Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 63507    https://doi.org/10.1007/s11467-022-1204-z
RESEARCH ARTICLE
P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond
Mingqing Liao1(), Jumahan Maimaitimusha1, Xueting Zhang1, Jingchuan Zhu2, Fengjiang Wang1()
1. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(11296 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ultrawide bandgap semiconductor, e.g., diamond, is considered as the next generation of semiconductor. Here, a new orthorhombic carbon allotrope (P212121-C16) with ultrawide bandgap and ultra-large hardness is identified. The stability of the newly designed carbon is confirmed by the energy, phonon spectrum, ab-initio molecular dynamics and elastic constants. The hardness ranges from 88 GPa to 93 GPa according to different models, which is comparable to diamond. The indirect bandgap reaches 6.23 eV, which is obviously larger than that of diamond, and makes it a promising ultra-wide bandgap semiconductor. Importantly, the experimental possibility is confirmed by comparing the simulated X-ray diffraction with experimental results, and two hypothetical transformation paths to synthesize it from graphite are proposed.

Keywords carbon allotrope      ultrawide bandgap semiconductor      ultrahard      first-principles     
Corresponding Author(s): Mingqing Liao,Fengjiang Wang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 09 October 2022
 Cite this article:   
Mingqing Liao,Jumahan Maimaitimusha,Xueting Zhang, et al. P212121-C16: An ultrawide bandgap and ultrahard carbon allotrope with the bandgap larger than diamond[J]. Front. Phys. , 2022, 17(6): 63507.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1204-z
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/63507
Fig.1  Structure characteristics of P212121-C16.
Fig.2  Topology analysis by natural tiling.
Fig.3  Stability of P212121-C16. (a) Energy-volume curve; (b) Relative energy as a function of pressure; (c) Phonon band structure and density of state (DOS); (d) Energy evolution of AIMD at 273 K; (e) Energy evolution of AIMD at 1000 K.
Elastic constants C11 C12 C13 C22 C23 C33 C44 C55 C66
Cij 1065 66.5 69.4 1222 63.9 1056 498 406 511
dCij/dP 6.07 1.19 0.63 6.07 0.83 5.86 2.24 1.31 2.32
C111 C112 C113 C122 C123 C133 C144 C155 C166 C222
Cijk −10176 −564 −146 −468 −497 −248 −273 −1367 −2468 −11261
C223 C233 C244 C255 C266 C333 C344 C355 C366 C456
Cijk −103 −453 −1878 −338 −1956 −9853 −2374 −1537 −231 −557
Tab.1  Second- and third-order elastic constants of P212121-C16 (Unit: GPa).
Fig.4  Anisotropy of elastic modulus, unit in GPa. The number below each 3D figure is the averaged value by the VRH scheme. (a) Bulk modulus, B; (b) Young’s modulus, E; (c) Shear modulus, G.
Eg(PBE/LDA) (eV) Eg (HSE06/PBE0) (eV) Ref.
I-43d 5.91 7.24 [21]
Clathrate families 7.3(VIII), 6.9(II-100), 6.8(IV-100), 6.7(I-100), 6.6(VI) [26]a
I-4[23] 5.25 6.55 [21]
tri-C18 5.01 6.32 [20]
tP12 [22] 4.98, 5.4 [22] 6.27 [21]
P212121-C16 4.81 6.23 This work
Pbam-32 4.76 5.97 [21]
O-carbon 4.54 5.87 [24]
W-carbon 4.39 [61] 5.69 [24]
BC14 5.64 [18]
C20-T carbon 5.44 [62]
P412121 4.70 [63]
Pbam-24 4.56, 4.57 [63] [21]
Diamond 4.15 [21] 5.32 [21], 5.29 [20], 5.9 [23], 5.40 (This work) 5.47 (Exp) [15]
Tab.2  Bandgap of P212121-C16 and compared with other large-bandgap carbon allotropes.
Fig.5  Band structure of P212121-C16 with HSE06.
Fig.6  Optical properties of P212121-C16. (a) Dielectric function; (b) Refractive index.
Fig.7  Simulated XRD of P212121-C16, diamond, and graphite and compared with experiments (Chimney soot sample in Ref. [65], soot of TNT/ diesel oil in water environment [66] and shock-compressed carbon black and tetracyanoethylene powder mixture [67]) and other theoretical results, including Rh6 [51], Tri-C18 [20] and BCO-C16 [47]. Cu target is taken as XRD source as the same in experiments. The black arrows (↓) show the peak of P212121-C16, and the circle (●) are the peak of graphite.
Fig.8  Hypothetical transition pathway from graphite. In the layered picture, the pink/red and grey/blue balls correspond to carbon atoms with down (left) and up (right) bonds, respectively.
1 Millan J., Godignon P., Perpina X., Perez-Tomas A., Rebollo J.. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. , 2014, 29( 5): 2155
https://doi.org/10.1109/TPEL.2013.2268900
2 Okumura H.. A roadmap for future wide bandgap semiconductor power electronics. MRS Bull. , 2015, 40( 5): 439
https://doi.org/10.1557/mrs.2015.97
3 R. Wilson P., Ferreira B., Zhang J., DiMarino C.. IEEE ITRW: International technology roadmap for wide-bandgap power semiconductors: An overview. IEEE Power Electron. Mag. , 2018, 5( 2): 22
https://doi.org/10.1109/MPEL.2018.2821938
4 Y. Tsao J., Chowdhury S., A. Hollis M., Jena D., M. Johnson N., A. Jones K., J. Kaplar R., Rajan S., G. Van de Walle C., Bellotti E., L. Chua C., Collazo R., E. Coltrin M., A. Cooper J., R. Evans K., Graham S., A. Grotjohn T., R. Heller E., Higashiwaki M., S. Islam M., W. Juodawlkis P., A. Khan M., D. Koehler A., H. Leach J., K. Mishra U., J. Nemanich R., C. N. Pilawa‐Podgurski R., B. Shealy J., Sitar Z., J. Tadjer M., F. Witulski A., Wraback M., A. Simmons J.. Ultrawide‐bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. , 2018, 4( 1): 1600501
https://doi.org/10.1002/aelm.201600501
5 J. Baliga B.. Semiconductors for high‐voltage, vertical channel field‐effect transistors. J. Appl. Phys. , 1982, 53( 3): 1759
https://doi.org/10.1063/1.331646
6 Shi X., He C., J. Pickard C., Tang C., Zhong J.. Stochastic generation of complex crystal structures combining group and graph theory with application to carbon. Phys. Rev. B , 2018, 97( 1): 014104
https://doi.org/10.1103/PhysRevB.97.014104
7 Gao P., Gao B., Lu S., Liu H., Lv J., Wang Y., Ma Y.. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys. , 2022, 17( 2): 23203
https://doi.org/10.1007/s11467-021-1109-2
8 Zhang R.-S., Jiang J.-W.. The art of designing carbon allotropes. Front. Phys. , 2019, 14( 1): 13401
https://doi.org/10.1007/s11467-018-0836-5
9 Tong W., Wei Q., Yan H.-Y., Zhang M.-G., Zhu X.-M.. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys. , 2020, 15( 6): 63501
https://doi.org/10.1007/s11467-020-0970-8
10 W. Kroto H., R. Heath J., C. O’Brien S., F. Curl R., E. Smalley R.. C60: Buckminsterfullerene. Nature , 1985, 318( 6042): 162
https://doi.org/10.1038/318162a0
11 Iijima S.. Helical microtubules of graphitic carbon. Nature , 1991, 354( 6348): 56
https://doi.org/10.1038/354056a0
12 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
https://doi.org/10.1126/science.1102896
13 Tang H., Yuan X., Cheng Y., Fei H., Liu F., Liang T., Zeng Z., Ishii T., Wang M.-S., Katsura T., Sheng H., Gou H.. Synthesis of paracrystalline diamond. Nature , 2021, 599( 7886): 605
https://doi.org/10.1038/s41586-021-04122-w
14 -L. Sheng X., -B. Yan Q., Ye F., -R. Zheng Q., Su G.. T-carbon: A novel carbon allotrope. Phys. Rev. Lett. , 2011, 106( 15): 155703
https://doi.org/10.1103/PhysRevLett.106.155703
15 Occelli F., Loubeyre P., Letoullec R.. Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. , 2003, 2( 3): 151
https://doi.org/10.1038/nmat831
16 -Y. Ding X., Zhang C., -Q. Wang D., -S. Li B., Wang Q., G. Yu Z., -W. Ang K., -W. Zhang Y.. A new carbon allotrope: T5-carbon. Scr. Mater. , 2020, 189 : 72
https://doi.org/10.1016/j.scriptamat.2020.08.004
17 Liao M., Wang F., Zhu J., Lai Z., Liu Y.. P2221-C8: A novel carbon allotrope denser than diamond. Scr. Mater. , 2022, 212 : 114549
https://doi.org/10.1016/j.scriptamat.2022.114549
18 T. Wang J., Chen C., Mizuseki H.. Body centered cubic carbon BC14: An all-sp3 bonded full-fledged pentadiamond. Phys. Rev. B , 2020, 102( 18): 184106
https://doi.org/10.1103/PhysRevB.102.184106
19 Liu J., Gao Q., Hu Z.. HSH-carbon: A novel sp2–sp3 carbon allotrope with an ultrawide energy gap. Front. Phys. , 2022, 17( 6): 63505
https://doi.org/10.1007/s11467-022-1187-9
20 Lv R., Yang X., Yang D., Niu C., Zhao C., Qin J., Zang J., Dong F., Dong L., Shan C.. Computational prediction of a novel superhard sp3 trigonal carbon allotrope with bandgap larger than diamond. Chin. Phys. Lett. , 2021, 38( 7): 076101
https://doi.org/10.1088/0256-307X/38/7/076101
21 He C., Shi X., J. Clark S., Li J., J. Pickard C., Ouyang T., Zhang C., Tang C., Zhong J.. Complex low energy tetrahedral polymorphs of group IV elements from first principles. Phys. Rev. Lett. , 2018, 121( 17): 175701
https://doi.org/10.1103/PhysRevLett.121.175701
22 Zhu Q., R. Oganov A., A. Salvadó M., Pertierra P., O. Lyakhov A.. Denser than diamond: Ab initio search for superdense carbon allotropes. Phys. Rev. B , 2011, 83( 19): 193410
https://doi.org/10.1103/PhysRevB.83.193410
23 Zhang X., Wang Y., Lv J., Zhu C., Li Q., Zhang M., Li Q., Ma Y.. First-principles structural design of superhard materials. J. Chem. Phys. , 2013, 138( 11): 114101
https://doi.org/10.1063/1.4794424
24 Wang J., Chen C., Kawazoe Y.. Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations. Phys. Rev. B , 2012, 85( 3): 033410
https://doi.org/10.1103/PhysRevB.85.033410
25 J. Pickard C., J. Needs R.. Ab initio random structure searching. J. Phys.: Condens. Matter , 2011, 23( 5): 053201
https://doi.org/10.1088/0953-8984/23/5/053201
26 J. Karttunen A., F. Fässler T., Linnolahti M., A. Pakkanen T.. Structural principles of semiconducting group 14 clathrate frameworks. Inorg. Chem. , 2011, 50( 5): 1733
https://doi.org/10.1021/ic102178d
27 Yin H., Shi X., He C., Martinez-Canales M., Li J., J. Pickard C., Tang C., Ouyang T., Zhang C., Zhong J.. Stone−Wales graphene: A two-dimensional carbon semimetal with magic stability. Phys. Rev. B , 2019, 99( 4): 041405
https://doi.org/10.1103/PhysRevB.99.041405
28 J. Clark S., D. Segall M., J. Pickard C., J. Hasnip P., I. J. Probert M., Refson K., C. Payne M.. First principles methods using CASTEP. Z. Kristallogr. , 2005, 220 : 567
https://doi.org/10.1524/zkri.220.5.567.65075
29 E. Peralta J., Heyd J., E. Scuseria G., L. Martin R.. Spin−orbit splittings and energy band gaps calculated with the Heyd−Scuseria−Ernzerhof screened hybrid functional. Phys. Rev. B , 2006, 74( 7): 073101
https://doi.org/10.1103/PhysRevB.74.073101
30 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett. , 1996, 77( 18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
31 R. Hamann D., Schlüter M., Chiang C.. Norm-conserving pseudopotentials. Phys. Rev. Lett. , 1979, 43( 20): 1494
https://doi.org/10.1103/PhysRevLett.43.1494
32 Vanderbilt D.. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B , 1990, 41( 11): 7892
https://doi.org/10.1103/PhysRevB.41.7892
33 G. Pfrommer B., Côté M., G. Louie S., L. Cohen M.. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. , 1997, 131( 1): 233
https://doi.org/10.1006/jcph.1996.5612
34 Baroni S., de Gironcoli S., Dal Corso A., Giannozzi P.. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. , 2001, 73( 2): 515
https://doi.org/10.1103/RevModPhys.73.515
35 Liao M., Liu Y., Zhou F., Han T., Yang D., Qu N., Lai Z.. A high-efficient strain-stress method for calculating higher-order elastic constants from first-principles. Comput. Phys. Commun. , 2022, 280 : 108478
https://doi.org/10.1016/j.cpc.2022.108478
36 Liao M., Liu Y., Shang S.-L., Zhou F., Qu N., Chen Y., Lai Z., Liu Z.-K., Zhu J.. Elastic3rd: A tool for calculating third-order elastic constants from first-principles calculations. Comput. Phys. Commun. , 2021, 261 : 107777
https://doi.org/10.1016/j.cpc.2020.107777
37 Liao M., Liu Y., Wang Y., Zhou F., Qu N., Han T., Yang D., Lai Z., Liu Z.-K., Zhu J.. Revisiting the third-order elastic constants of diamond: The higher-order effect. Diam. Relat. Mater. , 2021, 117 : 108490
https://doi.org/10.1016/j.diamond.2021.108490
38 Hill R.. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A , 1952, 65( 5): 349
https://doi.org/10.1088/0370-1298/65/5/307
39 Liao M., Liu Y., Cui P., Qu N., Zhou F., Yang D., Han T., Lai Z., Zhu J.. Modeling of alloying effect on elastic properties in BCC Nb−Ti−V−Zr solid solution: From unary to quaternary. Comput. Mater. Sci. , 2020, 172 : 109289
https://doi.org/10.1016/j.commatsci.2019.109289
40 Gao F., He J., Wu E., Liu S., Yu D., Li D., Zhang S., Tian Y.. Hardness of covalent crystals. Phys. Rev. Lett. , 2003, 91( 1): 015502
https://doi.org/10.1103/PhysRevLett.91.015502
41 A. Blatov V., P. Shevchenko A., M. Proserpio D.. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. , 2014, 14( 7): 3576
https://doi.org/10.1021/cg500498k
42 A. Blatov V., A. Blatova O., Daeyaert F., W. Deem M.. Nanoporous materials with predicted zeolite topologies. RSC Adv. , 2020, 10( 30): 17760
https://doi.org/10.1039/d0ra01888k
43 Hoffmann R., A. Kabanov A., A. Golov A., M. Proserpio D.. Homo citans and carbon allotropes: For an ethics of citation. Angew. Chemie Int. Ed. , 2016, 55( 37): 10962
https://doi.org/10.1002/anie.201600655
44 Al-Fahdi M., Rodriguez A., Ouyang T., Hu M.. High-throughput computation of new carbon allotropes with diverse hybridization and ultrahigh hardness. Crystals , 2021, 11( 7): 783
https://doi.org/10.3390/cryst11070783
45 A. Anurova N., A. Blatov V., D. Ilyushin G., M. Proserpio D.. Natural tilings for zeolite-type frameworks. J. Phys. Chem. C , 2010, 114( 22): 10160
https://doi.org/10.1021/jp1030027
46 Delgado-Friedrichs O., O’Keeffe M.. Identification of and symmetry computation for crystal nets. Acta Crystallogr. Sect. A Found. Crystallogr. , 2003, 59( 4): 351
https://doi.org/10.1107/S0108767303012017
47 Wang J.-T., Weng H., Nie S., Fang Z., Kawazoe Y., Chen C.. Body-centered orthorhombic C16 : A novel topological node-line semimetal. Phys. Rev. Lett. , 2016, 116( 19): 195501
https://doi.org/10.1103/PhysRevLett.116.195501
48 N. Matyushenko N., E. Strel’Nitskiǐ V., A. Gusev V.. A dense new version of crystalline carbon C8. JETP Lett. , 1979, 30( 4): 199
49 L. Johnston R., Hoffmann R.. Superdense carbon, C8: supercubane or analog of . gamma. -silicon?. J. Am. Chem. Soc. , 1989, 111( 3): 810
https://doi.org/10.1021/ja00185a004
50 Li Z.-Z., Lian C.-S., Xu J., Xu L.-F., Wang J.-T., Chen C.. Computational prediction of body-centered cubic carbon in an all-sp3 six-member ring configuration. Phys. Rev. B , 2015, 91( 21): 214106
https://doi.org/10.1103/PhysRevB.91.214106
51 -T. Wang J., Chen C., Wang E., Kawazoe Y.. A new carbon allotrope with six-fold helical chains in all-sp2 bonding networks. Sci. Rep. , 2015, 4( 1): 4339
https://doi.org/10.1038/srep04339
52 Mouhat F., Coudert F.-X.. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B , 2014, 90( 22): 224104
https://doi.org/10.1103/PhysRevB.90.224104
53 F. Pugh S.. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London, Edinburgh, Dublin Philos. Mag. J. Sci. , 1954, 45( 367): 823
https://doi.org/10.1080/14786440808520496
54 Chen X., Niu H., Li D., Li Y.. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics , 2011, 19( 9): 1275
https://doi.org/10.1016/j.intermet.2011.03.026
55 Tian Y., Xu B., Zhao Z.. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. , 2012, 33 : 93
https://doi.org/10.1016/j.ijrmhm.2012.02.021
56 Mazhnik E., R. Oganov A.. A model of hardness and fracture toughness of solids. J. Appl. Phys. , 2019, 126( 12): 125109
https://doi.org/10.1063/1.5113622
57 Liao M., Liu Y., Lai Z., Zhu J., dependence of second-order elastic constants from third-order elastic constants in TMC (TM=Nb Pressure. Zr). Ceram. Int. , 2021, 47( 19): 27535
https://doi.org/10.1016/j.ceramint.2021.06.177
58 R. Rao R., Padmaja A.. Effective second-order elastic constants of a strained crystal using the finite strain elasticity theory. J. Appl. Phys. , 1987, 62( 2): 440
https://doi.org/10.1063/1.339818
59 J. McSkimin H., Andreatch P.. Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. , 1972, 43( 7): 2944
https://doi.org/10.1063/1.1661636
60 Sundqvist B.. Carbon under pressure. Phys. Rep. , 2021, 909 : 1
https://doi.org/10.1016/j.physrep.2020.12.007
61 Wang J., Chen C., Kawazoe Y.. Low-temperature phase transformation from graphite to sp3 orthorhombic carbon. Phys. Rev. Lett. , 2011, 106( 7): 075501
https://doi.org/10.1103/PhysRevLett.106.075501
62 Q. Wang J., X. Zhao C., Y. Niu C., Sun Q., Jia Y.. C20-T carbon: A novel superhard sp3 carbon allotrope with large cavities. J. Phys.: Condens. Matter , 2016, 28( 47): 475402
https://doi.org/10.1088/0953-8984/28/47/475402
63 Mujica A., J. Pickard C., J. Needs R.. Low-energy tetrahedral polymorphs of carbon, silicon, and germanium. Phys. Rev. B , 2015, 91( 21): 214104
https://doi.org/10.1103/PhysRevB.91.214104
64 D. Landau L. M. Lifshitz E., in: Electrodynamics of Continuous Media (2nd Ed. ), Eds. L. D. Landau and E. M. Lifshitz, Pergamon, Amsterdam, Second Edi. ( 1984), Vol. 8, pp 257– 289
65 Pantea D., Brochu S., Thiboutot S., Ampleman G., Scholz G.. A morphological investigation of soot produced by the detonation of munitions. Chemosphere , 2006, 65( 5): 821
https://doi.org/10.1016/j.chemosphere.2006.03.027
66 Chen P., Huang F., Yun S.. Characterization of the condensed carbon in detonation soot. Carbon , 2003, 41( 11): 2093
https://doi.org/10.1016/S0008-6223(03)00229-X
67 Yamada K.. Shock synthesis of a new cubic form of carbon. Carbon , 2003, 41( 6): 1309
https://doi.org/10.1016/S0008-6223(03)00035-6
68 Li Q., Ma Y., R. Oganov A., Wang H., Wang H., Xu Y., Cui T., Mao H.-K., Zou G.. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. , 2009, 102( 17): 175506
https://doi.org/10.1103/PhysRevLett.102.175506
69 He C., Sun L., Zhang C., Peng X., Zhang K., Zhong J.. New superhard carbon phases between graphite and diamond. Solid State Commun. , 2012, 152( 16): 1560
https://doi.org/10.1016/j.ssc.2012.05.022
70 He C., X. Zhang C., Z. Sun L., Jiao N., W. Zhang K., Zhong J.. Structure, stability and electronic properties of tricycle type graphane. Phys. Status Solidi - Rapid Res. Lett. , 2012, 6( 11): 427
https://doi.org/10.1002/pssr.201206358
71 Niu H., Chen X.-Q., Wang S., Li D., L. Mao W., Li Y.. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys. Rev. Lett. , 2012, 108( 13): 135501
https://doi.org/10.1103/PhysRevLett.108.135501
[1] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[2] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[3] Jia-Qi Liu, Qian Gao, Zhen-Peng Hu. HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap[J]. Front. Phys. , 2022, 17(6): 63505-.
[4] Mingyun Huang, Xingxing Jiang, Yueshao Zheng, Zhengwei Xu, Xiong-Xiong Xue, Keqiu Chen, Yexin Feng. Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties[J]. Front. Phys. , 2022, 17(5): 53504-.
[5] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[6] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[7] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[8] Jia Liu, Xian Liao, Jiayu Liang, Mingchao Wang, Qinghong Yuan. Tuning the electronic properties of hydrogen passivated C3N nanoribbons through van der Waals stacking[J]. Front. Phys. , 2020, 15(6): 63503-.
[9] Zhi-Min Liu, Ye Yang, Yue-Shao Zheng, Qin-Jun Chen, Ye-Xin Feng. Isotropic or anisotropic screening in black phosphorous: Can doping tip the balance?[J]. Front. Phys. , 2020, 15(5): 53501-.
[10] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[11] Ping Yang, Li-Xin Zhang. A theoretical study of step edge geometry on sapphire(0001) and its effect on ZnO nucleation[J]. Front. Phys. , 2019, 14(2): 23606-.
[12] Run-Sen Zhang, Jin-Wu Jiang. The art of designing carbon allotropes[J]. Front. Phys. , 2019, 14(1): 13401-.
[13] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[14] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[15] Qian Gao (高乾), Hui-Li Wang (王会丽), Li-Fu Zhang (张丽芙), Shuang-Lin Hu (胡双林), Zhen-Peng Hu (胡振芃). Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets[J]. Front. Phys. , 2018, 13(3): 138108-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed