|
|
|
Inequality relations for the hierarchy of quantum correlations in two-qubit systems |
Xiao-Gang Fan1, Fa Zhao1, Huan Yang2, Fei Ming3, Dong Wang1, Liu Ye1( ) |
1. School of Physics and optoelectronics engineering, Anhui University, Hefei 230601, China 2. Department of Experiment and Practical Training Management, West Anhui University, Lu’an 237012, China 3. Institute of Advanced Manufacturing Engineering, Hefei University, Hefei 230022, China |
|
|
|
|
Abstract Entanglement, quantum steering and Bell nonlocality can be used to describe the distinct quantum correlations of quantum systems. Because of their different characteristics and application fields, how to divide them quantitatively and accurately becomes particularly important. Based on the sufficient and necessary criterion for quantum steering of an arbitrary two-qubit T-state, we derive the inequality relations between quantum steering and entanglement as well as between quantum steering and Bell nonlocality for the T-state. Additionally, we have verified those relations experimentally.
|
| Keywords
entanglement
quantum steering
Bell nonlocality
inequality relation
|
|
Corresponding Author(s):
Liu Ye
|
|
Issue Date: 08 February 2023
|
|
| 1 |
Einstein A., Podolsky B., Rosen N.. Can quantum-mechanical description of physical reality be considered complete. Phys. Rev., 1935, 47(10): 777
https://doi.org/10.1103/PhysRev.47.777
|
| 2 |
Schrödinger E.. Discussion of relations between separated systems. Math. Proc. Camb. Philos. Soc., 1935, 31(4): 555
https://doi.org/10.1017/S0305004100013554
|
| 3 |
Horodecki R., Horodecki P., Horodecki M., Horodecki K.. Quantum entanglement. Rev. Mod. Phys., 2009, 81(2): 865
https://doi.org/10.1103/RevModPhys.81.865
|
| 4 |
K. Wootters W.. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 1998, 80(10): 2245
https://doi.org/10.1103/PhysRevLett.80.2245
|
| 5 |
Piani M.. Relative entropy of entanglement and restricted measurements. Phys. Rev. Lett., 2009, 103(16): 160504
https://doi.org/10.1103/PhysRevLett.103.160504
|
| 6 |
Miranowicz A., Grudka A.. Ordering two-qubit states with concurrence and negativity. Phys. Rev. A, 2004, 70(3): 032326
https://doi.org/10.1103/PhysRevA.70.032326
|
| 7 |
Ekert A., Jozsa R.. Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys., 1996, 68(3): 733
https://doi.org/10.1103/RevModPhys.68.733
|
| 8 |
H. Bennett C., Brassard G., Crépeau C., Jozsa R., Peres A., K. Wootters W.. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 1993, 70(13): 1895
https://doi.org/10.1103/PhysRevLett.70.1895
|
| 9 |
Gisin N., Ribordy G., Tittel W., Zbinden H.. Quantum cryptography. Rev. Mod. Phys., 2002, 74(1): 145
https://doi.org/10.1103/RevModPhys.74.145
|
| 10 |
H. Bennett C., P. DiVincenzo D., Smolin J., K. Wootters W.. Mixed-state entanglement and quantum error correction. Phys. Rev. A, 1996, 54(5): 3824
https://doi.org/10.1103/PhysRevA.54.3824
|
| 11 |
M. Wiseman H., J. Jones S., C. Doherty A.. Steering, entanglement, nonlocality, and the Einstein−Podolsky−Rosen paradox. Phys. Rev. Lett., 2007, 98(14): 140402
https://doi.org/10.1103/PhysRevLett.98.140402
|
| 12 |
Uola R., C. S. Costa A., C. Nguyen H., Gühne O.. Quantum steering. Rev. Mod. Phys., 2020, 92(1): 015001
https://doi.org/10.1103/RevModPhys.92.015001
|
| 13 |
S. Bell J.. On the Einstein−Podolsky−Rosen paradox. Physics, 1964, 1(3): 195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
|
| 14 |
Brunner N., Cavalcanti D., Pironio S., Scarani V., Wehner S.. Bell nonlocality. Rev. Mod. Phys., 2014, 86(2): 419
https://doi.org/10.1103/RevModPhys.86.419
|
| 15 |
X. Zhong W., L. Cheng G., M. Hu X.. One-way Einstein−Podolsky−Rosen steering via atomic coherence. Opt. Express, 2017, 25(10): 11584
https://doi.org/10.1364/OE.25.011584
|
| 16 |
Branciard C., G. Cavalcanti E., P. Walborn S., Scarani V., M. Wiseman H.. One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A, 2012, 85(1): 010301(R)
https://doi.org/10.1103/PhysRevA.85.010301
|
| 17 |
Opanchuk B., Arnaud L., D. Reid M.. Detecting faked continuous-variable entanglement using one-sided device independent entanglement witnesses. Phys. Rev. A, 2014, 89(6): 062101
https://doi.org/10.1103/PhysRevA.89.062101
|
| 18 |
Walk N., Hosseini S., Geng J., Thearle O., Y. Haw J., Armstrong S., M. Assad S., Janousek J., C. Ralph T., Symul T., M. Wiseman H., K. Lam P.. Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica, 2016, 3(6): 634
https://doi.org/10.1364/OPTICA.3.000634
|
| 19 |
M. Zhang C., Li M., W. Li H., Q. Yin Z., Wang D., Z. Huang J., G. Han Y., L. Xu M., Chen W., Wang S., Treeviriyanupab P., C. Guo G., F. Han Z.. Decoy-state measurement-device independent quantum key distribution based on the Clauser−Horne−Shimony−Holt inequality. Phys. Rev. A, 2014, 90(3): 034302
https://doi.org/10.1103/PhysRevA.90.034302
|
| 20 |
Brukner Č., Żukowski M., W. Pan J., Zeilinger A.. Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett., 2004, 92(12): 127901
https://doi.org/10.1103/PhysRevLett.92.127901
|
| 21 |
Pironio S., Acín A., Massar S., B. de la Giroday A., N. Matsukevich D., Maunz P., Olmschenk S., Hayes D., Luo L., A. Manning T., Monroe C.. Random numbers certified by Bell’s theorem. Nature, 2010, 464(7291): 1021
https://doi.org/10.1038/nature09008
|
| 22 |
T. Quintino M., Vertesi T., Cavalcanti D., Augusiak R., Demianowicz M., Acín A., Brunner N.. Inequivalence of entanglement, steering, and Bell nonlocality for general measurements. Phys. Rev. A, 2015, 92(3): 032107
https://doi.org/10.1103/PhysRevA.92.032107
|
| 23 |
G. Fan X., Yang H., Ming F., Wang D., Ye L.. Constraint relation between steerability and concurrence for two-qubit states. Ann. Phys., 2021, 533(8): 2100098
https://doi.org/10.1002/andp.202100098
|
| 24 |
Chen C., L. Ren C., J. Ye X., L. Chen J.. Mapping criteria between nonlocality and steerability in qudit−qubit systems and between steerability and entanglement in qubit-qudit systems. Phys. Rev. A, 2018, 98(5): 052114
https://doi.org/10.1103/PhysRevA.98.052114
|
| 25 |
Das D., Sasmal S., Roy S.. Detecting Einstein−Podolsky−Rosen steering through entanglement detection. Phys. Rev. A, 2019, 99(5): 052109
https://doi.org/10.1103/PhysRevA.99.052109
|
| 26 |
Verstraete F., M. Wolf M.. Entanglement versus bell violations and their behavior under local filtering operations. Phys. Rev. Lett., 2002, 89(17): 170401
https://doi.org/10.1103/PhysRevLett.89.170401
|
| 27 |
Bartkiewicz K., Horst B., Lemr K., Miranowicz A.. Entanglement estimation from Bell inequality violation. Phys. Rev. A, 2013, 88(5): 052105
https://doi.org/10.1103/PhysRevA.88.052105
|
| 28 |
Horst B., Bartkiewicz K., Miranowicz A.. Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality. Phys. Rev. A, 2013, 87(4): 042108
https://doi.org/10.1103/PhysRevA.87.042108
|
| 29 |
Bartkiewicz K., Lemr K., Černoch A., Miranowicz A.. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography. Phys. Rev. A, 2017, 95(3): 030102(R)
https://doi.org/10.1103/PhysRevA.95.030102
|
| 30 |
F. Su Z., S. Tan H., Y. Li X.. Entanglement as upper bound for the nonlocality of a general two-qubit system. Phys. Rev. A, 2020, 101(4): 042112
https://doi.org/10.1103/PhysRevA.101.042112
|
| 31 |
Li M., J. Zhao M., M. Fei S., X. Wang Z.. Experimental detection of quantum entanglement. Front. Phys., 2013, 8(4): 357
https://doi.org/10.1007/s11467-013-0355-3
|
| 32 |
R. Zhong Z., Wang X., Qin W.. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys., 2018, 13(5): 130319
https://doi.org/10.1007/s11467-018-0824-9
|
| 33 |
Dong Q., J. Torres-Arenas A., H. Sun G., C. Qiang W., H. Dong S.. Entanglement measures of a new type pseudo-pure state in accelerated frames. Front. Phys., 2019, 14(2): 21603
https://doi.org/10.1007/s11467-018-0876-x
|
| 34 |
Zhang P.. Quantum entanglement in the Sachdev−Ye−Kitaev model and its generalizations. Front. Phys., 2022, 17(4): 43201
https://doi.org/10.1007/s11467-022-1162-5
|
| 35 |
Y. Yang Y., Y. Sun W., N. Shi W., Ming F., Wang D., Ye L.. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii−Moriya interactions. Front. Phys., 2019, 14(3): 31601
https://doi.org/10.1007/s11467-018-0880-1
|
| 36 |
Y. Cheng L., Ming F., Zhao F., Ye L., Wang D.. The uncertainty and quantum correlation of measurement in double quantum-dot systems. Front. Phys., 2022, 17(6): 61504
https://doi.org/10.1007/s11467-022-1178-x
|
| 37 |
Cao Y., Wang D., G. Fan X., Ming F., Y. Wang Z., Ye L.. Complementary relation between quantum entanglement and entropic uncertainty. Commum. Theor. Phys., 2021, 73(1): 015101
https://doi.org/10.1088/1572-9494/abc46f
|
| 38 |
C. Nguyen H., Vu T.. Necessary and sufficient condition for steerability of two-qubit states by the geometry of steering outcomes. Europhys. Lett., 2016, 115(1): 10003
https://doi.org/10.1209/0295-5075/115/10003
|
| 39 |
C. Nguyen H., V. Nguyen H., Gühne O.. Geometry of Einstein−Podolsky−Rosen correlations. Phys. Rev. Lett., 2019, 122(24): 240401
https://doi.org/10.1103/PhysRevLett.122.240401
|
| 40 |
G. Fan X., Y. Sun W., Y. Ding Z., Yang H., Ming F., Wang D., Ye L.. Universal complementarity between coherence and intrinsic concurrence for two-qubit states. New J. Phys., 2019, 21(9): 093053
https://doi.org/10.1088/1367-2630/ab41b1
|
| 41 |
Jevtic S., J. W. Hall M., R. Anderson M., Zwierz M., M. Wiseman H.. Einstein−Podolsky−Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B, 2015, 32(4): A40
https://doi.org/10.1364/JOSAB.32.000A40
|
| 42 |
G. Fan X.Yang H.Ming F.K. Song X.Wang D. Ye L., Necessary and sufficient criterion of steering for two-qubit T states, arXiv: 2103.04280v1 (2021)
|
| 43 |
Horodecki R., Horodecki P., Horodecki M.. Violating bell inequality by mixed spin-1/2 states: Necessary and sufficient condition. Phys. Lett. A, 1995, 200(5): 340
https://doi.org/10.1016/0375-9601(95)00214-N
|
| 44 |
G. Kwiat P., Waks E., G. White A., Appelbaum I., H. Eberhard P.. Ultrabright source of polarization-entangled photons. Phys. Rev. A, 1999, 60(2): R773
https://doi.org/10.1103/PhysRevA.60.R773
|
| 45 |
Aiello A., Puentes G., Voigt D., P. Woerdman J.. Maximally entangled mixed-state generation via local operations. Phys. Rev. A, 2007, 75(6): 062118
https://doi.org/10.1103/PhysRevA.75.062118
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|