Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 11301    https://doi.org/10.1007/s11467-022-1222-x
RESEARCH ARTICLE
Inequality relations for the hierarchy of quantum correlations in two-qubit systems
Xiao-Gang Fan1, Fa Zhao1, Huan Yang2, Fei Ming3, Dong Wang1, Liu Ye1()
1. School of Physics and optoelectronics engineering, Anhui University, Hefei 230601, China
2. Department of Experiment and Practical Training Management, West Anhui University, Lu’an 237012, China
3. Institute of Advanced Manufacturing Engineering, Hefei University, Hefei 230022, China
 Download: PDF(2786 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Entanglement, quantum steering and Bell nonlocality can be used to describe the distinct quantum correlations of quantum systems. Because of their different characteristics and application fields, how to divide them quantitatively and accurately becomes particularly important. Based on the sufficient and necessary criterion for quantum steering of an arbitrary two-qubit T-state, we derive the inequality relations between quantum steering and entanglement as well as between quantum steering and Bell nonlocality for the T-state. Additionally, we have verified those relations experimentally.

Keywords entanglement      quantum steering      Bell nonlocality      inequality relation     
Corresponding Author(s): Liu Ye   
Issue Date: 08 February 2023
 Cite this article:   
Xiao-Gang Fan,Fa Zhao,Huan Yang, et al. Inequality relations for the hierarchy of quantum correlations in two-qubit systems[J]. Front. Phys. , 2023, 18(1): 11301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1222-x
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/11301
Fig.1  A diagrammatic sketch of experimental setup: (a) source stage, (b) unbalanced Mach−Zehnder device stage and (c) tomography stage. OM is short for optical maser, HWP for half-wave plate, PBS for polarizing beam splitter, BS for beam splitter, BBO for type-I β-barium borate crystal, RP for reflecting prism, ATT for attenuator, QWP for quarter wave plater, IF for 3-nm interference filter and SPD for single photon detector.
q= 0 q= 0.1 q= 0.2
p=0 0.9976 ±0.0005 0.9979 ±0.0018 0.9984 ±0.0014
p=0.05 0.9970 ±0.0001 0.9970 ±0.0010 0.9993 ±0.0005
p=0.1 0.9971 ±0.0002 0.9969 ±0.0021 0.9996 ±0.0002
p=0.15 0.9970 ±0.0001 0.9994 ±0.0003 0.9990 ±0.0003
p=0.2 0.9966 ±0.0002 0.9986 ±0.0007 0.9994 ±0.0003
q=0.3 q= 0.4 q= 0.5
p=0 0.9986 ±0.0013 0.9992 ±0.0007 0.9988 ±0.0008
p=0.05 0.9976 ±0.0009 0.9968 ±0.0026 0.9988 ±0.0008
p=0.1 0.9987 ±0.0004 0.9953 ±0.0017 0.9986 ±0.0006
p=0.15 0.9987 ±0.0004 0.9987 ±0.0006 0.9990 ±0.0004
p=0.2 0.9980 ±0.0005 0.9990 ±0.0003 0.9993 ±0.0002
Tab.1  The fidelities of experimental prepared states.
Fig.2  EPR steering F( ρ) versus concurrence E(ρ) for two-qubit T-states ρ. The upper bound (red solid line) can be achieved by the 2-rank T-states. And the lower bound (blue solid line) can be achieved by the Werner states. EPR steering F( ρ) along the Y axis, and concurrence E( ρ) along the X axis for 5× 104 randomly generated two-qubit T-states, where we show them with gray dots, by using a specific Mathematica package. The green dots are obtained by the experimental process with a set of Bell-diagonal states.
Fig.3  Bell nonlocality G( ρ) versus EPR steering F(ρ) for two-qubit T-states ρ. The upper bound (red solid line) can be achieved by the 2-rank T-states. The lower bound (blue solid line) can be achieved by the Werner states. Bell nonlocality G(ρ) along the Y axis, and EPR steering F( ρ) along the X axis for 5× 104 randomly generated two-qubit T-states, where we show them with gray dots, by using a specific Mathematica package. The green dots are obtained by the experimental process with a set of Bell-diagonal states.
1 Einstein A., Podolsky B., Rosen N.. Can quantum-mechanical description of physical reality be considered complete. Phys. Rev., 1935, 47(10): 777
https://doi.org/10.1103/PhysRev.47.777
2 Schrödinger E.. Discussion of relations between separated systems. Math. Proc. Camb. Philos. Soc., 1935, 31(4): 555
https://doi.org/10.1017/S0305004100013554
3 Horodecki R., Horodecki P., Horodecki M., Horodecki K.. Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
4 K. Wootters W.. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
https://doi.org/10.1103/PhysRevLett.80.2245
5 Piani M.. Relative entropy of entanglement and restricted measurements. Phys. Rev. Lett., 2009, 103(16): 160504
https://doi.org/10.1103/PhysRevLett.103.160504
6 Miranowicz A., Grudka A.. Ordering two-qubit states with concurrence and negativity. Phys. Rev. A, 2004, 70(3): 032326
https://doi.org/10.1103/PhysRevA.70.032326
7 Ekert A., Jozsa R.. Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys., 1996, 68(3): 733
https://doi.org/10.1103/RevModPhys.68.733
8 H. Bennett C., Brassard G., Crépeau C., Jozsa R., Peres A., K. Wootters W.. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 1993, 70(13): 1895
https://doi.org/10.1103/PhysRevLett.70.1895
9 Gisin N., Ribordy G., Tittel W., Zbinden H.. Quantum cryptography. Rev. Mod. Phys., 2002, 74(1): 145
https://doi.org/10.1103/RevModPhys.74.145
10 H. Bennett C., P. DiVincenzo D., Smolin J., K. Wootters W.. Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
https://doi.org/10.1103/PhysRevA.54.3824
11 M. Wiseman H., J. Jones S., C. Doherty A.. Steering, entanglement, nonlocality, and the Einstein−Podolsky−Rosen paradox. Phys. Rev. Lett., 2007, 98(14): 140402
https://doi.org/10.1103/PhysRevLett.98.140402
12 Uola R., C. S. Costa A., C. Nguyen H., Gühne O.. Quantum steering. Rev. Mod. Phys., 2020, 92(1): 015001
https://doi.org/10.1103/RevModPhys.92.015001
13 S. Bell J.. On the Einstein−Podolsky−Rosen paradox. Physics, 1964, 1(3): 195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
14 Brunner N., Cavalcanti D., Pironio S., Scarani V., Wehner S.. Bell nonlocality. Rev. Mod. Phys., 2014, 86(2): 419
https://doi.org/10.1103/RevModPhys.86.419
15 X. Zhong W., L. Cheng G., M. Hu X.. One-way Einstein−Podolsky−Rosen steering via atomic coherence. Opt. Express, 2017, 25(10): 11584
https://doi.org/10.1364/OE.25.011584
16 Branciard C., G. Cavalcanti E., P. Walborn S., Scarani V., M. Wiseman H.. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A, 2012, 85(1): 010301(R)
https://doi.org/10.1103/PhysRevA.85.010301
17 Opanchuk B., Arnaud L., D. Reid M.. Detecting faked continuous-variable entanglement using one-sided device independent entanglement witnesses. Phys. Rev. A, 2014, 89(6): 062101
https://doi.org/10.1103/PhysRevA.89.062101
18 Walk N., Hosseini S., Geng J., Thearle O., Y. Haw J., Armstrong S., M. Assad S., Janousek J., C. Ralph T., Symul T., M. Wiseman H., K. Lam P.. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica, 2016, 3(6): 634
https://doi.org/10.1364/OPTICA.3.000634
19 M. Zhang C., Li M., W. Li H., Q. Yin Z., Wang D., Z. Huang J., G. Han Y., L. Xu M., Chen W., Wang S., Treeviriyanupab P., C. Guo G., F. Han Z.. Decoy-state measurement-device independent quantum key distribution based on the Clauser−Horne−Shimony−Holt inequality. Phys. Rev. A, 2014, 90(3): 034302
https://doi.org/10.1103/PhysRevA.90.034302
20 Brukner Č., Żukowski M., W. Pan J., Zeilinger A.. Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett., 2004, 92(12): 127901
https://doi.org/10.1103/PhysRevLett.92.127901
21 Pironio S., Acín A., Massar S., B. de la Giroday A., N. Matsukevich D., Maunz P., Olmschenk S., Hayes D., Luo L., A. Manning T., Monroe C.. Random numbers certified by Bell’s theorem. Nature, 2010, 464(7291): 1021
https://doi.org/10.1038/nature09008
22 T. Quintino M., Vertesi T., Cavalcanti D., Augusiak R., Demianowicz M., Acín A., Brunner N.. Inequivalence of entanglement, steering, and Bell nonlocality for general measurements. Phys. Rev. A, 2015, 92(3): 032107
https://doi.org/10.1103/PhysRevA.92.032107
23 G. Fan X., Yang H., Ming F., Wang D., Ye L.. Constraint relation between steerability and concurrence for two-qubit states. Ann. Phys., 2021, 533(8): 2100098
https://doi.org/10.1002/andp.202100098
24 Chen C., L. Ren C., J. Ye X., L. Chen J.. Mapping criteria between nonlocality and steerability in qudit−qubit systems and between steerability and entanglement in qubit-qudit systems. Phys. Rev. A, 2018, 98(5): 052114
https://doi.org/10.1103/PhysRevA.98.052114
25 Das D., Sasmal S., Roy S.. Detecting Einstein−Podolsky−Rosen steering through entanglement detection. Phys. Rev. A, 2019, 99(5): 052109
https://doi.org/10.1103/PhysRevA.99.052109
26 Verstraete F., M. Wolf M.. Entanglement versus bell violations and their behavior under local filtering operations. Phys. Rev. Lett., 2002, 89(17): 170401
https://doi.org/10.1103/PhysRevLett.89.170401
27 Bartkiewicz K., Horst B., Lemr K., Miranowicz A.. Entanglement estimation from Bell inequality violation. Phys. Rev. A, 2013, 88(5): 052105
https://doi.org/10.1103/PhysRevA.88.052105
28 Horst B., Bartkiewicz K., Miranowicz A.. Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality. Phys. Rev. A, 2013, 87(4): 042108
https://doi.org/10.1103/PhysRevA.87.042108
29 Bartkiewicz K., Lemr K., Černoch A., Miranowicz A.. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Phys. Rev. A, 2017, 95(3): 030102(R)
https://doi.org/10.1103/PhysRevA.95.030102
30 F. Su Z., S. Tan H., Y. Li X.. Entanglement as upper bound for the nonlocality of a general two-qubit system. Phys. Rev. A, 2020, 101(4): 042112
https://doi.org/10.1103/PhysRevA.101.042112
31 Li M., J. Zhao M., M. Fei S., X. Wang Z.. Experimental detection of quantum entanglement. Front. Phys., 2013, 8(4): 357
https://doi.org/10.1007/s11467-013-0355-3
32 R. Zhong Z., Wang X., Qin W.. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys., 2018, 13(5): 130319
https://doi.org/10.1007/s11467-018-0824-9
33 Dong Q., J. Torres-Arenas A., H. Sun G., C. Qiang W., H. Dong S.. Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys., 2019, 14(2): 21603
https://doi.org/10.1007/s11467-018-0876-x
34 Zhang P.. Quantum entanglement in the Sachdev−Ye−Kitaev model and its generalizations. Front. Phys., 2022, 17(4): 43201
https://doi.org/10.1007/s11467-022-1162-5
35 Y. Yang Y., Y. Sun W., N. Shi W., Ming F., Wang D., Ye L.. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii−Moriya interactions. Front. Phys., 2019, 14(3): 31601
https://doi.org/10.1007/s11467-018-0880-1
36 Y. Cheng L., Ming F., Zhao F., Ye L., Wang D.. The uncertainty and quantum correlation of measurement in double quantum-dot systems. Front. Phys., 2022, 17(6): 61504
https://doi.org/10.1007/s11467-022-1178-x
37 Cao Y., Wang D., G. Fan X., Ming F., Y. Wang Z., Ye L.. Complementary relation between quantum entanglement and entropic uncertainty. Commum. Theor. Phys., 2021, 73(1): 015101
https://doi.org/10.1088/1572-9494/abc46f
38 C. Nguyen H., Vu T.. Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes. Europhys. Lett., 2016, 115(1): 10003
https://doi.org/10.1209/0295-5075/115/10003
39 C. Nguyen H., V. Nguyen H., Gühne O.. Geometry of Einstein−Podolsky−Rosen correlations. Phys. Rev. Lett., 2019, 122(24): 240401
https://doi.org/10.1103/PhysRevLett.122.240401
40 G. Fan X., Y. Sun W., Y. Ding Z., Yang H., Ming F., Wang D., Ye L.. Universal complementarity between coherence and intrinsic concurrence for two-qubit states. New J. Phys., 2019, 21(9): 093053
https://doi.org/10.1088/1367-2630/ab41b1
41 Jevtic S., J. W. Hall M., R. Anderson M., Zwierz M., M. Wiseman H.. Einstein−Podolsky−Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B, 2015, 32(4): A40
https://doi.org/10.1364/JOSAB.32.000A40
42 G. Fan X.Yang H.Ming F.K. Song X.Wang D. Ye L., Necessary and sufficient criterion of steering for two-qubit T states, arXiv: 2103.04280v1 (2021)
43 Horodecki R., Horodecki P., Horodecki M.. Violating bell inequality by mixed spin-1/2 states: Necessary and sufficient condition. Phys. Lett. A, 1995, 200(5): 340
https://doi.org/10.1016/0375-9601(95)00214-N
44 G. Kwiat P., Waks E., G. White A., Appelbaum I., H. Eberhard P.. Ultrabright source of polarization-entangled photons. Phys. Rev. A, 1999, 60(2): R773
https://doi.org/10.1103/PhysRevA.60.R773
45 Aiello A., Puentes G., Voigt D., P. Woerdman J.. Maximally entangled mixed-state generation via local operations. Phys. Rev. A, 2007, 75(6): 062118
https://doi.org/10.1103/PhysRevA.75.062118
[1] Jiu-Ming Li, Shao-Ming Fei. Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit[J]. Front. Phys. , 2023, 18(4): 41301-.
[2] Tinggui Zhang, Naihuan Jing, Shao-Ming Fei. Sharing quantum nonlocality in star network scenarios[J]. Front. Phys. , 2023, 18(3): 31302-.
[3] Tian-Tian Huan, Rigui Zhou, Hou Ian. Distributed entanglement generation from asynchronously excited qubits[J]. Front. Phys. , 2022, 17(4): 42504-.
[4] Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways[J]. Front. Phys. , 2022, 17(4): 42507-.
[5] Pengfei Zhang. Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations[J]. Front. Phys. , 2022, 17(4): 43201-.
[6] Pei-Shun Yan, Lan Zhou, Wei Zhong, Yu-Bo Sheng. Measurement-based entanglement purification for entangled coherent states[J]. Front. Phys. , 2022, 17(2): 21501-.
[7] Yexiong Zeng, Biao Xiong, Chong Li. Suppressing laser phase noise in an optomechanical system[J]. Front. Phys. , 2022, 17(1): 12503-.
[8] Mei-Yu Wang, Fengli Yan, Ting Gao. Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states[J]. Front. Phys. , 2021, 16(4): 41501-.
[9] Long Tian, Shao-Ping Shi, Yu-Hang Tian, Ya-Jun Wang, Yao-Hui Zheng, Kun-Chi Peng. Resource reduction for simultaneous generation of two types of continuous variable nonclassical states[J]. Front. Phys. , 2021, 16(2): 21502-.
[10] Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Shi-Hai Dong. Tetrapartite entanglement features of W-Class state in uniform acceleration[J]. Front. Phys. , 2020, 15(1): 11602-.
[11] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[12] Qian Dong, Ariadna J. Torres-Arenas, Guo-Hua Sun, Wen-Chao Qiang, Shi-Hai Dong. Entanglement measures of a new type pseudo-pure state in accelerated frames[J]. Front. Phys. , 2019, 14(2): 21603-.
[13] Jun-Hao Liu, Yu-Bao Zhang, Ya-Fei Yu, Zhi-Ming Zhang. Photon-phonon squeezing and entanglement in a cavity optomechanical system with a flying atom[J]. Front. Phys. , 2019, 14(1): 12601-.
[14] Hong Wang, Bao-Cang Ren, Ai Hua Wang, Ahmed Alsaedi, Tasawar Hayat, Fu-Guo Deng. General hyperentanglement concentration for polarizationspatial- time-bin multi-photon systems with linear optics[J]. Front. Phys. , 2018, 13(5): 130315-.
[15] Zhao Jin, S.-L. Su, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang. Engineering multipartite steady entanglement of distant atoms via dissipation[J]. Front. Phys. , 2018, 13(5): 134209-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed