|
|
Prospective study on observations of γ-ray sources in the Galaxy using the HADAR experiment |
Xiangli Qian1,2, Huiying Sun1, Tianlu Chen2( ), Danzengluobu2, Youliang Feng2, Qi Gao2, Quanbu Gou3, Yiqing Guo3,4, Hongbo Hu3,4, Mingming Kang5, Haijin Li2, Cheng Liu3, Maoyuan Liu2, Wei Liu3, Bingqiang Qiao3, Xu Wang1, Zhen Wang6, Guangguang Xin7, Yuhua Yao5, Qiang Yuan8, Yi Zhang8 |
1. School of Intelligent Engineering, Shandong Management University, Jinan 250357, China 2. The Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China 3. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 4. University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China 5. College of Physics, Sichuan University, Chengdu 610064, China 6. Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China 7. School of Physics and Technology, Wuhan University, Wuhan 430072, China 8. Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China |
|
|
Abstract The High Altitude Detection of Astronomical Radiation (HADAR) experiment is a refracting terrestrial telescope array based on the atmospheric Cherenkov imaging technique. It focuses the Cherenkov light emitted by extensive air showers through a large aperture water-lens system for observing very-high-energy γ-rays and cosmic rays. With the advantages of a large field-of-view (FOV) and low energy threshold, the HADAR experiment operates in a large-scale sky scanning mode to observe galactic sources. This study presents the prospects of using the HADAR experiment for the sky survey of TeV γ-ray sources from TeVCat and provids a one-year survey of statistical significance. Results from the simulation show that a total of 23 galactic point sources, including five supernova remnant sources and superbubbles, four pulsar wind nebula sources, and 14 unidentified sources, were detected in the HADAR FOV with a significance greater than 5 standard deviations (σ). The statistical significance for the Crab Nebula during one year of operation reached 346.0 σ and the one-year integral sensitivity of HADAR above 1 TeV was ~1.3%–2.4% of the flux from the Crab Nebula.
|
Keywords
HADAR
Galactic sources
significance
gamma rays
|
Corresponding Author(s):
Tianlu Chen,Yiqing Guo
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Issue Date: 11 October 2022
|
|
1 |
O. Drury L.. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys., 1983, 46(8): 973
https://doi.org/10.1088/0034-4885/46/8/002
|
2 |
Blandford R., Eichler D.. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep., 1987, 154(1): 1
https://doi.org/10.1016/0370-1573(87)90134-7
|
3 |
Holder J.. TeV gamma-ray astronomy: A summary. Astropart. Phys., 2012, 39: 61
https://doi.org/10.1016/j.astropartphys.2012.02.014
|
4 |
M. Schure K., R. Bell A., O. Drury L., M. Bykov A.. Diffusive shock acceleration and magnetic field amplification. Space. Sci. Rev., 2012, 173: 491
https://doi.org/10.1007/s11214-012-9871-7
|
5 |
L. Ginzburg V.I. Syrovatskii S., The Origin of Cosmic Rays, New York, 1964
|
6 |
Yuan Q., M. Liu S., J. Bi X.. An attempt at a unified model for the gamma-ray emission of supernova remnants. Astrophys. J., 2012, 761(2): 133
https://doi.org/10.1088/0004-637X/761/2/133
|
7 |
Abdalla H., Abramowski A., Aharonian F.. et al.. The H.E.S.S. galactic plane survey. Astron. Astrophys., 2018, 612: A1
https://doi.org/10.1051/0004-6361/201732098
|
8 |
A. Hinton J.. The status of the HESS project. New. Astron. Rev., 2004, 48(5): 331
https://doi.org/10.1016/j.newar.2003.12.004
|
9 |
Aleksić J., Ansoldi S., A. Antonelli L.. et al.. The major upgrade of the MAGIC telescopes (Part I): The hardware improvements and the commissioning of the system. Astropart. Phys., 2016, 72: 61
https://doi.org/10.1016/j.astropartphys.2015.04.004
|
10 |
Holder J., W. Atkins R., M. Badran H.. et al.. The first VERITAS telescope. Astropart. Phys., 2006, 25(6): 391
https://doi.org/10.1016/j.astropartphys.2006.04.002
|
11 |
CTA Consortium, Science with the Cherenkov Telescope Array, World Scientific, Singapore, 2018
|
12 |
de Naurois M., The very high energy sky from ~20 GeV to hundreds of TeV - selected highlights, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 021 (2015)
|
13 |
A. Mostafá M.. et al.. The high-altitude water cherenkov observatory. Braz. J. Phys., 2014, 44: 571
https://doi.org/10.1007/s13538-014-0225-7
|
14 |
U. Abeysekara A., Albert A., Alfaro R.. et al.. The 2HWC HAWC observatory gamma-ray catalog. Astrophys. J., 2017, 843(1): 40
https://doi.org/10.3847/1538-4357/aa7556
|
15 |
Atkins R., Benbow W., Berley D.. et al.. TeV gamma-ray survey of the northern hemisphere sky using the Milagro observatory. Astrophys. J., 2004, 608(2): 680
https://doi.org/10.1086/420880
|
16 |
Bartoli B., Bernardini P., J. Bi X.. et al.. TeV gamma-ray survey of the northern sky using the ARGO-YBJ detector. Astrophys. J., 2013, 779(1): 27
https://doi.org/10.1088/0004-637X/779/1/27
|
17 |
H. Ma X., J. Bi Y., Cao Z.. et al.. Chapter 1 LHAASO Instruments and detector technology. Chin. Phys. C, 2022, 46(3): 030001
https://doi.org/10.1088/1674-1137/ac3fa6
|
18 |
Cao Z., A. Aharonian F., An Q.. et al.. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray galactic sources. Nature, 2021, 594(7861): 33
https://doi.org/10.1038/s41586-021-03498-z
|
19 |
Amenomori M., W. Bao Y., J. Bi X.. et al.. First detection of photons with energy beyond 100 TeV from an astrophysical source. Phys. Rev. Lett., 2019, 123: 051101
https://doi.org/10.1103/PhysRevLett.123.051101
|
20 |
U. Abeysekara A., Albert A., Alfaro R.. et al.. Multiple galactic sources with emission above 56 TeV detected by HAWC. Phys. Rev. Lett., 2020, 124: 021102
https://doi.org/10.1103/PhysRevLett.124.021102
|
21 |
Gress O., Astapov I., Budnev N.. et al.. The wide-aperture gamma-ray telescope TAIGA-HiSCORE in the Tunka valley: Design, composition and commissioning. Nucl. Instrum. Meth. A, 2017, 845: 367
https://doi.org/10.1016/j.nima.2016.08.031
|
22 |
Cai H., Zhang Y., Liu C., Gao Q., Wang Z., L. Chen T., Y. Zhang X., L. Feng Y., Wang Q., Tian Z., Q. Guo Y., B. Gou Q., Y. Liu Danzengluobu, J. Li M., E. Yao H.. Wide field-of-view atmospheric cherenkov telescope based on refractive lens. J. Instrum., 2017, 12: 09023
https://doi.org/10.1088/1748-0221/12/09/P09023
|
23 |
L. Chen T., Liu C., Gao Q., Cai H., Wang Z., Zhang Y., L. Feng Y., Wang Q., Q. Guo Y., B. Hu H., Y. Liu Danzengluobu, J. Li M., G. Xin H., B. Gou G., Cai Q., Shi H.. Performance of a wide field-of-view atmospheric cherenkov telescope prototype based on a refractive lens. Nucl. Instrum. Meth. A, 2019, 927: 46
https://doi.org/10.1016/j.nima.2019.02.020
|
24 |
Wang Z., Q. Guo Y., Cai H., F. Chang J., L. Chen T., L. Feng Danzengluobu, Gao Y., B. Gou Q., Y. Guo Q., Hou Y., B. Hu C., Liu H., J. Li Labaciren, Liu C., Y. Liu H., Q. Qiao J., L. Qian M., D. Sheng B., Tian X., Wang X., Xue Z., H. Yao Q., R. Zhang L., Y. Zhang Y., Zhang S.. Performance of a scintillation detector array operated with LHAASO-KM2A electronics. Exp. Astron., 2018, 45: 363
https://doi.org/10.1007/s10686-018-9588-z
|
25 |
J. Völk H., Bernlöhr K.. Imaging very high energy gamma-ray telescopes. Exp. Astron., 2009, 25: 173
https://doi.org/10.1007/s10686-009-9151-z
|
26 |
G. Xin G., H. Yao Y., L. Qian X., Liu C., Gao Q., L. Feng Danzengluobu, B. Gou Y., B. Hu Q., J. Li H., Y. Liu H., Liu M., Q. Qiao W., Wang B., Zhang Z., Cai Y., L. Chen H., Q. Guo T.. Prospects for the detection of the prompt very-high-energy emission from γ-ray bursts with the high altitude detection of astronomical radiation experiment. Astrophys. J., 2021, 923(1): 112
https://doi.org/10.3847/1538-4357/ac2df7
|
27 |
Holler M.Balzer A.Chalmé-Calvet R.de Naurois M.Zaborov D., Photon reconstruction for H.E.S.S. using a semi-analytical model, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 980 (2015)
|
28 |
Aleksić J., Ansoldi S., A. Antonelli L.. et al.. The major upgrade of the MAGIC telescopes (Part II): A performance study using observations of the Crab Nebula. Astropart. Phys., 2016, 72: 76
https://doi.org/10.1016/j.astropartphys.2015.02.005
|
29 |
DeYoung T.. The HAWC observatory. Nucl. Instrum. Meth. A, 2012, 692: 72
https://doi.org/10.1016/j.nima.2012.01.026
|
30 |
Amenomori M., Ayabe S., Chen D.. et al.. A northern sky survey for steady tera-electron volt gamma-ray point sources using the Tibet air shower array. Astrophys. J., 2005, 633(2): 1005
https://doi.org/10.1086/491612
|
31 |
K. Gaisser T., Stanev T., Tilav S.. Cosmic ray energy spectrum from measurements of air showers. Front. Phys., 2013, 8(6): 748
https://doi.org/10.1007/s11467-013-0319-7
|
32 |
Bartoli B., Bernardini P., J. Bi X.. et al.. Identification of the TeV gamma-ray source ARGO J2031+4157 with the cygnus cocoon. Astrophys. J., 2014, 790(2): 152
https://doi.org/10.1088/0004-637X/790/2/152
|
33 |
L. Ahnen M., Ansoldi S., A. Antonelli L.. et al.. A cut-off in the TeV gamma-ray spectrum of the SNR Cassiopeia A. Mon. Not. R. Astron. Soc., 2017, 472(3): 2956
https://doi.org/10.1093/mnras/stx2079
|
34 |
U. Abeysekara A., Archer A., Benbow W.. et al.. VERITAS and Fermi-LAT observations of TeV gamma-ray sources discovered by HAWC in the 2HWC catalog. Astrophys. J., 2018, 866(1): 24
https://doi.org/10.3847/1538-4357/aade4e
|
35 |
Aliu E., Anderhub H., A. Antonelli L.. et al.. Discovery of a very high energy gamma-ray signal from the 3C 66A/B region. Astrophys. J., 2009, 692(1): L29
https://doi.org/10.1088/0004-637X/692/1/L29
|
36 |
Aharonian F., G. Akhperjanian A., B. De Almeida U.. et al.. HESS very-high-energy gamma-ray sources without identified counterparts. Astron. Astrophys., 2008, 477(1): 353
https://doi.org/10.1051/0004-6361:20078516
|
37 |
López-Coto R.Marandon V.Brun F., Morphologi-856 cal and spectral measurements of 2HWC J1928+177 with 857 HAWC and H.E.S.S., Proceedings of the 35th International 858 Cosmic Ray Conference, Bexco, Busan, Korea, 10−20 July, 35, 732 (2017)
|
38 |
Aliu E., Archambault S., Arlen T.. et al.. Discovery of TeV gamma-ray emission toward supernova remnant SNR G78.2+2.1. Astrophys. J., 2013, 770(2): 93
https://doi.org/10.1088/0004-637X/770/2/93
|
39 |
Aharonian F., G. Akhperjanian A., R. Bazer-Bachi A.. et al.. Observations of the crab nebula with HESS. Astron. Astrophys., 2006, 457(3): 899
https://doi.org/10.1051/0004-6361:20065351
|
40 |
Aharonian F., G. Akhperjanian A., B. De Almeida U.. et al.. Discovery of very-high-energy γ-ray emission from the vicinity of PSR J1913+1011 with HESS. Astron. Astrophys., 2008, 484(2): 435
https://doi.org/10.1051/0004-6361:20078715
|
41 |
Bartoli B., Bernardini P., J. Bi X.. et al.. Observation of TeV gamma rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment. Astrophys. J., 2013, 767(2): 99
https://doi.org/10.1088/0004-637X/767/2/99
|
42 |
Ranasinghe S., A. Leahy D.. Revised distances to 21 supernova remnants. Astrophys. J., 2018, 155(5): 204
https://doi.org/10.3847/1538-3881/aab9be
|
43 |
C. Koo B., T. Kim K., D. Seward F.. Rosat observations of the supernova remnant W51C. Astrophys. J., 1995, 447: 211
https://doi.org/10.1086/175867
|
44 |
A. Abdo A., Ackermann M., Ajello M.. et al.. Fermi LAT discovery of extended gamma-ray emission in the direction of supernova remnant W51C. Astrophys. J., 2009, 706(1): L1
https://doi.org/10.1088/0004-637X/706/1/L1
|
45 |
Fiasson A.Marandon V.C. G. Chaves R.Tibolla O., Discovery of a VHE gamma-ray source in the W51 region, Proceedings of the 31th International Cosmic Ray Conference, Lodz, Poland, 7−15 July, 31, 889 (2009)
|
46 |
Aleksić J., A. Alvarez E., A. Antonelli L.. et al.. Morphological and spectral properties of the W51 region measured with the MAGIC telescopes. Astron. Astrophys., 2012, 541: A13
https://doi.org/10.1051/0004-6361/201218846
|
47 |
Aharonian F., Akhperjanian A., Beilicke M.. et al.. The unidentified TeV source (TeV J2032+4130) and surrounding field: Final HEGRA IACT-system results. Astron. Astrophys., 2005, 431(1): 197
https://doi.org/10.1051/0004-6361:20041552
|
48 |
Konopelko A., W. Atkins R., Blaylock G.. et al.. Observations of the unidentified TeV γ-ray source TeV J2032+4130 with the whipple observatory 10 m telescope. Astrophys. J., 2007, 658(2): 1062
https://doi.org/10.1086/511262
|
49 |
Albert J., Aliu E., Anderhub H.. et al.. MAGIC observations of the unidentified γ-ray source TeV J2032+4130. Astrophys. J., 2008, 675(1): L25
https://doi.org/10.1086/529520
|
50 |
Aliu E., Aune T., Behera B.. et al.. Observations of the unidentified gamma-ray source TeV J2032+4130 by VERITAS. Astrophys. J., 2014, 783(1): 16
https://doi.org/10.1088/0004-637X/783/1/16
|
51 |
U. Abeysekara A., Benbow W., Bird R.. et al.. Periastron observations of TeV gamma-ray emission from a binary system with a 50-year period. Astrophys. J. Lett., 2018, 867(1): L19
https://doi.org/10.3847/2041-8213/aae70e
|
52 |
Ackermann M., Ajello M., Allafort A.. et al.. A cocoon of freshly accelerated cosmic rays detected by Fermi in the cygnus superbubble. Science, 2011, 334(6059): 1103
https://doi.org/10.1126/science.1210311
|
53 |
Bartoli B., Bernardini P., J. Bi X.. et al.. Observation of TeV gamma rays from the cygnus region with the ARGO-YBJ experiment. Astrophys. J. Lett., 2012, 745(2): L22
https://doi.org/10.1088/2041-8205/745/2/L22
|
54 |
A. Abdo A., Allen B., Berley D.. et al.. TeV gamma-ray sources from a survey of the galactic plane with Milagro. Astrophys. J., 2007, 664(2): L91
https://doi.org/10.1086/520717
|
55 |
B. Ashworth W.. A probable flamsteed observation of the Cassiopeia A supernova. J. Hist. Astron., 1980, 11(1): 1
https://doi.org/10.1177/002182868001100102
|
56 |
E. Reed J., J. Hester J., C. Fabian A., F. Winkler P.. The three-dimensional structure of the Cassiopeia A supernova remnant I: The spherical shell. Astrophys. J., 1995, 440: 706
https://doi.org/10.1086/175308
|
57 |
A. Abdo A., Ackermann M., Ajello M.. et al.. Fermi-lat discovery of GeV gamma-ray emission from the young supernova remnant Cassiopeia A. Astrophys. J. Lett., 2010, 710(1): L92
https://doi.org/10.1088/2041-8205/710/1/L92
|
58 |
J. Yuan Y., Funk S., Jóhannesson G., Lande J., Tibaldo L., Uchiyama Y.. Fermi large area telescope detection of a break in the gamma-ray spectrum of the supernova remnant Cassiopeia A. Astrophys. J., 2013, 779(2): 117
https://doi.org/10.1088/0004-637X/779/2/117
|
59 |
Aharonian F., Akhperjanian A., Barrio J.. et al.. Evidence for TeV gamma ray emission from Cassiopeia A. Astron. Astrophys., 2001, 370(1): 112
https://doi.org/10.1051/0004-6361:20010243
|
60 |
Albert J., Aliu E., Anderhub H.. et al.. Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. Astron. Astrophys., 2007, 474(3): 937
https://doi.org/10.1051/0004-6361:20078168
|
61 |
A. Acciari V., Aliu E., Arlen T.. et al.. Observations of the shell-type supernova remnant Cassiopeia A at TeV energies with VERITAS. Astrophys. J., 2010, 714(1): 163
https://doi.org/10.1088/0004-637X/714/1/163
|
62 |
J. Hester J.. The Crab nebula: An astrophysical chimera. Annu. Rev. Astron. Astr., 2008, 46: 127
https://doi.org/10.1146/annurev.astro.45.051806.110608
|
63 |
Aharonian F., Akhperjanian A., Beilicke M.. et al.. The crab nebula and pulsar between 500 GeV and 80 TeV: Observations with the HEGRA stereoscopic air cerenkov telescopes. Astrophys. J., 2004, 614(2): 897
https://doi.org/10.1086/423931
|
64 |
C. Weekes T., F. Cawley M., J. Fegan D., G. Gibbs K., M. Hillas A., W. Kwok P., C. Lamb R., A. Lewis D., Macomb D., A. Porter N., T. Reynolds P., Vacanti G.. Observation of TeV gamma-rays from the crab nebula using the atmospheric cherenkov imaging technique. Astrophys. J., 1989, 342: 379
https://doi.org/10.1086/167599
|
65 |
Meagher K., Six years of VERITAS observations of the crab nebula, Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July − 6 August, 34, 792 (2015)
|
66 |
Aleksić J., Ansoldi S., A. Antonelli L.. et al.. Measurement of the crab nebula spectrum over three decades in energy with the MAGIC telescopes. J. High. Energy Astrophys., 2015, 5: 30
https://doi.org/10.1016/j.jheap.2015.01.002
|
67 |
U. Abeysekara A., Albert A., Alfaro R.. et al.. Observation of the crab nebula with the HAWC gamma-ray observatory. Astrophys. J., 2017, 843(1): 39
https://doi.org/10.3847/1538-4357/aa7555
|
68 |
M. Atoyan A., A. Aharonian F.. On the mechanisms of gamma radiation in the crab nebula. Mon. Not. R. Astron. Soc., 1996, 278(2): 525
https://doi.org/10.1093/mnras/278.2.525
|
69 |
Nigro C., Deil C., Zanin R.. et al.. Towards open and reproducible multi-instrument analysis in gamma-ray astronomy. Astron. Astrophys., 2019, 625: A10
https://doi.org/10.1051/0004-6361/201834938
|
70 |
P. Halpern J., S. Holt S.. Discovery of soft X-ray pulsations from the γ-ray source geminga. Nature, 1992, 357(6375): 222
https://doi.org/10.1038/357222a0
|
71 |
Faherty J., M. Walter F., Anderson J.. The trigonometric parallax of the neutron star geminga. Astrophys. Space. Sci., 2007, 308: 225
https://doi.org/10.1007/s10509-007-9368-0
|
72 |
A. Abdo A., T. Allen B., Aune T.. et al.. Milagro observations of multi-TeV emission from galactic sources in the FERMI bright source list. Astrophys. J., 2009, 700(2): L127
https://doi.org/10.1088/0004-637X/700/2/L127
|
73 |
L. Ahnen M., Ansoldi S., A. Antonelli L.. et al.. Search for VHE gamma-ray emission from geminga pulsar and nebula with the MAGIC telescopes. Astron. Astrophys., 2016, 591: A138
https://doi.org/10.1051/0004-6361/201527722
|
74 |
U. Abeysekara A., Albert A., Alfaro R.. et al.. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at earth. Science, 2017, 358(6365): 911
https://doi.org/10.1126/science.aan4880
|
75 |
Y. Liu R., R. Yan H., S. Zhang H.. Understanding the multiwavelength observation of geminga’s TeV halo: The role of anisotropic diffusion of particles. Phys. Rev. Lett., 2019, 123(22): 221103
https://doi.org/10.1103/PhysRevLett.123.221103
|
76 |
López-Coto R., Giacinti G.. Constraining the properties of the magnetic turbulence in the geminga region using HAWC γ-ray data. Mon. Not. R. Astron. Soc., 2018, 479(4): 4526
https://doi.org/10.1093/mnras/sty1821
|
77 |
Fang K., J. Bi X., F. Yin P., Yuan Q.. Two-zone diffusion of electrons and positrons from geminga explains the positron anomaly. Astrophys. J., 2018, 863(1): 30
https://doi.org/10.3847/1538-4357/aad092
|
78 |
Camilo F., R. Lorimer D., D. R. Bhat N., V. Gotthelf E., P. Halpern J., D. Wang Q., J. Lu F., Mirabal N.. Discovery of a 136 millisecond radio and X-ray pulsar in supernova remnant G54.1+0.3. Astrophys. J., 2002, 574(1): L71
https://doi.org/10.1086/342351
|
79 |
A. Acciari V., Aliu E., Arlen T.. et al.. Discovery of very high energy γ-ray emission from the SNR G54.1+0.3. Astrophys. J. Lett., 2010, 719(1): L69
https://doi.org/10.1088/2041-8205/719/1/L69
|
80 |
Holder J.. Latest results from VERITAS: Gamma 2016. AIP Conference Proceedings, 2017, 1792: 020013
https://doi.org/10.1063/1.4968898
|
81 |
Kothes R., L. Landecker T., Reich W., Safi-Harb S., Arzoumanian Z.. DA 495: An aging pulsar wind nebula. Astrophys. J., 2008, 687(1): 516
https://doi.org/10.1086/591653
|
82 |
Aharonian F., G. Akhperjanian A., M. Aye K.. et al.. Discovery of the binary pulsar PSR B1259-63 in very-high-energy gamma rays around periastron with HESS. Astron. Astrophys., 2005, 442(1): 1
https://doi.org/10.1051/0004-6361:20052983
|
83 |
Aharonian F., G. Akhperjanian A., M. Aye K.. et al.. Discovery of very high energy gamma rays associated with an X-ray binary. Science, 2005, 309(5735): 746
https://doi.org/10.1126/science.1113764
|
84 |
Albert J., Aliu E., Anderhub H.. et al.. Variable very-high-energy gamma-ray emission from the microquasar LS I+61° 303. Science, 2006, 312(5781): 1771
https://doi.org/10.1126/science.1128177
|
85 |
Archambault S., Archer A., Aune T.. et al.. Exceptionally bright TeV flares from the binary LS I+61° 303. Astrophys. J. Lett., 2016, 817(1): L7
https://doi.org/10.3847/2041-8205/817/1/L7
|
86 |
A. Aharonian F., G. Akhperjanian A., R. Bazer-Bachi A.. et al.. Discovery of a point-like very-high-energy γ-ray source in monoceros. Astron. Astrophys., 2007, 469(1): L1
https://doi.org/10.1051/0004-6361:20077299
|
87 |
Abramowski A., Aharonian F., A. Benkhali F.. et al.. Discovery of variable VHE γ-ray emission from the binary system 1FGL J1018.6-5856. Astron. Astrophys., 2015, 577: A131
https://doi.org/10.1051/0004-6361/201525699
|
88 |
G. Lyne A., W. Stappers B., J. Keith M., S. Ray P., Kerr M., Camilo F., J. Johnson T.. The binary nature of PSR J2032+4127. Mon. Not. R. Astron. Soc., 2015, 451(1): 581
https://doi.org/10.1093/mnras/stv236
|
89 |
C. G. Ho W., Y. Ng C., G. Lyne A., W. Stappers B., J. Coe M., P. Halpern J., J. Johnson T., A. Steele I.. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron. Mon. Not. R. Astron. Soc., 2017, 464(1): 1211
https://doi.org/10.1093/mnras/stw2420
|
90 |
Johnston S., N. Manchester R., G. Lyne A., Bailes M., M. Kaspi V., J. Qiao G., D’Amico N.. PSR 1259-63: A binary radio pulsar with a Be star companion. Astrophys. J., 1992, 387: L37
https://doi.org/10.1086/186300
|
91 |
A. Abdo A., Ackermann M., Ajello M.. et al.. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT. Science, 2009, 325(5942): 840
https://doi.org/10.1126/science.1175558
|
92 |
W. Morgan W., D. Code A., E. Whitford A.. Studies in galactic structure. II. Luminosity classification for 1270 blue giant stars. Astrophys. J. Suppl. S., 1955, 2: 41
https://doi.org/10.1086/190016
|
93 |
A. Hinton J., L. Skilton J., Funk S., Brucker J., A. Aharonian F., Dubus G., Fiasson A., Gallant Y., Hofmann W., Marcowith A., Reimer O.. HESS J0632+057: A new gamma-ray binary?. Astrophys. J., 2008, 690(2): L101
https://doi.org/10.1088/0004-637X/690/2/L101
|
94 |
Aragona C., V. McSwain M., De Becker M.. HD 259440: The proposed optical counterpart of the γ-ray binary HESS J0632+057. Astrophys. J., 2010, 724(1): 306
https://doi.org/10.1088/0004-637X/724/1/306
|
95 |
Aliu E., Archambault S., Aune T.. et al.. Long-term TeV and X-ray observations of the gamma-ray binary HESS J0632+057. Astrophys. J., 2013, 780(2): 168
https://doi.org/10.1088/0004-637X/780/2/168
|
96 |
A. Acciari V., Aliu E., Arlen T.. et al.. Evidence for long-term gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057. Astrophys. J., 2009, 698(2): L94
https://doi.org/10.1088/0004-637X/698/2/L94
|
97 |
Aleksić J., A. Alvarez E., A. Antonelli L.. et al.. Detection of VHE γ-rays from HESS J0632+057 during the 2011 February X-ray outburst with the MAGIC telescopes. Astrophys. J. Lett., 2012, 754(1): L10
https://doi.org/10.1088/2041-8205/754/1/L10
|
98 |
D. Bongiorno S., D. Falcone A., Stroh M., Holder J., L. Skilton J., A. Hinton J., Gehrels N., Grube J.. A new TeV binary: The discovery of an orbital period in HESS J0632+057. Astrophys. J. Lett., 2011, 737(1): L11
https://doi.org/10.1088/2041-8205/737/1/L11
|
99 |
D. Falcone1 A., Grube J., Hinton J., Holder J., Maier G., Mukherjee R., Skilton J., Stroh M.. Probing the nature of the unidentified TeV gamma-ray source HESS J0632+057 with SWIFT. Astrophys. J. Lett., 2009, 708(1): L52
|
100 |
Casares J., Ribó M., Ribas I., M. Paredes J., Vilardell F., Negueruela I.. On the binary nature of the γ-ray sources AGL J2241+4454 (= MWC 656) and HESS J0632+057 (= MWC 148). Mon. Not. R. Astron. Soc., 2012, 421(2): 1103
https://doi.org/10.1111/j.1365-2966.2011.20368.x
|
101 |
B. Adams C., Benbow W., Brill A.. et al.. Observation of the gamma-ray binary HESS J0632+057 with the H.E.S.S., MAGIC, and VERITAS telescopes. Astrophys. J., 2021, 923(2): 241
https://doi.org/10.3847/1538-4357/ac29b7
|
102 |
Abdollahi S., Acero F., Ackermann M.. et al.. Fermi large area telescope fourth source catalog. Astrophys. J. Suppl. S., 2020, 247(1): 33
https://doi.org/10.3847/1538-4365/ab6bcb
|
103 |
Albert A., Alfaro R., Alvarez C.. et al.. 3HWC: The third HAWC catalog of very-high-energy gamma-ray sources. Astrophys. J., 2020, 905(1): 76
https://doi.org/10.3847/1538-4357/abc2d8
|
104 |
Z. Yang R., Liu B.. On the surface brightness radial profile of the extended γ-ray sources. Sci. China. Phys. Chem., 2022, 65(1): 1
https://doi.org/10.1007/s11426-021-1144-3
|
105 |
M. W. Mitchell A.Caroff S.Hinton J. Mohrmannd L., et al.., Detection of extended TeV emission around the geminga pulsar with H.E.S.S., arXiv: 210802556 (2021)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|