Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13301    https://doi.org/10.1007/s11467-022-1207-9
RESEARCH ARTICLE
Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions
Huili Zhu1, Zifan Hong2, Changjie Zhou1(), Qihui Wu3, Tongchang Zheng1, Lan Yang1, Shuqiong Lan1, Weifeng Yang2()
1. Xiamen Key Laboratory of Ultra-Wide Bandgap Semiconductor Materials and Devices, Department of Physics, School of Science, Jimei University, Xiamen 361021, China
2. Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China
3. School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
 Download: PDF(9893 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The interfacial properties of MoS2/4H-SiC heterostructures were studied by combining first-principles calculations and X-ray photoelectron spectroscopy. Experimental (theoretical) valence band offsets (VBOs) increase from 1.49 (1.46) to 2.19 (2.36) eV with increasing MoS2 monolayer (1L) up to 4 layers (4L). A strong interlayer interaction was revealed at 1L MoS2/SiC interface. Fermi level pinning and totally surface passivation were realized for 4H-SiC (0001) surface. About 0.96e per unit cell transferring forms an electric field from SiC to MoS2. Then, 1L MoS2/SiC interface exhibits type I band alignment with the asymmetric conduction band offset (CBO) and VBO. For 2L and 4L MoS2/SiC, Fermi level was just pinning at the lower MoS2 1L. The interaction keeps weak vdW interaction between upper and lower MoS2 layers. They exhibit the type II band alignments and the enlarged CBOs and VBOs, which is attributed to weak vdW interaction and strong interlayer orbital coupling in the multilayer MoS2. High efficiency of charge separation will emerge due to the asymmetric band alignment and built-in electric field for all the MoS2/SiC interfaces. The multiple interfacial interactions provide a new modulated perspective for the next-generation electronics and optoelectronics based on the 2D/3D semiconductors heterojunctions.

Keywords MoS2      SiC      X-ray photoelectron spectroscopy      band alignment      first-principles calculations     
Corresponding Author(s): Changjie Zhou,Weifeng Yang   
Issue Date: 03 November 2022
 Cite this article:   
Huili Zhu,Zifan Hong,Changjie Zhou, et al. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1207-9
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13301
Fig.1  (a) Raman spectra of 1L, 2L, 4L and bulk MoS2/SiC, (b) ADF-STEM image of 1L MoS2, (c) PL spectra of 1L MoS2 grown on SiC against 100 nm SiO2/Si. AFM images (5 μm × 5 μm) of (d) SiC substrate before etching, (e) SiC substrate after etching, (f) 1L MoS2 grown on SiC substrate.
Fig.2  XPS Si 2p spectra of SiC, 1L, 2L and 4L MoS2/SiC.
Fig.3  XPS Mo 3d and S 2p spectra of 1L, 2L, 4L and bulk MoS2/SiC.
Fig.4  Valence band spectra for SiC, 1L, 2L and 4L MoS2/SiC.
Fig.5  (a) Top and side view of the optimized atomic structure of 1L MoS2. (b) The HSE06 total DOSs of 1L MoS2 and partial DOSs of Mo and S atom. The Fermi level is shifted to 0 eV.
Fig.6  (a) Top and side view of the strained atomic structure of 4H-SiC (0001) Si surface. (b) The HSE06 total DOSs of bulk, strained bulk 4H-SiC and strained 4H-SiC (0001) Si surface. (c) Partial DOSs of the outmost and inner Si and C atoms as indicated by the red and green circles in (a), respectively. The Fermi level is shifted to 0 eV.
Fig.7  (a?f) Top views of six representational high-symmetric 1L MoS2/4H-SiC configurations. (g) Top and side view of the preferred atomic structure of 1L MoS2/4H-SiC interface.
Fig.8  (a) Atomic DOSs of 1L MoS2/SiC, (b) 2L MoS2/SiC, and (c) 4L MoS2/SiC interfaces were calculated and aligned from bottom to up according to the atomic order illustrated in the left inset. The green dotted line indicates the Fermi level at 0 eV. The red dashed lines indicate the VBM and CBM of the different atomic layer of the MoS2/SiC interface.
Fig.9  Theoretical energy band alignments at (a) 1L, (b) 2L, and (c) 4L MoS2/SiC interfaces. The red dashed line indicates the real space boundary between the SiC and MoS2 layers. The VBO and CBO were indicated by ΔEV and ΔEC. The built-in electric field and photogenerated electrons and holes were denoted by the red arrow, red solid and hollow circles, respectively. (d) Comparison of the experimental and theoretical VBOs (2H-phase and 3R-phase stacking) of the 1L, 2L and 4L MoS2/SiC interfaces.
1 W. Kroto H. , R. Heath J. , C. O’Brien S. , F. Curl R. , E. Smalley R. . C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162
https://doi.org/10.1038/318162a0
2 S. Bethune D. , H. Kiang C. , S. de Vries M. , Gorman G. , Savoy R. , Vazquez J. , Beyers R. . Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363(6430): 605
https://doi.org/10.1038/363605a0
3 S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
4 Song L. , Ci L. , Lu H. , B. Sorokin P. , Jin C. , Ni J. , G. Kvashnin A. , G. Kvashnin D. , Lou J. , I. Yakobson B. , M. Ajayan P. . Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209
https://doi.org/10.1021/nl1022139
5 Li L. , Yu Y. , J. Ye G. , Ge Q. , Ou X. , Wu H. , Feng D. , H. Chen X. , Zhang Y. . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
https://doi.org/10.1038/nnano.2014.35
6 J. Wang P. , Y. Yang D. , D. Pi X. . Toward wafer-scale production of 2D transition metal chalcogenides. Adv. Electron. Mater., 2021, 7(8): 2100278
https://doi.org/10.1002/aelm.202100278
7 J. Allen M. , C. Tung V. , B. Kaner R. . Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110(1): 132
https://doi.org/10.1021/cr900070d
8 Imani Yengejeh S. , Wen W. , Wang Y. . Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys., 2021, 16(1): 13502
https://doi.org/10.1007/s11467-020-1001-5
9 Szczȩśniak R. , P. Durajski A. , W. Jarosik M. . Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides. Front. Phys., 2018, 13(2): 137401
https://doi.org/10.1007/s11467-017-0726-2
10 P. Venkata Subbaiah Y. , J. Saji K. , Tiwari A. . Atomically thin MoS2: A versatile nongraphene 2D material. Adv. Funct. Mater., 2016, 26(13): 2046
https://doi.org/10.1002/adfm.201504202
11 A. Han S. , Bhatia R. , W. Kim S. . Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg., 2015, 2: 17
https://doi.org/10.1186/s40580-015-0048-4
12 L. Zhu H. , J. Zhou C. , J. Huang X. , L. Wang X. , Z. Xu H. , Lin Y. , H. Yang W. , P. Wu Y. , Lin W. , Guo F. . Evolution of band structures in MoS2-based homo- and heterobilayers. J. Phys. D, 2016, 49(6): 065304
https://doi.org/10.1088/0022-3727/49/6/065304
13 Radisavljevic B. , Radenovic A. , Brivio J. , Giacometti V. , Kis A. . Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6(3): 147
https://doi.org/10.1038/nnano.2010.279
14 D. Zhao Y. , Xu K. , Pan F. , J. Zhou C. , C. Zhou F. , Chai Y. . Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater., 2017, 27(19): 1603484
https://doi.org/10.1002/adfm.201603484
15 Teitz L. , C. Toroker M. . Theoretical investigation of dielectric materials for two-dimensional field-effect transistors. Adv. Funct. Mater., 2020, 30(18): 1808544
https://doi.org/10.1002/adfm.201808544
16 Z. Zhang E. , Y. Wang W. , Zhang C. , B. Jin Y. , D. Zhu G. , Q. Sun Q. , W. Zhang D. , Zhou P. , X. Xiu F. . Tunable charge-trap memory based on few-layer MoS2. ACS Nano, 2015, 9(1): 612
https://doi.org/10.1021/nn5059419
17 Li N. , Q. Wang Q. , Shen C. , Wei Z. , Yu H. , Zhao J. , B. Lu X. , L. Wang G. , L. He C. , Xie L. , Q. Zhu J. , J. Du L. , Yang R. , X. Shi D. , Y. Zhang G. . Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron., 2020, 3(11): 711
https://doi.org/10.1038/s41928-020-00475-8
18 Y. Tsai M. , Tarasov A. , R. Hesabi Z. , Taghinejad H. , M. Campbell P. , A. Joiner C. , Adibi A. , M. Vogel E. . Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces, 2015, 7(23): 12850
https://doi.org/10.1021/acsami.5b02336
19 M. Choi J. , Y. Jang H. , R. Kim A. , D. Kwon J. , Cho B. , H. Park M. , Kim Y. . Ultraflexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale, 2021, 13(2): 672
https://doi.org/10.1039/D0NR07091B
20 F. Xiao Y. , Min L. , K. Liu X. , J. Liu W. , Younis U. , H. Peng T. , W. Kang X. , H. Wu X. , J. Ding S. , W. Zhang D. . Facile integration of MoS2/SiC photodetector by direct chemical vapor deposition. Nanophotonics, 2020, 9(9): 3035
https://doi.org/10.1515/nanoph-2019-0562
21 Zhang K. , Z. Peng M. , F. Yu A. , J. Fan Y. , Y. Zhai J. , L. Wang Z. . A substrate-enhanced MoS2 photodetector through a dual-photogating effect. Mater. Horiz., 2019, 6(4): 826
https://doi.org/10.1039/C8MH01429A
22 Z. Wang W. , B. Zeng X. , H. Warner J. , Y. Guo Z. , S. Hu Y. , Zeng Y. , J. Lu J. , Jin W. , B. Wang S. , C. Lu J. , R. Zeng Y. , H. Xiao Y. . Photoresponse-bias modulation of a highperformance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure. ACS Appl. Mater. Interfaces, 2020, 12(29): 33325
https://doi.org/10.1021/acsami.0c04048
23 X. Sun M. , F. Yang P. , Xie D. , L. Sun Y. , L. Xu J. , L. Ren T. , F. Zhang Y. . Self-powered MoS2-PDPP3T heterotransistor-based broadband photodetectors. Adv. Electron. Mater., 2019, 5(2): 1800580
24 Krishnan U. , Kaur M. , Singh K. , Kumar M. , Kumar A. . A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct., 2019, 128: 274
https://doi.org/10.1016/j.spmi.2019.02.005
25 Liu Y. , J. Fang Y. , R. Yang D. , D. Pi X. , J. Wang P. . Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors. J. Phys.: Condens. Matter, 2022, 34(18): 183001
https://doi.org/10.1088/1361-648X/ac5310
26 Langpoklakpam C. , C. Liu A. , H. Chu K. , H. Hsu L. , C. Lee W. , C. Chen S. , W. Sun C. , H. Shih M. , Y. Lee K. , C. Kuo H. . Review of silicon carbide processing for power MOSFET. Crystals (Basel), 2022, 12(2): 245
https://doi.org/10.3390/cryst12020245
27 Roccaforte F. , Fiorenza P. , Vivona M. , Greco G. , Giannazzo F. . Selective doping in silicon carbide power devices. Materials (Basel), 2021, 14(14): 3923
https://doi.org/10.3390/ma14143923
28 S. Kang M. , H. Lee C. , B. Park J. , Yoo H. , C. Yi G. . Gallium nitride nanostructures for light-emitting diode applications. Nano Energy, 2012, 1(3): 391
https://doi.org/10.1016/j.nanoen.2012.03.005
29 Sun Y. , W. Kang X. , K. Zheng Y. , Lu J. , L. Tian X. , Wei K. , Wu H. , B. Wang W. , Y. Liu X. , Q. Zhang G. . Review of the recent progress on GaN-based vertical power Schottky barrier diodes (SBDs). Electronics (Basel), 2019, 8(5): 575
https://doi.org/10.3390/electronics8050575
30 G. Wright N. , B. Horsfall A. , Vassilevski K. . Prospects for SiC electronics and sensors. Mater. Today, 2008, 11(1−2): 16
https://doi.org/10.1016/S1369-7021(07)70348-6
31 Goel N. , Kumar R. , Roul B. , Kumar M. , B. Krupanidhi S. . Wafer-scale synthesis of a uniform film of few-layer MoS2 on GaN for 2D heterojunction ultraviolet photodetector. J. Phys. D, 2018, 51(37): 374003
https://doi.org/10.1088/1361-6463/aad4e8
32 Moun M. , Kumar M. , Garg M. , Pathak R. , Singh R. . Understanding of MoS2/GaN heterojunction diode and its photodetection properties. Sci. Rep., 2018, 8: 11799
https://doi.org/10.1038/s41598-018-30237-8
33 Aldalbahi A. , Li E. , Rivera M. , Velazquez R. , Altalhi T. , Y. Peng X. , X. Feng P. . A new approach for fabrications of SiC based photodetectors. Sci. Rep., 2016, 6: 23457
https://doi.org/10.1038/srep23457
34 Gao W. , Zhang F. , Q. Zheng Z. , B. Li J. . Unique and tunable photodetecting performance for two-dimensional layered MoSe2/WSe2 p−n junction on the 4H-SiC substrate. ACS Appl. Mater. Interfaces, 2019, 11(21): 19277
https://doi.org/10.1021/acsami.9b03709
35 Cui Z. , F. Bai K. , C. Ding Y. , Wang X. , L. Li E. , S. Zheng J. . Janus XSSe/SiC (X = Mo, W) van der Waals heterostructures as promising water-splitting photocatalysts. Physica E, 2020, 123: 114207
https://doi.org/10.1016/j.physe.2020.114207
36 A. Hassan M. , W. Kim M. , A. Johar M. , Waseem A. , K. Kwon M. , W. Ryu S. . Transferred monolayer MoS2 onto GaN for heterostructure photoanode: Toward stable and efficient photoelectrochemical water splitting. Sci. Rep., 2019, 9: 20141
https://doi.org/10.1038/s41598-019-56807-y
37 Goel N. , Kumar R. , K. Jain S. , Rajamani S. , Roul B. , Gupta G. , Kumar M. , B. Krupanidhi S. . A high-performance hydrogen sensor based on a reverse-biased MoS2/GaN heterojunction. Nanotechnology, 2019, 30(31): 314001
https://doi.org/10.1088/1361-6528/ab1102
38 Reddeppa M. , G. Park B. , Murali G. , H. Choi S. , D. Chinh N. , Kim D. , Yang W. , D. Kim M. . NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators B Chem., 2020, 308: 127700
https://doi.org/10.1016/j.snb.2020.127700
39 H. Ji Y. , P. Huang A. , Q. Yang M. , Gao Q. , L. Yang X. , L. Chen X. , Wang M. , S. Xiao Z. , Z. Wang R. , K. Chu P. . Wrinkled-surface-induced memristive behavior of MoS2 wrapped GaN nanowires. Adv. Electron. Mater., 2020, 6(10): 2000571
https://doi.org/10.1002/aelm.202000571
40 Kresse G. , Hafner J. . Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47(1): 558
https://doi.org/10.1103/PhysRevB.47.558
41 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
42 Grimme S. , Antony J. , Ehrlich S. , Krieg H. . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15): 154104
https://doi.org/10.1063/1.3382344
43 Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
https://doi.org/10.1063/1.1564060
44 Bengtsson L. . Dipole correction for surface supercell calculations. Phys. Rev. B, 1999, 59(19): 12301
https://doi.org/10.1103/PhysRevB.59.12301
45 Henkelman G. , Arnaldsson A. , Jonsson H. . A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 2006, 36(3): 354
https://doi.org/10.1016/j.commatsci.2005.04.010
46 G. Tao J. , W. Chai J. , Zhang Z. , S. Pan J. , J. Wang S. . The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett., 2014, 104(23): 232110
https://doi.org/10.1063/1.4883865
47 G. Tao J. , W. Chai J. , Lu X. , M. Wong L. , I. Wong T. , S. Pan J. , H. Xiong Q. , Z. Chi D. , J. Wang S. . Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale, 2015, 7(6): 2497
https://doi.org/10.1039/C4NR06411A
48 F. Yang W. , Kawai H. , Bosman M. , S. Tang B. , W. Chai J. , L. Tay W. , Yang J. , L. Seng H. , L. Zhu H. , Gong H. , F. Liu H. , E. J. Goh K. , J. Wang S. , Z. Chi D. . Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10(48): 22927
https://doi.org/10.1039/C8NR07498D
49 S. Tang B. , G. Yu Z. , Huang L. , W. Chai J. , L. Wong S. , Deng J. , F. Yang W. , Gong H. , J. Wang S. , W. Ang K. , W. Zhang Y. , Z. Chi D. . Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12(3): 2506
https://doi.org/10.1021/acsnano.7b08261
50 Cheng L. , B. Wang X. , F. Yang W. , W. Chai J. , Yang M. , J. Chen M. , Wu Y. , X. Chen X. , Z. Chi D. , E. J. Goh K. , X. Zhu J. , D. Sun H. , J. Wang S. , C. W. Song J. , Battiato M. , Yang H. , E. M. Chia E. . Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys., 2019, 15(4): 347
https://doi.org/10.1038/s41567-018-0406-3
51 Li H. , Zhang Q. , C. R. Yap C. , K. Tay B. , H. T. Edwin T. , Olivier A. , Baillargeat D. . From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
https://doi.org/10.1002/adfm.201102111
52 Lee C. , Yan H. , E. Brus L. , F. Heinz T. , Hone J. , Ryu S. . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695
https://doi.org/10.1021/nn1003937
53 Chakraborty B. , S. S. R. Matte H. , K. Sood A. , N. R. Rao C. . Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc., 2013, 44(1): 92
https://doi.org/10.1002/jrs.4147
54 Deng H. , Endo K. , Yamamura K. . Competition between surface modification and abrasive polishing: A method of controlling the surface atomic structure of 4H-SiC (0001). Sci. Rep., 2015, 5: 8947
https://doi.org/10.1038/srep08947
55 Wang Q. , H. Cheng X. , Zheng L. , Y. Ye P. , L. Li M. , Y. Shen L. , J. Li J. , L. Zhang D. , Y. Gu Z. , H. Yu Y. . Interfacial chemistry and energy band alignment of TiAlO on 4H-SiC determined by X-ray photoelectron spectroscopy. Appl. Surf. Sci., 2017, 409: 71
https://doi.org/10.1016/j.apsusc.2017.02.257
56 M. D. Brown N. , Y. Cui N. , McKinley A. . An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma. Appl. Surf. Sci., 1998, 134(1−4): 11
https://doi.org/10.1016/S0169-4332(98)00252-9
57 Eda G. , Yamaguchi H. , Voiry D. , Fujita T. , W. Chen M. , Chhowalla M. . Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11(12): 5111
https://doi.org/10.1021/nl201874w
58 A. Baker M. , Gilmore R. , Lenardi C. , Gissler W. . XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci., 1999, 150(1−4): 255
https://doi.org/10.1016/S0169-4332(99)00253-6
59 X. Cheng L. , Y. Qin X. , T. Lucero A. , Azcatl A. , Huang J. , M. Wallace R. , Cho K. , Kim J. . Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces, 2014, 6(15): 11834
https://doi.org/10.1021/am5032105
60 Santoni A. , Biccari F. , Malerba C. , Valentini M. , Chierchia R. , Mittiga A. . Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J. Phys. D, 2013, 46(17): 175101
https://doi.org/10.1088/0022-3727/46/17/175101
61 M. Hill H. , F. Rigosi A. , T. Rim K. , W. Flynn G. , F. Heinz T. . Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett., 2016, 16(8): 4831
https://doi.org/10.1021/acs.nanolett.6b01007
62 Lin L. , J. Chen Y. , W. Yao L. , T. Huang J. , X. Chen R. , Chen X. , L. Tao H. . First-principles study of In and Mn dopants on the magnetic and optical properties of 4H-SiC. J. Lumin., 2021, 239: 118341
https://doi.org/10.1016/j.jlumin.2021.118341
63 Bauer A. , Krausslich J. , Dressler L. , Kuschnerus P. , Wolf J. , Goetz K. , Kackell P. , Furthmuller J. , Bechstedt F. . High-precision determination of atomic positions in crystals: The case of 6H- and 4H-SiC. Phys. Rev. B, 1998, 57(5): 2647
https://doi.org/10.1103/PhysRevB.57.2647
64 X. Chen Y. , Xu X. , Y. Liu P. , G. Xie W. , Chen K. , L. Shui L. , Q. Shang C. , H. Chen Z. , G. Ma X. , F. Zhou G. , T. Shi T. , Wang X. . Unusual mechanism behind enhanced photocatalytic activity and surface passivation of SiC(0001) via forming heterostructure with a MoS2 monolayer. J. Phys. Chem. C, 2020, 124(2): 1362
https://doi.org/10.1021/acs.jpcc.9b08740
65 Gong C. , Colombo L. , M. Wallace R. , Cho K. . The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett., 2014, 14(4): 1714
https://doi.org/10.1021/nl403465v
66 F. Zhang Z. , K. Qian Q. , K. Li B. , J. Chen K. . Interface engineering of monolayer MoS2/GaN hybrid heterostructure: Modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces, 2018, 10(20): 17419
https://doi.org/10.1021/acsami.8b01286
67 L. Zhu H. , J. Zhou C. , L. Wang X. , W. Chen X. , H. Yang W. , P. Wu Y. , Lin W. . Doping behaviors of adatoms adsorbed on phosphorene. Phys. Status Solidi B, 2016, 253(6): 1156
https://doi.org/10.1002/pssb.201552586
68 L. Zhu H. , J. Zhou C. , S. Tang B. , F. Yang W. , W. Chai J. , L. Tay W. , Gong H. , S. Pan J. , D. Zou W. , J. Wang S. , Z. Chi D. . Band alignment of 2D WS2/HfO2 interfaces from X-ray photoelectron spectroscopy and first-principles calculations. Appl. Phys. Lett., 2018, 112(17): 171604
https://doi.org/10.1063/1.5022719
69 Yang M. , W. Chai J. , Callsen M. , Zhou J. , Yang T. , T. Song T. , S. Pan J. , Z. Chi D. , P. Feng Y. , J. Wang S. . Interfacial interaction between HfO2 and MoS2: From thin films to monolayer. J. Phys. Chem. C, 2016, 120(18): 9804
https://doi.org/10.1021/acs.jpcc.6b01576
70 J. Zhou C. , L. Zhu H. , F. Yang W. , B. Lin Q. , C. Zheng T. , Yang L. , Q. Lan S. . Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations. Front. Phys., 2022, 17(5): 53500
https://doi.org/10.1007/s11467-022-1167-0
71 Cusati T. , Fortunelli A. , Fiori G. , Iannaccone G. . Stacking and interlayer electron transport in MoS2. Phys. Rev. B, 2018, 98(11): 115403
https://doi.org/10.1103/PhysRevB.98.115403
[1] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[2] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[3] Shanzhen Chen, Yiming Li, Wenbin Qian, Zhihong Shen, Yuehong Xie, Zhenwei Yang, Liming Zhang, Yanxi Zhang. Heavy flavour physics and CP violation at LHCb: A ten-year review[J]. Front. Phys. , 2023, 18(4): 44601-.
[4] Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures[J]. Front. Phys. , 2023, 18(3): 33307-.
[5] Yuwen Bai, Zijiang Yang, Bayaer Buren, Ye Mao, Maodu Chen. Quantum dynamics studies on the non-adiabatic effects of H + LiD reaction[J]. Front. Phys. , 2023, 18(3): 31303-.
[6] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[7] Yuan Wang, Fayuan Zhang, Meng Zeng, Hongyi Sun, Zhanyang Hao, Yongqing Cai, Hongtao Rong, Chengcheng Zhang, Cai Liu, Xiaoming Ma, Le Wang, Shu Guo, Junhao Lin, Qihang Liu, Chang Liu, Chaoyu Chen. Intrinsic magnetic topological materials[J]. Front. Phys. , 2023, 18(2): 21304-.
[8] Xueping Li, Peize Yuan, Lin Li, Ting Liu, Chenhai Shen, Yurong Jiang, Xiaohui Song, Congxin Xia. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment[J]. Front. Phys. , 2023, 18(1): 13305-.
[9] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[10] Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential[J]. Front. Phys. , 2022, 17(4): 42503-.
[11] Jiahao Fan, Huaqing Huang. Topological states in quasicrystals[J]. Front. Phys. , 2022, 17(1): 13203-.
[12] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[13] Jun-Jie Wei, Xue-Feng Wu. Testing fundamental physics with astrophysical transients[J]. Front. Phys. , 2021, 16(4): 44300-.
[14] Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states[J]. Front. Phys. , 2021, 16(2): 21502-.
[15] Shan Cheng, Zhen-Jun Xiao. The PQCD approach towards to next-to-leading order: A short review[J]. Front. Phys. , 2021, 16(2): 24201-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed