|
|
Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions |
Huili Zhu1, Zifan Hong2, Changjie Zhou1( ), Qihui Wu3, Tongchang Zheng1, Lan Yang1, Shuqiong Lan1, Weifeng Yang2( ) |
1. Xiamen Key Laboratory of Ultra-Wide Bandgap Semiconductor Materials and Devices, Department of Physics, School of Science, Jimei University, Xiamen 361021, China 2. Department of Microelectronics and Integrated Circuit, School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, China 3. School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China |
|
|
Abstract The interfacial properties of MoS2/4H-SiC heterostructures were studied by combining first-principles calculations and X-ray photoelectron spectroscopy. Experimental (theoretical) valence band offsets (VBOs) increase from 1.49 (1.46) to 2.19 (2.36) eV with increasing MoS2 monolayer (1L) up to 4 layers (4L). A strong interlayer interaction was revealed at 1L MoS2/SiC interface. Fermi level pinning and totally surface passivation were realized for 4H-SiC (0001) surface. About 0.96e per unit cell transferring forms an electric field from SiC to MoS2. Then, 1L MoS2/SiC interface exhibits type I band alignment with the asymmetric conduction band offset (CBO) and VBO. For 2L and 4L MoS2/SiC, Fermi level was just pinning at the lower MoS2 1L. The interaction keeps weak vdW interaction between upper and lower MoS2 layers. They exhibit the type II band alignments and the enlarged CBOs and VBOs, which is attributed to weak vdW interaction and strong interlayer orbital coupling in the multilayer MoS2. High efficiency of charge separation will emerge due to the asymmetric band alignment and built-in electric field for all the MoS2/SiC interfaces. The multiple interfacial interactions provide a new modulated perspective for the next-generation electronics and optoelectronics based on the 2D/3D semiconductors heterojunctions.
|
Keywords
MoS2
SiC
X-ray photoelectron spectroscopy
band alignment
first-principles calculations
|
Corresponding Author(s):
Changjie Zhou,Weifeng Yang
|
Issue Date: 03 November 2022
|
|
1 |
W. Kroto H. , R. Heath J. , C. O’Brien S. , F. Curl R. , E. Smalley R. . C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162
https://doi.org/10.1038/318162a0
|
2 |
S. Bethune D. , H. Kiang C. , S. de Vries M. , Gorman G. , Savoy R. , Vazquez J. , Beyers R. . Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363(6430): 605
https://doi.org/10.1038/363605a0
|
3 |
S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
|
4 |
Song L. , Ci L. , Lu H. , B. Sorokin P. , Jin C. , Ni J. , G. Kvashnin A. , G. Kvashnin D. , Lou J. , I. Yakobson B. , M. Ajayan P. . Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209
https://doi.org/10.1021/nl1022139
|
5 |
Li L. , Yu Y. , J. Ye G. , Ge Q. , Ou X. , Wu H. , Feng D. , H. Chen X. , Zhang Y. . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
https://doi.org/10.1038/nnano.2014.35
|
6 |
J. Wang P. , Y. Yang D. , D. Pi X. . Toward wafer-scale production of 2D transition metal chalcogenides. Adv. Electron. Mater., 2021, 7(8): 2100278
https://doi.org/10.1002/aelm.202100278
|
7 |
J. Allen M. , C. Tung V. , B. Kaner R. . Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110(1): 132
https://doi.org/10.1021/cr900070d
|
8 |
Imani Yengejeh S. , Wen W. , Wang Y. . Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys., 2021, 16(1): 13502
https://doi.org/10.1007/s11467-020-1001-5
|
9 |
Szczȩśniak R. , P. Durajski A. , W. Jarosik M. . Strong-coupling superconductivity induced by calcium intercalation in bilayer transition-metal dichalcogenides. Front. Phys., 2018, 13(2): 137401
https://doi.org/10.1007/s11467-017-0726-2
|
10 |
P. Venkata Subbaiah Y. , J. Saji K. , Tiwari A. . Atomically thin MoS2: A versatile nongraphene 2D material. Adv. Funct. Mater., 2016, 26(13): 2046
https://doi.org/10.1002/adfm.201504202
|
11 |
A. Han S. , Bhatia R. , W. Kim S. . Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg., 2015, 2: 17
https://doi.org/10.1186/s40580-015-0048-4
|
12 |
L. Zhu H. , J. Zhou C. , J. Huang X. , L. Wang X. , Z. Xu H. , Lin Y. , H. Yang W. , P. Wu Y. , Lin W. , Guo F. . Evolution of band structures in MoS2-based homo- and heterobilayers. J. Phys. D, 2016, 49(6): 065304
https://doi.org/10.1088/0022-3727/49/6/065304
|
13 |
Radisavljevic B. , Radenovic A. , Brivio J. , Giacometti V. , Kis A. . Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6(3): 147
https://doi.org/10.1038/nnano.2010.279
|
14 |
D. Zhao Y. , Xu K. , Pan F. , J. Zhou C. , C. Zhou F. , Chai Y. . Doping, contact and interface engineering of two-dimensional layered transition metal dichalcogenides transistors. Adv. Funct. Mater., 2017, 27(19): 1603484
https://doi.org/10.1002/adfm.201603484
|
15 |
Teitz L. , C. Toroker M. . Theoretical investigation of dielectric materials for two-dimensional field-effect transistors. Adv. Funct. Mater., 2020, 30(18): 1808544
https://doi.org/10.1002/adfm.201808544
|
16 |
Z. Zhang E. , Y. Wang W. , Zhang C. , B. Jin Y. , D. Zhu G. , Q. Sun Q. , W. Zhang D. , Zhou P. , X. Xiu F. . Tunable charge-trap memory based on few-layer MoS2. ACS Nano, 2015, 9(1): 612
https://doi.org/10.1021/nn5059419
|
17 |
Li N. , Q. Wang Q. , Shen C. , Wei Z. , Yu H. , Zhao J. , B. Lu X. , L. Wang G. , L. He C. , Xie L. , Q. Zhu J. , J. Du L. , Yang R. , X. Shi D. , Y. Zhang G. . Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron., 2020, 3(11): 711
https://doi.org/10.1038/s41928-020-00475-8
|
18 |
Y. Tsai M. , Tarasov A. , R. Hesabi Z. , Taghinejad H. , M. Campbell P. , A. Joiner C. , Adibi A. , M. Vogel E. . Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces, 2015, 7(23): 12850
https://doi.org/10.1021/acsami.5b02336
|
19 |
M. Choi J. , Y. Jang H. , R. Kim A. , D. Kwon J. , Cho B. , H. Park M. , Kim Y. . Ultraflexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale, 2021, 13(2): 672
https://doi.org/10.1039/D0NR07091B
|
20 |
F. Xiao Y. , Min L. , K. Liu X. , J. Liu W. , Younis U. , H. Peng T. , W. Kang X. , H. Wu X. , J. Ding S. , W. Zhang D. . Facile integration of MoS2/SiC photodetector by direct chemical vapor deposition. Nanophotonics, 2020, 9(9): 3035
https://doi.org/10.1515/nanoph-2019-0562
|
21 |
Zhang K. , Z. Peng M. , F. Yu A. , J. Fan Y. , Y. Zhai J. , L. Wang Z. . A substrate-enhanced MoS2 photodetector through a dual-photogating effect. Mater. Horiz., 2019, 6(4): 826
https://doi.org/10.1039/C8MH01429A
|
22 |
Z. Wang W. , B. Zeng X. , H. Warner J. , Y. Guo Z. , S. Hu Y. , Zeng Y. , J. Lu J. , Jin W. , B. Wang S. , C. Lu J. , R. Zeng Y. , H. Xiao Y. . Photoresponse-bias modulation of a highperformance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure. ACS Appl. Mater. Interfaces, 2020, 12(29): 33325
https://doi.org/10.1021/acsami.0c04048
|
23 |
X. Sun M. , F. Yang P. , Xie D. , L. Sun Y. , L. Xu J. , L. Ren T. , F. Zhang Y. . Self-powered MoS2-PDPP3T heterotransistor-based broadband photodetectors. Adv. Electron. Mater., 2019, 5(2): 1800580
|
24 |
Krishnan U. , Kaur M. , Singh K. , Kumar M. , Kumar A. . A synoptic review of MoS2: Synthesis to applications. Superlattices Microstruct., 2019, 128: 274
https://doi.org/10.1016/j.spmi.2019.02.005
|
25 |
Liu Y. , J. Fang Y. , R. Yang D. , D. Pi X. , J. Wang P. . Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors. J. Phys.: Condens. Matter, 2022, 34(18): 183001
https://doi.org/10.1088/1361-648X/ac5310
|
26 |
Langpoklakpam C. , C. Liu A. , H. Chu K. , H. Hsu L. , C. Lee W. , C. Chen S. , W. Sun C. , H. Shih M. , Y. Lee K. , C. Kuo H. . Review of silicon carbide processing for power MOSFET. Crystals (Basel), 2022, 12(2): 245
https://doi.org/10.3390/cryst12020245
|
27 |
Roccaforte F. , Fiorenza P. , Vivona M. , Greco G. , Giannazzo F. . Selective doping in silicon carbide power devices. Materials (Basel), 2021, 14(14): 3923
https://doi.org/10.3390/ma14143923
|
28 |
S. Kang M. , H. Lee C. , B. Park J. , Yoo H. , C. Yi G. . Gallium nitride nanostructures for light-emitting diode applications. Nano Energy, 2012, 1(3): 391
https://doi.org/10.1016/j.nanoen.2012.03.005
|
29 |
Sun Y. , W. Kang X. , K. Zheng Y. , Lu J. , L. Tian X. , Wei K. , Wu H. , B. Wang W. , Y. Liu X. , Q. Zhang G. . Review of the recent progress on GaN-based vertical power Schottky barrier diodes (SBDs). Electronics (Basel), 2019, 8(5): 575
https://doi.org/10.3390/electronics8050575
|
30 |
G. Wright N. , B. Horsfall A. , Vassilevski K. . Prospects for SiC electronics and sensors. Mater. Today, 2008, 11(1−2): 16
https://doi.org/10.1016/S1369-7021(07)70348-6
|
31 |
Goel N. , Kumar R. , Roul B. , Kumar M. , B. Krupanidhi S. . Wafer-scale synthesis of a uniform film of few-layer MoS2 on GaN for 2D heterojunction ultraviolet photodetector. J. Phys. D, 2018, 51(37): 374003
https://doi.org/10.1088/1361-6463/aad4e8
|
32 |
Moun M. , Kumar M. , Garg M. , Pathak R. , Singh R. . Understanding of MoS2/GaN heterojunction diode and its photodetection properties. Sci. Rep., 2018, 8: 11799
https://doi.org/10.1038/s41598-018-30237-8
|
33 |
Aldalbahi A. , Li E. , Rivera M. , Velazquez R. , Altalhi T. , Y. Peng X. , X. Feng P. . A new approach for fabrications of SiC based photodetectors. Sci. Rep., 2016, 6: 23457
https://doi.org/10.1038/srep23457
|
34 |
Gao W. , Zhang F. , Q. Zheng Z. , B. Li J. . Unique and tunable photodetecting performance for two-dimensional layered MoSe2/WSe2 p−n junction on the 4H-SiC substrate. ACS Appl. Mater. Interfaces, 2019, 11(21): 19277
https://doi.org/10.1021/acsami.9b03709
|
35 |
Cui Z. , F. Bai K. , C. Ding Y. , Wang X. , L. Li E. , S. Zheng J. . Janus XSSe/SiC (X = Mo, W) van der Waals heterostructures as promising water-splitting photocatalysts. Physica E, 2020, 123: 114207
https://doi.org/10.1016/j.physe.2020.114207
|
36 |
A. Hassan M. , W. Kim M. , A. Johar M. , Waseem A. , K. Kwon M. , W. Ryu S. . Transferred monolayer MoS2 onto GaN for heterostructure photoanode: Toward stable and efficient photoelectrochemical water splitting. Sci. Rep., 2019, 9: 20141
https://doi.org/10.1038/s41598-019-56807-y
|
37 |
Goel N. , Kumar R. , K. Jain S. , Rajamani S. , Roul B. , Gupta G. , Kumar M. , B. Krupanidhi S. . A high-performance hydrogen sensor based on a reverse-biased MoS2/GaN heterojunction. Nanotechnology, 2019, 30(31): 314001
https://doi.org/10.1088/1361-6528/ab1102
|
38 |
Reddeppa M. , G. Park B. , Murali G. , H. Choi S. , D. Chinh N. , Kim D. , Yang W. , D. Kim M. . NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators B Chem., 2020, 308: 127700
https://doi.org/10.1016/j.snb.2020.127700
|
39 |
H. Ji Y. , P. Huang A. , Q. Yang M. , Gao Q. , L. Yang X. , L. Chen X. , Wang M. , S. Xiao Z. , Z. Wang R. , K. Chu P. . Wrinkled-surface-induced memristive behavior of MoS2 wrapped GaN nanowires. Adv. Electron. Mater., 2020, 6(10): 2000571
https://doi.org/10.1002/aelm.202000571
|
40 |
Kresse G. , Hafner J. . Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47(1): 558
https://doi.org/10.1103/PhysRevB.47.558
|
41 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
42 |
Grimme S. , Antony J. , Ehrlich S. , Krieg H. . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132(15): 154104
https://doi.org/10.1063/1.3382344
|
43 |
Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
https://doi.org/10.1063/1.1564060
|
44 |
Bengtsson L. . Dipole correction for surface supercell calculations. Phys. Rev. B, 1999, 59(19): 12301
https://doi.org/10.1103/PhysRevB.59.12301
|
45 |
Henkelman G. , Arnaldsson A. , Jonsson H. . A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 2006, 36(3): 354
https://doi.org/10.1016/j.commatsci.2005.04.010
|
46 |
G. Tao J. , W. Chai J. , Zhang Z. , S. Pan J. , J. Wang S. . The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett., 2014, 104(23): 232110
https://doi.org/10.1063/1.4883865
|
47 |
G. Tao J. , W. Chai J. , Lu X. , M. Wong L. , I. Wong T. , S. Pan J. , H. Xiong Q. , Z. Chi D. , J. Wang S. . Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale, 2015, 7(6): 2497
https://doi.org/10.1039/C4NR06411A
|
48 |
F. Yang W. , Kawai H. , Bosman M. , S. Tang B. , W. Chai J. , L. Tay W. , Yang J. , L. Seng H. , L. Zhu H. , Gong H. , F. Liu H. , E. J. Goh K. , J. Wang S. , Z. Chi D. . Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10(48): 22927
https://doi.org/10.1039/C8NR07498D
|
49 |
S. Tang B. , G. Yu Z. , Huang L. , W. Chai J. , L. Wong S. , Deng J. , F. Yang W. , Gong H. , J. Wang S. , W. Ang K. , W. Zhang Y. , Z. Chi D. . Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12(3): 2506
https://doi.org/10.1021/acsnano.7b08261
|
50 |
Cheng L. , B. Wang X. , F. Yang W. , W. Chai J. , Yang M. , J. Chen M. , Wu Y. , X. Chen X. , Z. Chi D. , E. J. Goh K. , X. Zhu J. , D. Sun H. , J. Wang S. , C. W. Song J. , Battiato M. , Yang H. , E. M. Chia E. . Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2. Nat. Phys., 2019, 15(4): 347
https://doi.org/10.1038/s41567-018-0406-3
|
51 |
Li H. , Zhang Q. , C. R. Yap C. , K. Tay B. , H. T. Edwin T. , Olivier A. , Baillargeat D. . From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
https://doi.org/10.1002/adfm.201102111
|
52 |
Lee C. , Yan H. , E. Brus L. , F. Heinz T. , Hone J. , Ryu S. . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695
https://doi.org/10.1021/nn1003937
|
53 |
Chakraborty B. , S. S. R. Matte H. , K. Sood A. , N. R. Rao C. . Layer-dependent resonant Raman scattering of a few layer MoS2. J. Raman Spectrosc., 2013, 44(1): 92
https://doi.org/10.1002/jrs.4147
|
54 |
Deng H. , Endo K. , Yamamura K. . Competition between surface modification and abrasive polishing: A method of controlling the surface atomic structure of 4H-SiC (0001). Sci. Rep., 2015, 5: 8947
https://doi.org/10.1038/srep08947
|
55 |
Wang Q. , H. Cheng X. , Zheng L. , Y. Ye P. , L. Li M. , Y. Shen L. , J. Li J. , L. Zhang D. , Y. Gu Z. , H. Yu Y. . Interfacial chemistry and energy band alignment of TiAlO on 4H-SiC determined by X-ray photoelectron spectroscopy. Appl. Surf. Sci., 2017, 409: 71
https://doi.org/10.1016/j.apsusc.2017.02.257
|
56 |
M. D. Brown N. , Y. Cui N. , McKinley A. . An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma. Appl. Surf. Sci., 1998, 134(1−4): 11
https://doi.org/10.1016/S0169-4332(98)00252-9
|
57 |
Eda G. , Yamaguchi H. , Voiry D. , Fujita T. , W. Chen M. , Chhowalla M. . Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11(12): 5111
https://doi.org/10.1021/nl201874w
|
58 |
A. Baker M. , Gilmore R. , Lenardi C. , Gissler W. . XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions. Appl. Surf. Sci., 1999, 150(1−4): 255
https://doi.org/10.1016/S0169-4332(99)00253-6
|
59 |
X. Cheng L. , Y. Qin X. , T. Lucero A. , Azcatl A. , Huang J. , M. Wallace R. , Cho K. , Kim J. . Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces, 2014, 6(15): 11834
https://doi.org/10.1021/am5032105
|
60 |
Santoni A. , Biccari F. , Malerba C. , Valentini M. , Chierchia R. , Mittiga A. . Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J. Phys. D, 2013, 46(17): 175101
https://doi.org/10.1088/0022-3727/46/17/175101
|
61 |
M. Hill H. , F. Rigosi A. , T. Rim K. , W. Flynn G. , F. Heinz T. . Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett., 2016, 16(8): 4831
https://doi.org/10.1021/acs.nanolett.6b01007
|
62 |
Lin L. , J. Chen Y. , W. Yao L. , T. Huang J. , X. Chen R. , Chen X. , L. Tao H. . First-principles study of In and Mn dopants on the magnetic and optical properties of 4H-SiC. J. Lumin., 2021, 239: 118341
https://doi.org/10.1016/j.jlumin.2021.118341
|
63 |
Bauer A. , Krausslich J. , Dressler L. , Kuschnerus P. , Wolf J. , Goetz K. , Kackell P. , Furthmuller J. , Bechstedt F. . High-precision determination of atomic positions in crystals: The case of 6H- and 4H-SiC. Phys. Rev. B, 1998, 57(5): 2647
https://doi.org/10.1103/PhysRevB.57.2647
|
64 |
X. Chen Y. , Xu X. , Y. Liu P. , G. Xie W. , Chen K. , L. Shui L. , Q. Shang C. , H. Chen Z. , G. Ma X. , F. Zhou G. , T. Shi T. , Wang X. . Unusual mechanism behind enhanced photocatalytic activity and surface passivation of SiC(0001) via forming heterostructure with a MoS2 monolayer. J. Phys. Chem. C, 2020, 124(2): 1362
https://doi.org/10.1021/acs.jpcc.9b08740
|
65 |
Gong C. , Colombo L. , M. Wallace R. , Cho K. . The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett., 2014, 14(4): 1714
https://doi.org/10.1021/nl403465v
|
66 |
F. Zhang Z. , K. Qian Q. , K. Li B. , J. Chen K. . Interface engineering of monolayer MoS2/GaN hybrid heterostructure: Modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces, 2018, 10(20): 17419
https://doi.org/10.1021/acsami.8b01286
|
67 |
L. Zhu H. , J. Zhou C. , L. Wang X. , W. Chen X. , H. Yang W. , P. Wu Y. , Lin W. . Doping behaviors of adatoms adsorbed on phosphorene. Phys. Status Solidi B, 2016, 253(6): 1156
https://doi.org/10.1002/pssb.201552586
|
68 |
L. Zhu H. , J. Zhou C. , S. Tang B. , F. Yang W. , W. Chai J. , L. Tay W. , Gong H. , S. Pan J. , D. Zou W. , J. Wang S. , Z. Chi D. . Band alignment of 2D WS2/HfO2 interfaces from X-ray photoelectron spectroscopy and first-principles calculations. Appl. Phys. Lett., 2018, 112(17): 171604
https://doi.org/10.1063/1.5022719
|
69 |
Yang M. , W. Chai J. , Callsen M. , Zhou J. , Yang T. , T. Song T. , S. Pan J. , Z. Chi D. , P. Feng Y. , J. Wang S. . Interfacial interaction between HfO2 and MoS2: From thin films to monolayer. J. Phys. Chem. C, 2016, 120(18): 9804
https://doi.org/10.1021/acs.jpcc.6b01576
|
70 |
J. Zhou C. , L. Zhu H. , F. Yang W. , B. Lin Q. , C. Zheng T. , Yang L. , Q. Lan S. . Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations. Front. Phys., 2022, 17(5): 53500
https://doi.org/10.1007/s11467-022-1167-0
|
71 |
Cusati T. , Fortunelli A. , Fiori G. , Iannaccone G. . Stacking and interlayer electron transport in MoS2. Phys. Rev. B, 2018, 98(11): 115403
https://doi.org/10.1103/PhysRevB.98.115403
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|