|
|
A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors |
Zongyu Hou1,2, Weilun Gu1,2, Tianqi Li1,2, Zhe Wang1,2( ), Liang Li3, Xiang Yu4, Yecai Zhang5, Zijun Liu6 |
1. State Key Lab of Power System, Department of Energy and Power Engineering, International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China 2. Shanxi Research Institute for Clean Energy, Tsinghua University, Taiyuan 030032, China 3. Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101149, China 4. China National Uranium Corporation, Beijing 100013, China 5. Guoneng Shenwan Energy Co., Ltd, China 6. Jinneng Holding Tashan Power Generation Co., Ltd, China |
|
|
Abstract Calibration-free (CF) laser-induced breakdown spectroscopy (LIBS) is normally only applicable for gated detectors due to its dependence on the assumption of a steady-state plasma. However, most currently available LIBS systems are equipped with non-gated detectors such as charge-coupled device (CCD), which degrades the accuracy of CF method. In this paper, the reason for the less satisfactory quantification performance of CF for LIBS with non-gated detectors was clarified and a time-integration calibration-free (TICF) model was proposed for applications with non-gated detectors. It was based on an assumed temporal profile of plasma properties, including temperature and electron density, obtained from another pre-experiment. The line intensity at different time during the signal collection time window was estimated with self-absorption correction according to the temporal profile of the plasma properties. The proposed model was validated on titanium alloys and compared with traditional CF. The accuracy of elemental concentration measurement was improved significantly: the average relative error of aluminum and vanadium decreased from 6.07% and 22.34% to 2.01% and 1.92%, respectively. The quantification results showed that TICF method was able to extend the applicability of CF to LIBS with non-gated detectors.
|
Keywords
laser-induced breakdown spectroscopy
calibration-free
non-gated detector
self-absorption correction
|
Corresponding Author(s):
Zhe Wang
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 19 September 2022
|
|
1 |
F. Andrade D. , R. Pereira-Filho E. , Amarasiriwardena D. . Current trends in laser-induced breakdown spectroscopy: A tutorial review. Appl. Spectrosc. Rev., 2021, 56( 2): 98
https://doi.org/10.1080/05704928.2020.1739063
|
2 |
Wang Z. , S. Afgan M. , Gu W. , Song Y. , Wang Y. , Hou Z. , Song W. , Li Z. . Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing. Trends Analyt. Chem., 2021, 143 : 116385
https://doi.org/10.1016/j.trac.2021.116385
|
3 |
B. Guo L. , Zhang D. , X. Sun L. , C. Yao S. , Zhang L. , Z. Wang Z. , Q. Wang Q. , B. Ding H. , Lu Y. , Y. Hou Z. , Wang Z. . Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Front. Phys., 2021, 16( 2): 22500
https://doi.org/10.1007/s11467-020-1007-z
|
4 |
Wang Z. , B. Yuan T. , Y. Hou Z. , D. Zhou W. , D. Lu J. , B. Ding H. , Y. Zeng X. . Laser-induced breakdown spectroscopy in China. Front. Phys., 2014, 9( 4): 419
https://doi.org/10.1007/s11467-013-0410-0
|
5 |
Li J. , Xu M. , Ma Q. , Zhao N. , Li X. , Zhang Q. , Guo L. , Lu Y. . Sensitive determination of silicon contents in low-alloy steels using micro laser-induced breakdown spectroscopy assisted with laser-induced fluorescence. Talanta, 2019, 194 : 697
https://doi.org/10.1016/j.talanta.2018.10.069
|
6 |
Sheta S. , S. Afgan M. , Hou Z. , Yao S. , Zhang L. , Li Z. , Wang Z. . Coal analysis by laser-induced breakdown spectroscopy: A tutorial review. J. Anal. At. Spectrom., 2019, 34( 6): 1047
https://doi.org/10.1039/C9JA00016J
|
7 |
Ma S. , Tang Y. , Zhang S. , Ma Y. , Sheng Z. , Wang Z. , Guo L. , Yao J. , Lu Y. . Chlorine and sulfur determination in water using indirect laser-induced breakdown spectroscopy. Talanta, 2020, 214 : 120849
https://doi.org/10.1016/j.talanta.2020.120849
|
8 |
Li Q. , Zhang W. , Tang Z. , Liu K. , Zhu C. , Zhou R. , Liu K. , Li X. . Determination of fluorine content in rocks using laser-induced breakdown spectroscopy assisted with radical synthesis. Talanta, 2021, 234 : 122712
https://doi.org/10.1016/j.talanta.2021.122712
|
9 |
Yuan R. , Tang Y. , Zhu Z. , Hao Z. , Li J. , Yu H. , Yu Y. , Guo L. , Zeng X. , Lu Y. . Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration. Anal. Chim. Acta, 2019, 1064 : 11
https://doi.org/10.1016/j.aca.2019.02.056
|
10 |
Hou Z. , Wang Z. , Li L. , Yu X. , Li T. , Yao H. , Yan G. , Ye Q. , Liu Z. , Zheng H. . Fast measurement of coking properties of coal using laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2022, 191 : 106406
https://doi.org/10.1016/j.sab.2022.106406
|
11 |
Pagnotta S. Lezzerini M. Campanella B. Legnaioli S. Poggialini F. Palleschi V., A new approach to non-linear multivariate calibration in laser-induced breakdown spectroscopy analysis of silicate rocks, Spectrochim. Acta B At. Spectrosc. 166, 105804 ( 2020)
|
12 |
Song W. , Hou Z. , Gu W. , Wang H. , Cui J. , Zhou Z. , Yan G. , Ye Q. , Li Z. , Wang Z. . Industrial at-line analysis of coal properties using laser-induced breakdown spectroscopy combined with machine learning. Fuel, 2021, 306 : 121667
https://doi.org/10.1016/j.fuel.2021.121667
|
13 |
C. Costa V. , L. de Mello M. , V. Babos D. , P. Castro J. , R. Pereira-Filho E. . Calibration strategies for determination of Pb content in recycled polypropylene from car batteries using laser-induced breakdown spectroscopy (LIBS). Microchem. J., 2020, 159 : 105558
https://doi.org/10.1016/j.microc.2020.105558
|
14 |
Gu W. , Hou Z. , Song W. , Li L. , Yu X. , Liu J. , Song Y. , S. Afgan M. , Li Z. , Liu Z. , Wang Z. . Compensation for the variation of total number density to improve signal repeatability for laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2022, 1205 : 339752
https://doi.org/10.1016/j.aca.2022.339752
|
15 |
J. Hou J. , Zhang L. , B. Yin W. , C. Yao S. , Zhao Y. , G. Ma W. , Dong L. , T. Xiao L. , T. Jia S. . Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing accurate chemical composition measurements. Opt. Express, 2017, 25( 19): 23024
https://doi.org/10.1364/OE.25.023024
|
16 |
Dong J. Liang L. Wei J. Tang H. Zhang T. Yang X. Wang K. Li H., A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy (CF-LIBS) using determined plasma temperature by genetic algorithm (GA), J. Anal. At. Spectrom. 30(6), 1336 ( 2015)
|
17 |
Ciucci A. , Corsi M. , Palleschi V. , Rastelli S. , Salvetti A. , Tognoni E. . New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spctroscopy, 1999, 53 : 960
https://doi.org/10.1366/0003702991947612
|
18 |
Zhang S. , Hu Z. , Zhao Z. , Chen F. , Tang Y. , Sheng Z. , Zhang D. , Zhang Z. , Jin H. , Pu H. , Guo L. . Quantitative analysis of mineral elements in hair and nails using calibration-free laser-induced breakdown spectroscopy. Optik (Stuttg. ), 2021, 242 : 167067
https://doi.org/10.1016/j.ijleo.2021.167067
|
19 |
Tognoni E. , Cristoforetti G. , Legnaioli S. , Palleschi V. . Calibration-free laser-induced breakdown spectroscopy: State of the art. Spectrochim. Acta B At. Spectrosc., 2010, 65( 1): 1
https://doi.org/10.1016/j.sab.2009.11.006
|
20 |
Taleb A. , Motto-Ros V. , J. Carru M. , Axente E. , Craciun V. , Pelascini F. , Hermann J. . Measurement error due to self-absorption in calibration-free laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2021, 1185 : 339070
https://doi.org/10.1016/j.aca.2021.339070
|
21 |
Tognoni E. Cristoforetti G. Legnaioli S. Palleschi V. Salvetti A. Mueller M. Panne U. Gornushkin I., A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma, Spectrochim. Acta B At. Spectrosc. 62(12), 1287 ( 2007)
|
22 |
Sun L. , Yu H. . Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method. Talanta, 2009, 79( 2): 388
https://doi.org/10.1016/j.talanta.2009.03.066
|
23 |
Qasim M. , Anwar-ul-Haq M. , Shah A. , Sher Afgan M. , U. Haq S. , Abbas Khan R. , Aslam Baig M. . Self-absorption effect in calibration-free laser-induced breakdown spectroscopy: Analysis of mineral profile in Maerua oblongifolia plant. Microchem. J., 2022, 175 : 107106
https://doi.org/10.1016/j.microc.2021.107106
|
24 |
M. Díaz Pace D. , E. Miguel R. , O. Di Rocco H. , Anabitarte García F. , Pardini L. , Legnaioli S. , Lorenzetti G. , Palleschi V. . Quantitative analysis of metals in waste foundry sands by calibration free-laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2017, 131 : 58
https://doi.org/10.1016/j.sab.2017.03.007
|
25 |
Jabbar A. , Hou Z. , Liu J. , Ahmed R. , Mahmood S. , Wang Z. . Calibration-free analysis of immersed metal alloys using long-pulse-duration laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2019, 157 : 84
https://doi.org/10.1016/j.sab.2019.05.013
|
26 |
Shakeel H. , U. Haq S. , Abbas Q. , Nadeem A. , Palleschi V. . Quantitative analysis of Ge/Si alloys using double-pulse calibration-free laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2018, 146 : 101
https://doi.org/10.1016/j.sab.2018.05.008
|
27 |
Grifoni E. , Legnaioli S. , Lezzerini M. , Lorenzetti G. , Pagnotta S. , Palleschi V. . Extracting time-resolved information from time-integrated laser-induced breakdown spectra. J. Spectrosc., 2014, 2014 : 1
https://doi.org/10.1155/2014/849310
|
28 |
Hu Z. Chen F. Zhang D. Chu Y. Wang W. Tang Y. Guo L., A method for improving the accuracy of calibration-free laser-induced breakdown spectroscopy by exploiting self-absorption, Anal. Chim. Acta 1183, 339008 ( 2021)
|
29 |
Aragón C. , A. Aguilera J. . Quantitative analysis by laser-induced breakdown spectroscopy based on generalized curves of growth. Spectrochim. Acta B At. Spectrosc., 2015, 110 : 124
https://doi.org/10.1016/j.sab.2015.06.010
|
30 |
B. Gornushkin I. , M. Anzano J. , A. King L. , W. Smith B. , Omenetto N. , D. Winefordner J. . Curve of growth methodology applied to laser-induced plasma emission spectroscopy. Spectrochim. Acta B At. Spectrosc., 1999, 54( 3−4): 491
https://doi.org/10.1016/S0584-8547(99)00004-X
|
31 |
Zhang Y. , Lu Y. , Tian Y. , Li Y. , Ye W. , Guo J. , Zheng R. . Quantitation improvement of underwater laser induced breakdown spectroscopy by using self-absorption correction based on plasma images. Anal. Chim. Acta, 2022, 1195 : 339423
https://doi.org/10.1016/j.aca.2021.339423
|
32 |
O. Bredice F. O. D. Rocco H. M. Sobral H. Villagrán-Muniz M. Palleschi V., A new method for determination of self-absorption coefficients of emission lines in laser-induced breakdown spectroscopy experiments, Appl. Spectrosc. 64(3), 320 ( 2010)
|
33 |
J. Hou J. , Zhang L. , Zhao Y. , Wang Z. , Zhang Y. , G. Ma W. , Dong L. , B. Yin W. , T. Xiao L. , T. Jia S. . Mechanisms and efficient elimination approaches of self-absorption in LIBS. Plasma Sci. Technol., 2019, 21( 3): 034016
https://doi.org/10.1088/2058-6272/aaf875
|
34 |
Rezaei F. Cristoforetti G. Tognoni E. Legnaioli S. Palleschi V. Safi A., A review of the current analytical approaches for evaluating, compensating and exploiting self-absorption in laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 169, 105878 ( 2020)
|
35 |
Bulajic D. Corsi M. Cristoforetti G. Legnaioli S. Palleschi V. Salvetti A. Tognoni E., A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta B At. Spectrosc. 57(2), 339 ( 2002)
|
36 |
M. El Sherbini A. , M. El Sherbini T. , Hegazy H. , Cristoforetti G. , Legnaioli S. , Palleschi V. , Pardini L. , Salvetti A. , Tognoni E. . Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim. Acta B At. Spectrosc., 2005, 60( 12): 1573
https://doi.org/10.1016/j.sab.2005.10.011
|
37 |
Aragón C. , A. Aguilera J. . Direct analysis of aluminum alloys by CSigma laser-induced breakdown spectroscopy. Anal. Chim. Acta, 2018, 1009 : 12
https://doi.org/10.1016/j.aca.2018.01.019
|
38 |
Y. Moon H. , K. Herrera K. , Omenetto N. , W. Smith B. , D. Winefordner J. . On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2009, 64( 7): 702
https://doi.org/10.1016/j.sab.2009.06.011
|
39 |
Demidov A. , Eschlböck-Fuchs S. , Y. Kazakov A. , B. Gornushkin I. , J. Kolmhofer P. , D. Pedarnig J. , Huber N. , Heitz J. , Schmid T. , Rössler R. , Panne U. . Monte Carlo standardless approach for laser induced breakdown spectroscopy based on massive parallel graphic processing unit computing. Spectrochim. Acta B At. Spectrosc., 2016, 125 : 97
https://doi.org/10.1016/j.sab.2016.09.016
|
40 |
Zhu Z. , Li J. , Guo Y. , Cheng X. , Tang Y. , Guo L. , Li X. , Lu Y. , Zeng X. . Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy. J. Anal. At. Spectrom., 2018, 33( 2): 205
https://doi.org/10.1039/C7JA00356K
|
41 |
Li T. , Hou Z. , Fu Y. , Yu J. , Gu W. , Wang Z. . Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy (CF-LIBS) with blackbody radiation reference. Anal. Chim. Acta, 2019, 1058 : 39
https://doi.org/10.1016/j.aca.2019.01.016
|
42 |
Sobral H. , Quintana-Silva G. , Robledo-Martinez A. . Time-resolved optical characterization of the interaction between a laser produced plasma and a spark discharge. Spectrochim. Acta B At. Spectrosc., 2020, 167 : 105844
https://doi.org/10.1016/j.sab.2020.105844
|
43 |
Dong M. , Mao X. , J. Gonzalez J. , Lu J. , E. Russo R. . Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium. J. Anal. At. Spectrom., 2012, 27( 12): 2066
https://doi.org/10.1039/c2ja30222e
|
44 |
T. Fu Y. , L. Gu W. , Y. Hou Z. , A. Muhammed S. , Q. Li T. , Wang Y. , Wang Z. . Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy. Front. Phys., 2021, 16( 2): 22502
https://doi.org/10.1007/s11467-020-1006-0
|
45 |
C. He G. , L. Zhu X. , N. Shi L. , J. Zhao S. , L. Hua Y. . The self-absorption temporal evolution of spectral lines emitted from laser-induced plasmas. Opt. Laser Technol., 2021, 143 : 107324
https://doi.org/10.1016/j.optlastec.2021.107324
|
46 |
Konjević N. . Plasma broadening and shifting of non-hydrogenic spectral lines: Present status and applications. Phys. Rep., 1999, 316( 6): 339
https://doi.org/10.1016/S0370-1573(98)00132-X
|
47 |
Q. Li T. , Sheta S. , Y. Hou Z. , Dong J. , Wang Z. . Impacts of a collection system on laser-induced breakdown spectroscopy signal detection. Appl. Opt., 2018, 57( 21): 6120
https://doi.org/10.1364/AO.57.006120
|
48 |
Yang Y. , Hao X. , Ren L. . Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy(CF-LIBS) by considering plasma temperature and electron density. Optik (Stuttg. ), 2020, 208 : 163702
https://doi.org/10.1016/j.ijleo.2019.163702
|
49 |
B. Gornushkin I. , Völker T. , Y. Kazakov A. . Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc., 2018, 147 : 149
https://doi.org/10.1016/j.sab.2018.06.011
|
50 |
Cristoforetti G. , De Giacomo A. , Dell’Aglio M. , Legnaioli S. , Tognoni E. , Palleschi V. , Omenetto N. . Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: Beyond the McWhirter criterion. Spectrochim. Acta B At. Spectrosc., 2010, 65( 1): 86
https://doi.org/10.1016/j.sab.2009.11.005
|
51 |
C. L. Borduchi L. , M. B. P. Milori D. , R. Villas-Boas P. . Study of the effects of detection times in laser-induced breakdown spectroscopy and missed variation of plasma parameters with gate width. Spectrochim. Acta B At. Spectrosc., 2022, 191 : 106409
https://doi.org/10.1016/j.sab.2022.106409
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|