|
|
|
Moiré flat bands of twisted few-layer graphite |
Zhen Ma1, Shuai Li1, Meng-Meng Xiao1, Ya-Wen Zheng1, Ming Lu3,2, Haiwen Liu5, Jin-Hua Gao1( ), X. C. Xie2,4 |
1. School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China 2. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 3. Beijing Academy of Quantum Information Sciences, Beijing 100193, China 4. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 5. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract We report that the twisted few layer graphite (tFL-graphite) is a new family of moiré heterostructures (MHSs), which has richer and highly tunable moiré flat band structures entirely distinct from all the known MHSs. A tFL-graphite is composed of two few-layer graphite (Bernal stacked multilayer graphene), which are stacked on each other with a small twisted angle. The moiré band structure of the tFL-graphite strongly depends on the layer number of its composed two van der Waals layers. Near the magic angle, a tFL-graphite always has two nearly flat bands coexisting with a few pairs of narrowed dispersive (parabolic or linear) bands at the Fermi level, thus, enhances the DOS at EF . This coexistence property may also enhance the possible superconductivity as been demonstrated in other multiband superconductivity systems. Therefore, we expect strong multiband correlation effects in tFL-graphite. Meanwhile, a proper perpendicular electric field can induce several isolated nearly flat bands with nonzero valley Chern number in some simple tFL-graphites, indicating that tFL-graphite is also a novel topological flat band system.
|
| Keywords
few-layer graphite
flat band
moiré heterostructures
|
|
Corresponding Author(s):
Jin-Hua Gao
|
|
Issue Date: 15 November 2022
|
|
| 1 |
Cao Y., Fatemi V., Demir A., Fang S., L. Tomarken S., Y. Luo J., D. Sanchez-Yamagishi J., Watanabe K., Taniguchi T., Kaxiras E., C. Ashoori R., Jarillo-Herrero P.. Correlated insulator behavior at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
|
| 2 |
Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., Jarillo-Herrero P.. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
|
| 3 |
Yankowitz M., Chen S., Polshyn H., Zhang Y., Watanabe K., Taniguchi T., Graf D., F. Young A., R. Dean C.. Tuning superconductivity in twisted bilayer graphene. Science, 2019, 363(6431): 1059
https://doi.org/10.1126/science.aav1910
|
| 4 |
Lu X., Stepanov P., Yang W., Xie M., Aamir M., Das I., Urgell C., Watanabe K., Taniguchi T., Zhang G., Bachtold A., MacDonald A., Efetov D.. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 2019, 574(7780): 653
https://doi.org/10.1038/s41586-019-1695-0
|
| 5 |
Sharpe A., Fox E., Barnard A., Finney J., Watanabe K., Taniguchi T., Kastner M., Goldhaber-Gordon D.. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453): 605
https://doi.org/10.1126/science.aaw3780
|
| 6 |
Codecido E., Wang Q., Koester R., Che S., Tian H., Lv R., Tran S., Watanabe K., Taniguchi T., Zhang F., Bockrath M., Lau C.. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv., 2019, 5(9): eaaw9770
https://doi.org/10.1126/sciadv.aaw9770
|
| 7 |
Jiang Y., Lai X., Watanabe K., Taniguchi T., Haule K., Mao J., Andrei E.. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 2019, 573(7772): 91
https://doi.org/10.1038/s41586-019-1460-4
|
| 8 |
Tong Q., Yu H., Zhu Q., Wang Y., Xu X., Yao W.. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
https://doi.org/10.1038/nphys3968
|
| 9 |
M. B. Lopes dos Santos J., M. R. Peres N., H. Castro Neto A.. Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett., 2007, 99(25): 256802
https://doi.org/10.1103/PhysRevLett.99.256802
|
| 10 |
Bistritzer R., H. MacDonald A.. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12233
https://doi.org/10.1073/pnas.1108174108
|
| 11 |
M. B. Lopes dos Santos J., M. R. Peres N., H. Castro Neto A.. Continuum model of the twisted graphene bilayer. Phys. Rev. B, 2012, 86(15): 155449
https://doi.org/10.1103/PhysRevB.86.155449
|
| 12 |
Moon P., Koshino M.. Optical absorption in twisted bilayer graphene. Phys. Rev. B, 2013, 87(20): 205404
https://doi.org/10.1103/PhysRevB.87.205404
|
| 13 |
Koshino M., F. Q. Yuan N., Koretsune T., Ochi M., Kuroki K., Fu L.. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Phys. Rev. X, 2018, 8(3): 031087
https://doi.org/10.1103/PhysRevX.8.031087
|
| 14 |
Kang J., Vafek O.. Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X, 2018, 8(3): 031088
https://doi.org/10.1103/PhysRevX.8.031088
|
| 15 |
A. Gonzalez-Arraga L., L. Lado J., Guinea F., San-Jose P.. Electrically controllable magnetism in twisted bilayer graphene. Phys. Rev. Lett., 2017, 119(10): 107201
https://doi.org/10.1103/PhysRevLett.119.107201
|
| 16 |
Xu C., Balents L.. Topological superconductivity in twisted multilayer graphene. Phys. Rev. Lett., 2018, 121(8): 087001
https://doi.org/10.1103/PhysRevLett.121.087001
|
| 17 |
C. Po H., Zou L., Vishwanath A., Senthil T.. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X, 2018, 8(3): 031089
https://doi.org/10.1103/PhysRevX.8.031089
|
| 18 |
Isobe H., F. Q. Yuan N., Fu L.. Unconventional superconductivity and density waves in twisted bilayer graphene. Phys. Rev. X, 2018, 8(4): 041041
https://doi.org/10.1103/PhysRevX.8.041041
|
| 19 |
Padhi B., Setty C., Phillips P.. Doped twisted bilayer graphene near magic angles: Proximity to Wigner crystallization, not Mott insulation. Nano Lett., 2018, 18(10): 6175
https://doi.org/10.1021/acs.nanolett.8b02033
|
| 20 |
Guinea F., Walet N.. Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers. Proc. Natl. Acad. Sci. USA, 2018, 115(52): 13174
https://doi.org/10.1073/pnas.1810947115
|
| 21 |
C. Liu C., D. Zhang L., Q. Chen W., Yang F.. Chiral spin density wave and d+id superconductivity in the magic-angle-twisted bilayer graphene. Phys. Rev. Lett., 2018, 121(21): 217001
https://doi.org/10.1103/PhysRevLett.121.217001
|
| 22 |
Guo H., Zhu X., Feng S., T. Scalettar R.. Pairing symmetry of interacting fermions on a twisted bilayer graphene superlattice. Phys. Rev. B, 2018, 97(23): 235453
https://doi.org/10.1103/PhysRevB.97.235453
|
| 23 |
P. Lin Y., M. Nandkishore R.. Kohn−Luttinger superconductivity on two orbital honeycomb lattice. Phys. Rev. B, 2018, 98(21): 214521
https://doi.org/10.1103/PhysRevB.98.214521
|
| 24 |
Wu F., H. MacDonald A., Martin I.. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett., 2018, 121(25): 257001
https://doi.org/10.1103/PhysRevLett.121.257001
|
| 25 |
Lian B., Wang Z., A. Bernevig B.. Twisted bilayer graphene: A phonon-driven superconductor. Phys. Rev. Lett., 2019, 122(25): 257002
https://doi.org/10.1103/PhysRevLett.122.257002
|
| 26 |
J. Peltonen T., Ojajärvi R., T. Heikkilä T.. Mean-field theory for superconductivity in twisted bilayer graphene. Phys. Rev. B, 2018, 98(22): 220504
https://doi.org/10.1103/PhysRevB.98.220504
|
| 27 |
M. Kennes D., Lischner J., Karrasch C.. Strong correlations and d+id superconductivity in twisted bilayer graphene. Phys. Rev. B, 2018, 98(24): 241407
https://doi.org/10.1103/PhysRevB.98.241407
|
| 28 |
Z. You Y., Vishwanath A.. Superconductivity from valley fluctuations and approximate SO(4) symmetry in a weak coupling theory of twisted bilayer graphene. npj Quantum Mater., 2019, 4(1): 16
https://doi.org/10.1038/s41535-019-0153-4
|
| 29 |
Liu X., Hao Z., Khalaf E., Y. Lee J., Ronen Y., Yoo H., Haei Najafabadi D., Watanabe K., Taniguchi T., Vishwanath A., Kim P.. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583(7815): 221
https://doi.org/10.1038/s41586-020-2458-7
|
| 30 |
Shen C., Chu Y., Wu Q., Li N., Wang S., Zhao Y., Tang J., Liu J., Tian J., Watanabe K., Taniguchi T., Yang R., Y. Meng Z., Shi D., V. Yazyev O., Zhang G.. Correlated states in twisted double bilayer graphene. Nat. Phys., 2020, 16(5): 520
https://doi.org/10.1038/s41567-020-0825-9
|
| 31 |
Cao Y., Rodan-Legrain D., Rubies-Bigorda O., M. Park J., Watanabe K., Taniguchi T., Jarillo-Herrero P.. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 2020, 583(7815): 215
https://doi.org/10.1038/s41586-020-2260-6
|
| 32 |
W. Burg G., Zhu J., Taniguchi T., Watanabe K., H. MacDonald A., Tutuc E.. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett., 2019, 123(19): 197702
https://doi.org/10.1103/PhysRevLett.123.197702
|
| 33 |
H. Zhang Y., Mao D., Cao Y., Jarillo-Herrero P., Senthil T.. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B, 2019, 99(7): 075127
https://doi.org/10.1103/PhysRevB.99.075127
|
| 34 |
Koshino M.. Band structure and topological properties of twisted double bilayer graphene. Phys. Rev. B, 2019, 99(23): 235406
https://doi.org/10.1103/PhysRevB.99.235406
|
| 35 |
R. Chebrolu N., L. Chittari B., Jung J.. Flat bands in twisted double bilayer graphene. Phys. Rev. B, 2019, 99(23): 235417
https://doi.org/10.1103/PhysRevB.99.235417
|
| 36 |
Y. Lee J., Khalaf E., Liu S., Liu X., Hao Z., Kim P., Vishwanath A.. Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer grapheme. Nat. Commun., 2019, 10: 5333
https://doi.org/10.1038/s41467-019-12981-1
|
| 37 |
Haddadi F., Wu Q., J. Kruchkov A., V. Yazyev O.. Moiré flat bands in twisted double bilayer graphene. Nano Lett., 2020, 20(4): 2410
https://doi.org/10.1021/acs.nanolett.9b05117
|
| 38 |
Wu F., Das Sarma S.. Ferromagnetism and superconductivity in twisted double bilayer graphene. Phys. Rev. B, 2020, 101(15): 155149
https://doi.org/10.1103/PhysRevB.101.155149
|
| 39 |
J. Culchac F.B. Capaz R.Chico L. Suarez Morell E., Flat bands and gaps in twisted double bilayer grapheme, arXiv: 1911.01347 (2019)
|
| 40 |
Ma Z.Li S. W. Zheng Y.M. Xiao M.Jiang H.H. Gao J.C. Xie X., Topological flat bands in twisted trilayer grapheme, arXiv: 1905.00622 (2019)
|
| 41 |
J. Zuo W., B. Qiao J., L. Ma D., J. Yin L., Sun G., Y. Zhang J., Y. Guan L., He L.. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene. Phys. Rev. B, 2018, 97(3): 035440
https://doi.org/10.1103/PhysRevB.97.035440
|
| 42 |
Suárez Morell E., Pacheco M., Chico L., Brey L.. Electronic properties of twisted trilayer graphene. Phys. Rev. B, 2013, 87(12): 125414
https://doi.org/10.1103/PhysRevB.87.125414
|
| 43 |
Li X.Wu F. H. MacDonald A., Electronic structure of single-twist trilayer graphene, arXiv: 1907.12338 (2019)
|
| 44 |
Carr S., Li C., Zhu Z., Kaxiras E., Sachdev S., Kruchkov A.. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett., 2020, 20(5): 3030
https://doi.org/10.1021/acs.nanolett.9b04979
|
| 45 |
Xu S., M. Al Ezzi M., Balakrishnan N., Garcia-Ruiz A., Tsim B., Mullan C., Barrier J., Xin N., A. Piot B., Taniguchi T., Watanabe K., Carvalho A., Mishchenko A., K. Geim A., I. Fal’ko V., Adam S., H. C. Neto A., S. Novoselov K., Shi Y.. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nat. Phys., 2021, 17(5): 619
https://doi.org/10.1038/s41567-021-01172-9
|
| 46 |
Chen S., He M., H. Zhang Y., Hsieh V., Fei Z., Watanabe K., Taniguchi T., H. Cobden D., Xu X., R. Dean C., Yankowitz M.. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys., 2021, 17(3): 374
https://doi.org/10.1038/s41567-020-01062-6
|
| 47 |
Polshyn H., Zhu J., A. Kumar M., Zhang Y., Yang F., L. Tschirhart C., Serlin M., Watanabe K., Taniguchi T., H. MacDonald A., F. Young A.. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588(7836): 66
https://doi.org/10.1038/s41586-020-2963-8
|
| 48 |
Liu J., Ma Z., Gao J., Dai X.. Quantum valley Hall effect, orbital magnetism, and anomalous Hall effect in twisted multilayer graphene systems. Phys. Rev. X, 2019, 9(3): 031021
https://doi.org/10.1103/PhysRevX.9.031021
|
| 49 |
L. Chittari B., Chen G., Zhang Y., Wang F., Jung J.. Gate-tunable topological flat bands in trilayer graphene boron-nitride moiré superlattices. Phys. Rev. Lett., 2019, 122(1): 016401
https://doi.org/10.1103/PhysRevLett.122.016401
|
| 50 |
Chen G., Jiang L., Wu S., Lyu B., Li H., L. Chittari B., Watanabe K., Taniguchi T., Shi Z., Jung J., Zhang Y., Wang F.. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
https://doi.org/10.1038/s41567-018-0387-2
|
| 51 |
Chen G., Sharpe A., Gallagher P., Rosen I., Fox E., Jiang L., Lyu B., Li H., Watanabe K., Taniguchi T., Jung J., Shi Z., Goldhaber-Gordon D., Zhang Y., Wang F.. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
https://doi.org/10.1038/s41586-019-1393-y
|
| 52 |
Wu F., Lovorn T., Tutuc E., H. MacDonald A.. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
https://doi.org/10.1103/PhysRevLett.121.026402
|
| 53 |
H. Naik M., Jain M.. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett., 2018, 121(26): 266401
https://doi.org/10.1103/PhysRevLett.121.266401
|
| 54 |
Pan Y., Fölsch S., Nie Y., Waters D., C. Lin Y., Jariwala B., Zhang K., Cho K., Robinson J., Feenstra R.. Quantum-confined electronic states arising from the moiré pattern of MoS2–WSe2 heterobilayers. Nano Lett., 2018, 18(3): 1849
https://doi.org/10.1021/acs.nanolett.7b05125
|
| 55 |
Wu F., Lovorn T., Tutuc E., Martin I., H. Mac-Donald A.. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett., 2019, 122(8): 086402
https://doi.org/10.1103/PhysRevLett.122.086402
|
| 56 |
Conte F., Ninno D., Cantele G.. Electronic properties and interlayer coupling of twisted MoS2/NbSe2 heterobilayers. Phys. Rev. B, 2019, 99(15): 155429
https://doi.org/10.1103/PhysRevB.99.155429
|
| 57 |
Javvaji S., H. Sun J., Jung J.. Topological flat bands without magic angles in massive twisted bilayer graphenes. Phys. Rev. B, 2020, 101(12): 125411
https://doi.org/10.1103/PhysRevB.101.125411
|
| 58 |
M. Park J., Cao Y., Watanabe K., Taniguchi T., Jarillo-Herrero P.. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 2021, 590(7845): 249
https://doi.org/10.1038/s41586-021-03192-0
|
| 59 |
Hao Z., M. Zimmerman A., Ledwith P., Khalaf E., H. Najafabadi D., Watanabe K., Taniguchi T., Vishwanath A., Kim P.. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371(6534): 1133
https://doi.org/10.1126/science.abg0399
|
| 60 |
Liang M., M. Xiao M., Ma Z., H. Gao J.. Moiré band structures of the double twisted few-layer graphene. Phys. Rev. B, 2022, 105(19): 195422
https://doi.org/10.1103/PhysRevB.105.195422
|
| 61 |
See the Supplemental Material for more details.
|
| 62 |
Guinea F., H. Castro Neto A., M. R. Peres N.. Electronic states and Landau levels in graphene stacks. Phys. Rev. B, 2006, 73(24): 245426
https://doi.org/10.1103/PhysRevB.73.245426
|
| 63 |
Koshino M., Ando T.. Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation. Phys. Rev. B, 2007, 76(8): 085425
https://doi.org/10.1103/PhysRevB.76.085425
|
| 64 |
Min H., H. MacDonald A.. Chiral decomposition in the electronic structure of graphene multilayers. Phys. Rev. B, 2008, 77(15): 155416
https://doi.org/10.1103/PhysRevB.77.155416
|
| 65 |
Simon A.. Superconductivity and chemistry. Angew. Chem. Int. Ed. Engl., 1997, 36(17): 1788
https://doi.org/10.1002/anie.199717881
|
| 66 |
Bussmann-Holder A., Keller H., Simon A., Bianconi A.. Multi-band superconductivity and the steep band/flat band scenario. Condens. Matter, 2019, 4(4): 91
https://doi.org/10.3390/condmat4040091
|
| 67 |
B. Wu J., Zhang X., Ijäs M., P. Han W., F. Qiao X., L. Li X., S. Jiang D., C. Ferrari A., H. Tan P.. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun., 2014, 5(1): 5309
https://doi.org/10.1038/ncomms6309
|
| 68 |
Zhang F., Sahu B., Min H., H. MacDonald A.. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B, 2010, 82(3): 035409
https://doi.org/10.1103/PhysRevB.82.035409
|
| 69 |
Khalaf E., J. Kruchkov A., Tarnopolsky G., Vishwanath A.. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B, 2019, 100(8): 085109
https://doi.org/10.1103/PhysRevB.100.085109
|
| 70 |
Peng H., B. M. Schröter N., Yin J., Wang H., F. Chung T., Yang H., Ekahana S., Liu Z., Jiang J., Yang L., Zhang T., Chen C., Ni H., Barinov A., P. Chen Y., Liu Z., Peng H., Chen Y.. Substrate doping effect and unusually large angle van Hove singularity evolution in twisted bi- and multilayer graphene. Adv. Mater., 2017, 29(27): 1606741
https://doi.org/10.1002/adma.201606741
|
| 71 |
I. B. Utama M., J. Koch R., Lee K., Leconte N., Li H., Zhao S., Jiang L., Zhu J., Watanabe K., Taniguchi T.. et al.. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys., 2021, 17: 184
https://doi.org/10.1038/s41567-020-0974-x
|
| 72 |
J. P. Thompson J., Pei D., Peng H., Wang H., Channa N., L. Peng H., Barinov A., B. M. Schröter N., Chen Y., Mucha-Kruczy’nski M.. Determination of interatomic coupling between two-dimensional crystals using angle-resolved photoemission spectroscopy. Nat. Commun., 2020, 11(1): 3582
https://doi.org/10.1038/s41467-020-17412-0
|
| 73 |
Lisi S., Lu X., Benschop T., A. de Jong T., Stepanov P., R. Duran J., Margot F., Cucchi I., Cappelli E., Hunter A., Tamai A., Kandyba V., Giampietri A., Barinov A., Jobst J., Stalman V., Leeuwenhoek M., Watanabe K., Taniguchi T., Rademaker L., J. van der Molen S., P. Allan M., K. Efetov D., Baumberger F.. Observation of flat bands in twisted bilayer grapheme. Nat. Phys., 2021, 17: 189
https://doi.org/10.1038/s41567-020-01041-x
|
| 74 |
Vela A., V. O. Moutinho M., J. Culchac F., Venezuela P., B. Capaz R.. Electronic structure and optical properties of twisted multilayer graphene. Phys. Rev. B, 2018, 98(15): 155135
https://doi.org/10.1103/PhysRevB.98.155135
|
| 75 |
Cea T., Walet N., Guinea F.. Twists and the electronic structure of graphitic materials. Nano Lett., 2019, 19(12): 8683
https://doi.org/10.1021/acs.nanolett.9b03335
|
| 76 |
Grushina A., K. Ki D., Koshino M., Nicolet A., Faugeras C., McCann E., Potemski M., Morpurgo A.. Insulating state in tetralayers reveals an even–odd interaction effect in multilayer graphene. Nat. Commun., 2015, 6(1): 6419
https://doi.org/10.1038/ncomms7419
|
| 77 |
Nam Y., K. Ki D., Soler-Delgado D., Morpurgo A.. A family of finite-temperature electronic phase transitions in graphene multilayers. Science, 2018, 362(6412): 324
https://doi.org/10.1126/science.aar6855
|
| 78 |
Wang J., Liu Z.. Hierarchy of ideal flatbands in chiral twisted multilayer graphene models. Phys. Rev. Lett., 2022, 128(17): 176403
https://doi.org/10.1103/PhysRevLett.128.176403
|
| 79 |
A. H. Goodwin Z., Klebl L., Vitale V., Liang X., Gogtay V., van Gorp X., M. Kennes D., A. Mostofi A., Lischner J.. Flat bands, electron interactions, and magnetic order in magic-angle mono-trilayer graphene. Phys. Rev. Mater., 2021, 5(8): 084008
https://doi.org/10.1103/PhysRevMaterials.5.084008
|
| 80 |
Zhang S.Xie B.Wu Q.Liu J.V. Yazyev O., Chiral decomposition of twisted graphene multilayers with arbitrary stacking, arXiv: 2012.11964 (2020)
|
| 81 |
Lin X., Zhu H., Ni J.. Emergence of intrinsically isolated flat bands and their topology in fully relaxed twisted multilayer graphene. Phys. Rev. B, 2021, 104(12): 125421
https://doi.org/10.1103/PhysRevB.104.125421
|
| [1] |
fop-21220-OF-mazhen_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|