|
|
P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond |
Mingqing Liao1( ), Jumahan Maimaitimusha1, Xueting Zhang1, Jingchuan Zhu2, Fengjiang Wang1( ) |
1. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract Ultrawide bandgap semiconductor, e.g., diamond, is considered as the next generation of semiconductor. Here, a new orthorhombic carbon allotrope (P212121-C16) with ultrawide bandgap and ultra-large hardness is identified. The stability of the newly designed carbon is confirmed by the energy, phonon spectrum, ab-initio molecular dynamics and elastic constants. The hardness ranges from 88 GPa to 93 GPa according to different models, which is comparable to diamond. The indirect bandgap reaches 6.23 eV, which is obviously larger than that of diamond, and makes it a promising ultra-wide bandgap semiconductor. Importantly, the experimental possibility is confirmed by comparing the simulated X-ray diffraction with experimental results, and two hypothetical transformation paths to synthesize it from graphite are proposed.
|
Keywords
carbon allotrope
ultrawide bandgap semiconductor
ultrahard
first-principles
|
Corresponding Author(s):
Mingqing Liao,Fengjiang Wang
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 09 October 2022
|
|
1 |
Millan J., Godignon P., Perpina X., Perez-Tomas A., Rebollo J.. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. , 2014, 29( 5): 2155
https://doi.org/10.1109/TPEL.2013.2268900
|
2 |
Okumura H.. A roadmap for future wide bandgap semiconductor power electronics. MRS Bull. , 2015, 40( 5): 439
https://doi.org/10.1557/mrs.2015.97
|
3 |
R. Wilson P., Ferreira B., Zhang J., DiMarino C.. IEEE ITRW: International technology roadmap for wide-bandgap power semiconductors: An overview. IEEE Power Electron. Mag. , 2018, 5( 2): 22
https://doi.org/10.1109/MPEL.2018.2821938
|
4 |
Y. Tsao J., Chowdhury S., A. Hollis M., Jena D., M. Johnson N., A. Jones K., J. Kaplar R., Rajan S., G. Van de Walle C., Bellotti E., L. Chua C., Collazo R., E. Coltrin M., A. Cooper J., R. Evans K., Graham S., A. Grotjohn T., R. Heller E., Higashiwaki M., S. Islam M., W. Juodawlkis P., A. Khan M., D. Koehler A., H. Leach J., K. Mishra U., J. Nemanich R., C. N. Pilawa‐Podgurski R., B. Shealy J., Sitar Z., J. Tadjer M., F. Witulski A., Wraback M., A. Simmons J.. Ultrawide‐bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. , 2018, 4( 1): 1600501
https://doi.org/10.1002/aelm.201600501
|
5 |
J. Baliga B.. Semiconductors for high‐voltage, vertical channel field‐effect transistors. J. Appl. Phys. , 1982, 53( 3): 1759
https://doi.org/10.1063/1.331646
|
6 |
Shi X., He C., J. Pickard C., Tang C., Zhong J.. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon. Phys. Rev. B , 2018, 97( 1): 014104
https://doi.org/10.1103/PhysRevB.97.014104
|
7 |
Gao P., Gao B., Lu S., Liu H., Lv J., Wang Y., Ma Y.. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys. , 2022, 17( 2): 23203
https://doi.org/10.1007/s11467-021-1109-2
|
8 |
Zhang R.-S., Jiang J.-W.. The art of designing carbon allotropes. Front. Phys. , 2019, 14( 1): 13401
https://doi.org/10.1007/s11467-018-0836-5
|
9 |
Tong W., Wei Q., Yan H.-Y., Zhang M.-G., Zhu X.-M.. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys. , 2020, 15( 6): 63501
https://doi.org/10.1007/s11467-020-0970-8
|
10 |
W. Kroto H., R. Heath J., C. O’Brien S., F. Curl R., E. Smalley R.. C60: Buckminsterfullerene. Nature , 1985, 318( 6042): 162
https://doi.org/10.1038/318162a0
|
11 |
Iijima S.. Helical microtubules of graphitic carbon. Nature , 1991, 354( 6348): 56
https://doi.org/10.1038/354056a0
|
12 |
S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
https://doi.org/10.1126/science.1102896
|
13 |
Tang H., Yuan X., Cheng Y., Fei H., Liu F., Liang T., Zeng Z., Ishii T., Wang M.-S., Katsura T., Sheng H., Gou H.. Synthesis of paracrystalline diamond. Nature , 2021, 599( 7886): 605
https://doi.org/10.1038/s41586-021-04122-w
|
14 |
-L. Sheng X., -B. Yan Q., Ye F., -R. Zheng Q., Su G.. T-carbon: A novel carbon allotrope. Phys. Rev. Lett. , 2011, 106( 15): 155703
https://doi.org/10.1103/PhysRevLett.106.155703
|
15 |
Occelli F., Loubeyre P., Letoullec R.. Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. , 2003, 2( 3): 151
https://doi.org/10.1038/nmat831
|
16 |
-Y. Ding X., Zhang C., -Q. Wang D., -S. Li B., Wang Q., G. Yu Z., -W. Ang K., -W. Zhang Y.. A new carbon allotrope: T5-carbon. Scr. Mater. , 2020, 189 : 72
https://doi.org/10.1016/j.scriptamat.2020.08.004
|
17 |
Liao M., Wang F., Zhu J., Lai Z., Liu Y.. P2221-C8: A novel carbon allotrope denser than diamond. Scr. Mater. , 2022, 212 : 114549
https://doi.org/10.1016/j.scriptamat.2022.114549
|
18 |
T. Wang J., Chen C., Mizuseki H.. Body centered cubic carbon BC14: An all-sp3 bonded full-fledged pentadiamond. Phys. Rev. B , 2020, 102( 18): 184106
https://doi.org/10.1103/PhysRevB.102.184106
|
19 |
Liu J., Gao Q., Hu Z.. HSH-carbon: A novel sp2–sp3 carbon allotrope with an ultrawide energy gap. Front. Phys. , 2022, 17( 6): 63505
https://doi.org/10.1007/s11467-022-1187-9
|
20 |
Lv R., Yang X., Yang D., Niu C., Zhao C., Qin J., Zang J., Dong F., Dong L., Shan C.. Computational prediction of a novel superhard sp3 trigonal carbon allotrope with bandgap larger than diamond. Chin. Phys. Lett. , 2021, 38( 7): 076101
https://doi.org/10.1088/0256-307X/38/7/076101
|
21 |
He C., Shi X., J. Clark S., Li J., J. Pickard C., Ouyang T., Zhang C., Tang C., Zhong J.. Complex low energy tetrahedral polymorphs of group IV elements from first principles. Phys. Rev. Lett. , 2018, 121( 17): 175701
https://doi.org/10.1103/PhysRevLett.121.175701
|
22 |
Zhu Q., R. Oganov A., A. Salvadó M., Pertierra P., O. Lyakhov A.. Denser than diamond: Ab initio search for superdense carbon allotropes. Phys. Rev. B , 2011, 83( 19): 193410
https://doi.org/10.1103/PhysRevB.83.193410
|
23 |
Zhang X., Wang Y., Lv J., Zhu C., Li Q., Zhang M., Li Q., Ma Y.. First-principles structural design of superhard materials. J. Chem. Phys. , 2013, 138( 11): 114101
https://doi.org/10.1063/1.4794424
|
24 |
Wang J., Chen C., Kawazoe Y.. Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations. Phys. Rev. B , 2012, 85( 3): 033410
https://doi.org/10.1103/PhysRevB.85.033410
|
25 |
J. Pickard C., J. Needs R.. Ab initio random structure searching. J. Phys.: Condens. Matter , 2011, 23( 5): 053201
https://doi.org/10.1088/0953-8984/23/5/053201
|
26 |
J. Karttunen A., F. Fässler T., Linnolahti M., A. Pakkanen T.. Structural principles of semiconducting group 14 clathrate frameworks. Inorg. Chem. , 2011, 50( 5): 1733
https://doi.org/10.1021/ic102178d
|
27 |
Yin H., Shi X., He C., Martinez-Canales M., Li J., J. Pickard C., Tang C., Ouyang T., Zhang C., Zhong J.. Stone−Wales graphene: A two-dimensional carbon semimetal with magic stability. Phys. Rev. B , 2019, 99( 4): 041405
https://doi.org/10.1103/PhysRevB.99.041405
|
28 |
J. Clark S., D. Segall M., J. Pickard C., J. Hasnip P., I. J. Probert M., Refson K., C. Payne M.. First principles methods using CASTEP. Z. Kristallogr. , 2005, 220 : 567
https://doi.org/10.1524/zkri.220.5.567.65075
|
29 |
E. Peralta J., Heyd J., E. Scuseria G., L. Martin R.. Spin−orbit splittings and energy band gaps calculated with the Heyd−Scuseria−Ernzerhof screened hybrid functional. Phys. Rev. B , 2006, 74( 7): 073101
https://doi.org/10.1103/PhysRevB.74.073101
|
30 |
P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett. , 1996, 77( 18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
31 |
R. Hamann D., Schlüter M., Chiang C.. Norm-conserving pseudopotentials. Phys. Rev. Lett. , 1979, 43( 20): 1494
https://doi.org/10.1103/PhysRevLett.43.1494
|
32 |
Vanderbilt D.. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B , 1990, 41( 11): 7892
https://doi.org/10.1103/PhysRevB.41.7892
|
33 |
G. Pfrommer B., Côté M., G. Louie S., L. Cohen M.. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. , 1997, 131( 1): 233
https://doi.org/10.1006/jcph.1996.5612
|
34 |
Baroni S., de Gironcoli S., Dal Corso A., Giannozzi P.. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. , 2001, 73( 2): 515
https://doi.org/10.1103/RevModPhys.73.515
|
35 |
Liao M., Liu Y., Zhou F., Han T., Yang D., Qu N., Lai Z.. A high-efficient strain-stress method for calculating higher-order elastic constants from first-principles. Comput. Phys. Commun. , 2022, 280 : 108478
https://doi.org/10.1016/j.cpc.2022.108478
|
36 |
Liao M., Liu Y., Shang S.-L., Zhou F., Qu N., Chen Y., Lai Z., Liu Z.-K., Zhu J.. Elastic3rd: A tool for calculating third-order elastic constants from first-principles calculations. Comput. Phys. Commun. , 2021, 261 : 107777
https://doi.org/10.1016/j.cpc.2020.107777
|
37 |
Liao M., Liu Y., Wang Y., Zhou F., Qu N., Han T., Yang D., Lai Z., Liu Z.-K., Zhu J.. Revisiting the third-order elastic constants of diamond: The higher-order effect. Diam. Relat. Mater. , 2021, 117 : 108490
https://doi.org/10.1016/j.diamond.2021.108490
|
38 |
Hill R.. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A , 1952, 65( 5): 349
https://doi.org/10.1088/0370-1298/65/5/307
|
39 |
Liao M., Liu Y., Cui P., Qu N., Zhou F., Yang D., Han T., Lai Z., Zhu J.. Modeling of alloying effect on elastic properties in BCC Nb−Ti−V−Zr solid solution: From unary to quaternary. Comput. Mater. Sci. , 2020, 172 : 109289
https://doi.org/10.1016/j.commatsci.2019.109289
|
40 |
Gao F., He J., Wu E., Liu S., Yu D., Li D., Zhang S., Tian Y.. Hardness of covalent crystals. Phys. Rev. Lett. , 2003, 91( 1): 015502
https://doi.org/10.1103/PhysRevLett.91.015502
|
41 |
A. Blatov V., P. Shevchenko A., M. Proserpio D.. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. , 2014, 14( 7): 3576
https://doi.org/10.1021/cg500498k
|
42 |
A. Blatov V., A. Blatova O., Daeyaert F., W. Deem M.. Nanoporous materials with predicted zeolite topologies. RSC Adv. , 2020, 10( 30): 17760
https://doi.org/10.1039/d0ra01888k
|
43 |
Hoffmann R., A. Kabanov A., A. Golov A., M. Proserpio D.. Homo citans and carbon allotropes: For an ethics of citation. Angew. Chemie Int. Ed. , 2016, 55( 37): 10962
https://doi.org/10.1002/anie.201600655
|
44 |
Al-Fahdi M., Rodriguez A., Ouyang T., Hu M.. High-throughput computation of new carbon allotropes with diverse hybridization and ultrahigh hardness. Crystals , 2021, 11( 7): 783
https://doi.org/10.3390/cryst11070783
|
45 |
A. Anurova N., A. Blatov V., D. Ilyushin G., M. Proserpio D.. Natural tilings for zeolite-type frameworks. J. Phys. Chem. C , 2010, 114( 22): 10160
https://doi.org/10.1021/jp1030027
|
46 |
Delgado-Friedrichs O., O’Keeffe M.. Identification of and symmetry computation for crystal nets. Acta Crystallogr. Sect. A Found. Crystallogr. , 2003, 59( 4): 351
https://doi.org/10.1107/S0108767303012017
|
47 |
Wang J.-T., Weng H., Nie S., Fang Z., Kawazoe Y., Chen C.. Body-centered orthorhombic C16 : A novel topological node-line semimetal. Phys. Rev. Lett. , 2016, 116( 19): 195501
https://doi.org/10.1103/PhysRevLett.116.195501
|
48 |
N. Matyushenko N., E. Strel’Nitskiǐ V., A. Gusev V.. A dense new version of crystalline carbon C8. JETP Lett. , 1979, 30( 4): 199
|
49 |
L. Johnston R., Hoffmann R.. Superdense carbon, C8: supercubane or analog of . gamma. -silicon?. J. Am. Chem. Soc. , 1989, 111( 3): 810
https://doi.org/10.1021/ja00185a004
|
50 |
Li Z.-Z., Lian C.-S., Xu J., Xu L.-F., Wang J.-T., Chen C.. Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuration. Phys. Rev. B , 2015, 91( 21): 214106
https://doi.org/10.1103/PhysRevB.91.214106
|
51 |
-T. Wang J., Chen C., Wang E., Kawazoe Y.. A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks. Sci. Rep. , 2015, 4( 1): 4339
https://doi.org/10.1038/srep04339
|
52 |
Mouhat F., Coudert F.-X.. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B , 2014, 90( 22): 224104
https://doi.org/10.1103/PhysRevB.90.224104
|
53 |
F. Pugh S.. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, Dublin Philos. Mag. J. Sci. , 1954, 45( 367): 823
https://doi.org/10.1080/14786440808520496
|
54 |
Chen X., Niu H., Li D., Li Y.. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics , 2011, 19( 9): 1275
https://doi.org/10.1016/j.intermet.2011.03.026
|
55 |
Tian Y., Xu B., Zhao Z.. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. , 2012, 33 : 93
https://doi.org/10.1016/j.ijrmhm.2012.02.021
|
56 |
Mazhnik E., R. Oganov A.. A model of hardness and fracture toughness of solids. J. Appl. Phys. , 2019, 126( 12): 125109
https://doi.org/10.1063/1.5113622
|
57 |
Liao M., Liu Y., Lai Z., Zhu J., dependence of second-order elastic constants from third-order elastic constants in TMC (TM=Nb Pressure. Zr). Ceram. Int. , 2021, 47( 19): 27535
https://doi.org/10.1016/j.ceramint.2021.06.177
|
58 |
R. Rao R., Padmaja A.. Effective second-order elastic constants of a strained crystal using the finite strain elasticity theory. J. Appl. Phys. , 1987, 62( 2): 440
https://doi.org/10.1063/1.339818
|
59 |
J. McSkimin H., Andreatch P.. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. , 1972, 43( 7): 2944
https://doi.org/10.1063/1.1661636
|
60 |
Sundqvist B.. Carbon under pressure. Phys. Rep. , 2021, 909 : 1
https://doi.org/10.1016/j.physrep.2020.12.007
|
61 |
Wang J., Chen C., Kawazoe Y.. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. , 2011, 106( 7): 075501
https://doi.org/10.1103/PhysRevLett.106.075501
|
62 |
Q. Wang J., X. Zhao C., Y. Niu C., Sun Q., Jia Y.. C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities. J. Phys.: Condens. Matter , 2016, 28( 47): 475402
https://doi.org/10.1088/0953-8984/28/47/475402
|
63 |
Mujica A., J. Pickard C., J. Needs R.. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys. Rev. B , 2015, 91( 21): 214104
https://doi.org/10.1103/PhysRevB.91.214104
|
64 |
D. Landau L. M. Lifshitz E., in: Electrodynamics of Continuous Media (2nd Ed. ), Eds. L. D. Landau and E. M. Lifshitz, Pergamon, Amsterdam, Second Edi. ( 1984), Vol. 8, pp 257– 289
|
65 |
Pantea D., Brochu S., Thiboutot S., Ampleman G., Scholz G.. A morphological investigation of soot produced by the detonation of munitions. Chemosphere , 2006, 65( 5): 821
https://doi.org/10.1016/j.chemosphere.2006.03.027
|
66 |
Chen P., Huang F., Yun S.. Characterization of the condensed carbon in detonation soot. Carbon , 2003, 41( 11): 2093
https://doi.org/10.1016/S0008-6223(03)00229-X
|
67 |
Yamada K.. Shock synthesis of a new cubic form of carbon. Carbon , 2003, 41( 6): 1309
https://doi.org/10.1016/S0008-6223(03)00035-6
|
68 |
Li Q., Ma Y., R. Oganov A., Wang H., Wang H., Xu Y., Cui T., Mao H.-K., Zou G.. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. , 2009, 102( 17): 175506
https://doi.org/10.1103/PhysRevLett.102.175506
|
69 |
He C., Sun L., Zhang C., Peng X., Zhang K., Zhong J.. New superhard carbon phases between graphite and diamond. Solid State Commun. , 2012, 152( 16): 1560
https://doi.org/10.1016/j.ssc.2012.05.022
|
70 |
He C., X. Zhang C., Z. Sun L., Jiao N., W. Zhang K., Zhong J.. Structure, stability and electronic properties of tricycle type graphane. Phys. Status Solidi - Rapid Res. Lett. , 2012, 6( 11): 427
https://doi.org/10.1002/pssr.201206358
|
71 |
Niu H., Chen X.-Q., Wang S., Li D., L. Mao W., Li Y.. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys. Rev. Lett. , 2012, 108( 13): 135501
https://doi.org/10.1103/PhysRevLett.108.135501
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|