Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 12302    https://doi.org/10.1007/s11467-022-1218-6
RESEARCH ARTICLE
A multi-band atomic candle with microwave-dressed Rydberg atoms
Yafen Cai1, Shuai Shi1, Yijia Zhou2, Jianhao Yu1, Yali Tian1, Yitong Li1, Kuan Zhang1, Chenhao Du1, Weibin Li3(), Lin Li1()
1. MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF, Institute for Quantum Science and Engineering, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Graduate School of China Academy of Engineering Physics, Beijing 100193, China
3. School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD, UK
 Download: PDF(4382 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Stabilizing important physical quantities to atom-based standards lies at the heart of modern atomic, molecular and optical physics, and is widely applied to the field of precision metrology. Of particular importance is the atom-based microwave field amplitude stabilizer, the so-called atomic candle. Previous atomic candles are realized with atoms in their ground state, and hence suffer from the lack of frequency band tunability and small stabilization bandwidth, severely limiting their development and potential applications. To tackle these limitations, we employ microwave-dressed Rydberg atoms to realize a novel atomic candle that features multi-band frequency tunability and large stabilization bandwidth. We demonstrate amplitude stabilization of microwave field from C-band to Ka-band, which could be extended to quasi-DC and terahertz fields by exploring abundant Rydberg levels. Our atomic candle achieves stabilization bandwidth of 100 Hz, outperforming previous ones by more than two orders of magnitude. Our simulation indicates the stabilization bandwidth can be further increased up to 100 kHz. Our work paves a route to develop novel electric field control and applications with a noise-resilient, miniaturized, sensitive and broadband atomic candle.

Keywords Rydberg atoms      microwave      atomic spectroscopy     
Corresponding Author(s): Weibin Li,Lin Li   
Issue Date: 23 November 2022
 Cite this article:   
Yafen Cai,Shuai Shi,Yijia Zhou, et al. A multi-band atomic candle with microwave-dressed Rydberg atoms[J]. Front. Phys. , 2023, 18(1): 12302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1218-6
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/12302
Fig.1  Schematic of the Rydberg atomic candle experiment. The MW-dressed Rydberg spectrum acts as the ACS, which is obtained via a ladder-type EIT scheme. The MW field emitted by a horn resonantly couples Rydberg states |r1? and |r2?. A balanced detection scheme with a 795 nm reference beam is implemented to further suppress Doppler background and high-frequency intensity noise of the probe field (see Supplementary Information for details). The error signal is generated by introducing a 50 kHz frequency modulation to the probe laser and then demodulating the ACS. The amplitude of the MW field is stabilized by a feedback control loop with the error signal as input. Inset shows the relevant atomic levels of 87Rb, where | g?= |5S1 /2, F=2?, |e?=| 5P1/2,F=1?, |r1?=|nD3 /2?, and | r2?=|(n+1)P1 /2?.
Fig.2  Experimental data of the atomic candle signal and error signal. (a) The spectra of MW-dressed Rydberg states |+? by scanning the probe laser detuning Δp. The MW field amplitudes are 6.74±0.05 mV ·c m 1 (green), 12.01 ±0.05mV·c m 1 (blue), 15.13 ±0.05mV· c m1 (brown), respectively. (b) The atomic candle signal. The target MW field amplitude and corresponding probe laser detuning are 12.01± 0.05m V· cm 1 and Δp/( 2π) =7.73±0.03 MH z, respectively. The detuning is marked by the vertical dashed line in (a). The blue circles show the probe transmission by varying MW field amplitude. The peak transmission is reached at the target MW field amplitude. The corresponding error signal (purple squares) acts as the MW field amplitude discriminator.
Fig.3  Comparison between theoretical simulation and experimental data for the atomic candle signal and error signal. The solid blue curve and blue circles represent the simulated and experimental atomic candle signal with target MW field amplitude of 12.01± 0.05m V· cm 1, which corresponds to a fixed probe laser detuning of Δp/(2π)=7.73±0.03MH z. The corresponding simulated and experimental error signals are shown as dashed purple curve and purple squares.
Fig.4  Performance of the Rydberg atomic candle. Frequency tunability of the Rydberg atomic candle from MW C-band to Ka-band is shown (band is labelled in the figure). The corresponding transitions are |47D3 /2? |48 P1 /2?,|50 D3 /2? |51P1 /2?,|63 D3 /2?| 64P1/2?,|74 D3 /2? |75 P1 /2?, respectively. The resilience to disturbance is demonstrated by applying a 5 H z disturbance in MW field amplitude. The relative amplitude of the MW field as a function of time is shown in each panel, when the feedback control loop is open (brown diamonds) and closed (blue circles).
Fig.5  Noise-resilience of the Rydberg atomic candle. (a) The noise resilience is verified by superimposing a disturbance at random frequency spanning from 5 Hz to 150 Hz to the MW field amplitude. (b) The Fourier spectrum of the noise disturbance with feedback loop open and closed. For the disturbance below 100 Hz, the Rydberg atomic candle realized more than two orders of magnitude suppression in the MW field amplitude fluctuation.
Fig.6  Dynamic range of the Rydberg atomic candle at 14.8 GHz. MW field amplitudes, ranging from 11.3mV·c m 1 to 82.3 m V·c m 1, can be stabilized by changing the probe laser detuning.
1 G. Spitler L., Scholz P., W. T. Hessels J., Bogdanov S., Brazier A., Camilo F., Chatterjee S., M. Cordes J., Crawford F., Deneva J.. et al.. A repeating fast radio burst. Nature, 2016, 531(7593): 202
https://doi.org/10.1038/nature17168
2 M. Shannon R., P. Macquart J., W. Bannister K., D. Ekers R., W. James C., Osłowski S., Qiu H., Sammons M., W. Hotan A., A. Voronkov M.. et al.. The dispersion–brightness relation for fast radio bursts from a wide-field survey. Nature, 2018, 562(7727): 386
https://doi.org/10.1038/s41586-018-0588-y
3 Marcote B., Nimmo K., W. T. Hessels J., P. Tendulkar S., G. Bassa C., Paragi Z., Keimpema A., Bhardwaj M., Karuppusamy R., M. Kaspi V.. et al.. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature, 2020, 577(7789): 190
https://doi.org/10.1038/s41586-019-1866-z
4 Bae S., R. Levick S., Heidrich L., Magdon P., F. Leutner B., Wöllauer S., Serebryanyk A., Nauss T., Krzystek P., M. Gossner M., Schall P., Heibl C., Bässler C., Doerfler I., D. Schulze E., S. Krah F., Culmsee H., Jung K., Heurich M., Fischer M., Seibold S., Thorn S., Gerlach T., Hothorn T., W. Weisser W., Müller J.. Radar vision in the mapping of forest biodiversity from space. Nat. Commun., 2019, 10(1): 4757
https://doi.org/10.1038/s41467-019-12737-x
5 E. Alsdorf D., M. Melack J., Dunne T., A. K. Mertes L., L. Hess L., C. Smith L.. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature, 2000, 404(6774): 174
https://doi.org/10.1038/35004560
6 Wells J., Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications, Artech House, 2010
7 Ospelkaus C., Warring U., Colombe Y., R. Brown K., M. Amini J., Leibfried D., J. Wineland D.. Microwave quantum logic gates for trapped ions. Nature, 2011, 476(7359): 181
https://doi.org/10.1038/nature10290
8 Swan-Wood T., G. Coffer J., C. Camparo J.. Precision measurements of absorption and refractive-index using an atomic candle. IEEE Trans. Instrum. Meas., 2001, 50(5): 1229
https://doi.org/10.1109/19.963189
9 James C., Applications of the atomic candle: Accessing low-frequency amplitude variations via an atomic time interval, in: Proc. SPIE. 2003
10 F. Cao M., Control and characterisation of a Rydberg spin system to explore many-body physics, Doctoral dissertation
11 Gozzelino M., Micalizio S., Levi F., Godone A., E. Calosso C.. Reducing cavity-pulling shift in Ramsey-operated compact clocks. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2018, 65(7): 1294
https://doi.org/10.1109/TUFFC.2018.2828987
12 I. Yudin V., V. Taichenachev A., Y. Basalaev M., Zanon-Willette T., W. Pollock J., Shuker M., A. Donley E., Kitching J.. Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions. Phys. Rev. Appl., 2018, 9(5): 054034
https://doi.org/10.1103/PhysRevApplied.9.054034
13 C. Camparo J.. Atomic stabilization of electromagnetic field strength using Rabi resonances. Phys. Rev. Lett., 1998, 80(2): 222
https://doi.org/10.1103/PhysRevLett.80.222
14 G. Coffer J., C. Camparo J.. Atomic stabilization of field intensity using Rabi resonances. Phys. Rev. A, 2000, 62(1): 013812
https://doi.org/10.1103/PhysRevA.62.013812
15 G. Coffer J., Sickmiller B., Presser A., C. Camparo J.. Line shapes of atomic-candle-type Rabi resonances. Phys. Rev. A, 2002, 66(2): 023806
https://doi.org/10.1103/PhysRevA.66.023806
16 Tretiakov A., J. LeBlanc L.. Microwave Rabi resonances beyond the small-signal regime. Phys. Rev. A, 2019, 99(4): 043402
https://doi.org/10.1103/PhysRevA.99.043402
17 F. Gallagher T.Atoms Rydberg, Cambridge Monographs on Atomic, Molecular and Chemical Physics, Cambridge: Cambridge University Press, 1994
18 G. Bason M., Tanasittikosol M., Sargsyan A., K. Mohapatra A., Sarkisyan D., M. Potvliege R., S. Adams C.. Enhanced electric field sensitivity of RF-dressed Rydberg dark states. New J. Phys., 2010, 12(6): 065015
https://doi.org/10.1088/1367-2630/12/6/065015
19 A. Sedlacek J., Schwettmann A., Kübler H., Löw R., Pfau T., P. Shaffer J.. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 2012, 8(11): 819
https://doi.org/10.1038/nphys2423
20 Q. Fan H., Kumar S., Daschner R., Kübler H., P. Shaffer J.. Subwavelength microwave electric-field imaging using Rydberg atoms inside atomic vapor cells. Opt. Lett., 2014, 39(10): 3030
https://doi.org/10.1364/OL.39.003030
21 A. Anderson D., A. Miller S., Raithel G., A. Gordon J., L. Butler M., L. Holloway C.. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell. Phys. Rev. Appl., 2016, 5(3): 034003
https://doi.org/10.1103/PhysRevApplied.5.034003
22 T. Simons M., A. Gordon J., L. Holloway C.. Simultaneous use of Cs and Rb Rydberg atoms for dipole moment assessment and RF electric field measurements via electromagnetically induced transparency. J. Appl. Phys., 2016, 120(12): 123103
https://doi.org/10.1063/1.4963106
23 Song Z., Liu H., Liu X., Zhang W., Zou H., Zhang J., Qu J.. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier. Opt. Express, 2019, 27(6): 8848
https://doi.org/10.1364/OE.27.008848
24 A. Anderson D., E. Sapiro R., Raithel G.. Rydberg atoms for radio-frequency communications and sensing: Atomic receivers for pulsed RF field and phase detection. IEEE Aerosp. Electron. Syst. Mag., 2020, 35(4): 48
https://doi.org/10.1109/MAES.2019.2960922
25 Y. Jau Y., Carter T.. Vapor-cell-based atomic electrometry for detection frequencies below 1 kHz. Phys. Rev. Appl., 2020, 13(5): 054034
https://doi.org/10.1103/PhysRevApplied.13.054034
26 Y. Liao K., T. Tu H., Z. Yang S., J. Chen C., H. Liu X., Liang J., D. Zhang X., Yan H., L. Zhu S.. Microwave electrometry via electromagnetically induced absorption in cold Rydberg atoms. Phys. Rev. A, 2020, 101(5): 053432
https://doi.org/10.1103/PhysRevA.101.053432
27 Jing M., Hu Y., Ma J., Zhang H., Zhang L., Xiao L., Jia S.. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys., 2020, 16(9): 911
https://doi.org/10.1038/s41567-020-0918-5
28 H. Meyer D., D. Kunz P., C. Cox K.. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz. Phys. Rev. Appl., 2021, 15(1): 014053
https://doi.org/10.1103/PhysRevApplied.15.014053
29 Fleischhauer M., Imamoglu A., P. Marangos J.. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 2005, 77(2): 633
https://doi.org/10.1103/RevModPhys.77.633
30 K. Mohapatra A., R. Jackson T., S. Adams C.. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett., 2007, 98(11): 113003
https://doi.org/10.1103/PhysRevLett.98.113003
31 Fan H., Kumar S., Sedlacek J., Kübler H., Karimkashi S., P. Shaffer J.. Atom based RF electric field sensing. J. Phys. At. Mol. Opt. Phys., 2015, 48(20): 202001
https://doi.org/10.1088/0953-4075/48/20/202001
32 Tanasittikosol M., D. Pritchard J., Maxwell D., Gauguet A., J. Weatherill K., M. Potvliege R., S. Adams C.. Microwave dressing of Rydberg dark states. J. Phys. At. Mol. Opt. Phys., 2011, 44(18): 184020
https://doi.org/10.1088/0953-4075/44/18/184020
33 G. Wade C., Šibalić N., R. de Melo N., M. Kondo J., S. Adams C., J. Weatherill K.. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat. Photonics, 2017, 11(1): 40
https://doi.org/10.1038/nphoton.2016.214
34 S. Hsiao S., T. Chen K., A. Yu I.. Mean field theory of weakly-interacting Rydberg polaritons in the EIT system based on the nearest-neighbor distribution. Opt. Express, 2020, 28(19): 28414
https://doi.org/10.1364/OE.401310
35 T. Simons M., H. Haddab A., A. Gordon J., L. Holloway C.. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave. Appl. Phys. Lett., 2019, 114(11): 114101
https://doi.org/10.1063/1.5088821
36 Li Y., Xiao M.. Transient properties of an electromagnetically induced transparency in three-level atoms. Opt. Lett., 1995, 20(13): 1489
https://doi.org/10.1364/OL.20.001489
37 C. Cox K., H. Meyer D., K. Fatemi F., D. Kunz P.. Quantum-limited atomic receiver in the electrically small regime. Phys. Rev. Lett., 2018, 121(11): 110502
https://doi.org/10.1103/PhysRevLett.121.110502
38 P. Shaffer J.Kübler H., A read-out enhancement for microwave electric field sensing with Rydberg atoms, in: Proc. SPIE. 2018
39 I. Ryabtsev I., I. Beterov I., B. Tretyakov D., M. Entin V., A. Yakshina E.. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions. Phys. Rev. A, 2011, 84(5): 053409
https://doi.org/10.1103/PhysRevA.84.053409
40 M. Haynes W., CRC Handbook of Chemistry and Physics, CRC Press, 2014
41 A. A. Khumaeni K., Miyabe M., Wakaida I.. The role of microwaves in the enhancement of laser-induced plasma emission. Front. Phys., 2016, 11(4): 114209
https://doi.org/10.1007/s11467-016-0581-6
[1] fop-21218-OF-lilin_suppl_1 Download
[1] Cui Kong, Jibing Liu, Hao Xiong. Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect[J]. Front. Phys. , 2023, 18(1): 12501-.
[2] Tong Liu, Bao-Qing Guo, Yan-Hui Zhou, Jun-Long Zhao, Yu-Liang Fang, Qi-Cheng Wu, Chui-Ping Yang. Transfer of quantum entangled states between superconducting qubits and microwave field qubits[J]. Front. Phys. , 2022, 17(6): 61502-.
[3] Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, Jie Song. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates[J]. Front. Phys. , 2022, 17(2): 22501-.
[4] Daryl Ryan Chong, Minhyuk Kim, Jaewook Ahn, Heejeong Jeong. Machine learning identification of symmetrized base states of Rydberg atoms[J]. Front. Phys. , 2022, 17(1): 12504-.
[5] Tong Liu, Zhen-Fei Zheng, Yu Zhang, Yu-Liang Fang, Chui-Ping Yang. Transferring entangled states of photonic cat-state qubits in circuit QED[J]. Front. Phys. , 2020, 15(2): 21603-.
[6] Rong Wang, Xin-Gang Ren, Ze Yan, Li-Jun Jiang, Wei E. I. Sha, Guang-Cun Shan. Graphene based functional devices: A short review[J]. Front. Phys. , 2019, 14(1): 13603-.
[7] Mingjun Hu, Naibo Zhang, Guangcun Shan, Jiefeng Gao, Jinzhang Liu, Robert K. Y. Li. Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber[J]. Front. Phys. , 2018, 13(4): 138113-.
[8] Ali Khumaeni,Katsuaki Akaoka,Masabumi Miyabe,Ikuo Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission[J]. Front. Phys. , 2016, 11(4): 114209-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed