , 2020, 16( 3): 247
https://doi.org/10.1038/s41567-020-0806-z
|
124 |
J. Mooney G., A. L. White G., D. Hill C., C. L. Hollenberg L.. Whole-device entanglement in a 65-qubit superconducting quantum computer. Adv. Quantum Technol. , 2021, 4( 10): 2100061
https://doi.org/10.1002/qute.202100061
|
125 |
Blais A., S. Huang R., Wallraff A., M. Girvin S., J. Schoelkopf R.. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A , 2004, 69( 6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
|
126 |
Clarke J., K. Wilhelm F.. Superconducting quantum bits. Nature , 2008, 453( 7198): 1031
https://doi.org/10.1038/nature07128
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|