|
|
|
Demonstration and operation of quantum harmonic oscillators in an AlGaAs−GaAs heterostructure |
Guangqiang Mei, Pengfei Suo, Li Mao, Min Feng, Limin Cao( ) |
| School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China |
|
|
|
|
Abstract The quantum harmonic oscillator (QHO), one of the most important and ubiquitous model systems in quantum mechanics, features equally spaced energy levels or eigenstates. Here we present a new class of nearly ideal QHOs formed by hydrogenic substitutional dopants in an AlGaAs/GaAs heterostructure. On the basis of model calculations, we demonstrate that, when a δ-doping Si donor substitutes the Ga/Al lattice site close to AlGaAs/GaAs heterointerface, a hydrogenic Si QHO, characterized by a restoring Coulomb force producing square law harmonic potential, is formed. This gives rise to QHO states with energy spacing of ~8−9 meV. We experimentally confirm this proposal by utilizing gate tuning and measuring QHO states using an aluminum single-electron transistor (SET). A sharp and fast oscillation with period of ~7−8 mV appears in addition to the regular Coulomb blockade (CB) oscillation with much larger period, for positive gate biases above 0.5 V. The observation of fast oscillation and its behavior is quantitatively consistent with our theoretical result, manifesting the harmonic motion of electrons from the QHO. Our results might establish a general principle to design, construct and manipulate QHOs in semiconductor heterostructures, opening future possibilities for their quantum applications.
|
| Keywords
quantum harmonic oscillator
AlGaAs/GaAs semiconductor heterostructure
single-electron transistor
gate tuning
|
|
Corresponding Author(s):
Limin Cao
|
|
Issue Date: 23 November 2022
|
|
| 1 |
A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge University Press, New York, USA, 2000
|
| 2 |
J. Wineland D.. Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys., 2013, 85(3): 1103
https://doi.org/10.1103/RevModPhys.85.1103
|
| 3 |
J. Wineland D., Monroe C., M. Itano W., Leibfried D., E. King B., M. Meekhof D.. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol., 1998, 103(3): 259
https://doi.org/10.6028/jres.103.019
|
| 4 |
Leibfried D., Blatt R., Monroe C., J. Wineland D.. Quantum dynamics of single trapped ions. Rev. Mod. Phys., 2003, 75(1): 281
https://doi.org/10.1103/RevModPhys.75.281
|
| 5 |
Kielpinski D., Monroe C., J. Wineland D.. Architecture for a large-scale ion-trap quantum computer. Nature, 2002, 417(6890): 709
https://doi.org/10.1038/nature00784
|
| 6 |
D. Bruzewicz C., Chiaverini J., McConnell R., M. Sage J.. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev., 2019, 6(2): 021314
https://doi.org/10.1063/1.5088164
|
| 7 |
J. Ballance C., P. Harty T., M. Linke N., A. Sepiol M., M. Lucas D.. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett., 2016, 117(6): 060504
https://doi.org/10.1103/PhysRevLett.117.060504
|
| 8 |
P. Gaebler J., R. Tan T., Lin Y., Wan Y., Bowler R., C. Keith A., Glancy S., Coakley K., Knill E., Leibfried D., J. Wineland D.. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett., 2016, 117(6): 060505
https://doi.org/10.1103/PhysRevLett.117.060505
|
| 9 |
Srinivas R., C. Burd S., T. Sutherland R., C. Wilson A., J. Wineland D., Leibfried D., Allcock C., H. Slichter D.. Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient. Phys. Rev. Lett., 2019, 122(16): 163201
https://doi.org/10.1103/PhysRevLett.122.163201
|
| 10 |
R. Brown K., Ospelkaus C., Colombe Y., C. Wilson A., Leibfried D., J. Wineland D.. Coupled quantized mechanical oscillators. Nature, 2011, 471(7337): 196
https://doi.org/10.1038/nature09721
|
| 11 |
C. McCormick K., Keller J., C. Burd S., J. Wineland D., C. Wilson A., Leibfried D.. Quantum-enhanced sensing of a single-ion mechanical oscillator. Nature, 2019, 572(7767): 86
https://doi.org/10.1038/s41586-019-1421-y
|
| 12 |
Kienzler D., Y. Lo H., Keitch B., de Clercq L., Leupold F., Lindenfelser F., Marinelli M., Negnevitsky V., P. Home J.. Quantum harmonic oscillator state synthesis by reservoir engineering. Science, 2015, 347(6217): 53
https://doi.org/10.1126/science.1261033
|
| 13 |
Flühmann C., L. Nguyen T., Marinelli M., Negnevitsky V., Mehta K., P. Home J.. Encoding a qubit in a trapped-ion mechanical oscillator. Nature, 2019, 566(7745): 513
https://doi.org/10.1038/s41586-019-0960-6
|
| 14 |
D. O’Connell A., Hofheinz M., Ansmann M., C. Bialczak R., Lenander M., Lucero E., Neeley M., Sank D., Wang H., Weides M., Wenner J., M. Martinis J., N. Cleland A.. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 2010, 464(7289): 697
https://doi.org/10.1038/nature08967
|
| 15 |
Chan J., P. M. Alegre T., H. Safavi-Naeini A., T. Hill J., Krause A., Groblacher S., Aspelmeyer M., Painter O.. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478(7367): 89
https://doi.org/10.1038/nature10461
|
| 16 |
Arrangoiz-Arriola P., A. Wollack E., Y. Wang Z., Pechal M., T. Jiang W., P. McKenna T., D. Witmer J., Van Laer R., H. Safavi-Naeini A.. Resolving the energy levels of a nanomechanical oscillator. Nature, 2019, 571(7766): 537
https://doi.org/10.1038/s41586-019-1386-x
|
| 17 |
W. Chu Y., Kharel P., Yoon T., Frunzio L., T. Rakich P., J. Schoelkopf R.. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature, 2018, 563(7733): 666
https://doi.org/10.1038/s41586-018-0717-7
|
| 18 |
Porrati M., Putterman S.. Prediction of short time qubit readout via measurement of the next quantum jump of a coupled damped driven harmonic oscillator. Phys. Rev. Lett., 2020, 125(26): 260403
https://doi.org/10.1103/PhysRevLett.125.260403
|
| 19 |
Mirrahimi M., Leghtas Z., Albert V., Touzard S., J. Schoelkopf R., Jiang L., H. Devoret M.. Dynamically protected cat-qubits: A new paradigm for universal quantum computation. New J. Phys., 2014, 16(4): 045014
https://doi.org/10.1088/1367-2630/16/4/045014
|
| 20 |
W. Gurney R., F. Mott N.. Conduction in polar crystals (III): On the colour centres in alkali-halide crystals. Trans. Faraday Soc., 1938, 34: 506
https://doi.org/10.1039/tf9383400506
|
| 21 |
R. Tibbs S.. Electron energy levels in NaCl. Trans. Faraday Soc., 1939, 35: 1471
https://doi.org/10.1039/tf9393501471
|
| 22 |
Y. Yu P.Cardona M., Fundamentals of Semiconductors: Physics and Material Properties, Springer-Verlag, Berlin, Germany, 2001
|
| 23 |
Zhang Y.. Electronic structures of impurities and point defects in semiconductors. Chin. Phys. B, 2018, 27(11): 117103
https://doi.org/10.1088/1674-1056/27/11/117103
|
| 24 |
Zhang Y., W. Wang J.. Bound exciton model for an acceptor in a semiconductor. Phys. Rev. B, 2014, 90(15): 155201
https://doi.org/10.1103/PhysRevB.90.155201
|
| 25 |
M. Cao L., Altomare F., L. Guo H., Feng M., M. Chang A.. Coulomb blockade correlations in a coupled single-electron device system. Solid State Commun., 2019, 296: 12
https://doi.org/10.1016/j.ssc.2019.04.004
|
| 26 |
J. Schoelkopf R., Wahlgren P., A. Kozhevnikov A., Delsing P., E. Prober D.. The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer. Science, 1998, 280(5367): 1238
https://doi.org/10.1126/science.280.5367.1238
|
| 27 |
H. Devoret M., J. Schoelkopf R.. Amplifying quantum signals with the single-electron transistor. Nature, 2000, 406(6799): 1039
https://doi.org/10.1038/35023253
|
| 28 |
Lu W., Q. Ji Z., Pfeiffer L., W. West K., J. Rimberg A.. Real-time detection of electron tunnelling in a quantum dot. Nature, 2003, 423(6938): 422
https://doi.org/10.1038/nature01642
|
| 29 |
Bylander J., Duty T., Delsing P.. Current measurement by real-time counting of single electrons. Nature, 2005, 434(7031): 361
https://doi.org/10.1038/nature03375
|
| 30 |
Lu W., J. Rimberg A., D. Maranowski K., C. Gossard A.. Single-electron transistor strongly coupled to an electrostatically defined quantum dot. Appl. Phys. Lett., 2000, 77(17): 2746
https://doi.org/10.1063/1.1320455
|
| 31 |
Berman D., B. Zhitenev N., C. Ashoori R., Shayegan M.. Observation of quantum fluctuations of charge on a quantum dot. Phys. Rev. Lett., 1999, 82(1): 161
https://doi.org/10.1103/PhysRevLett.82.161
|
| 32 |
C. Chen J., H. An Z., Ueda T., Komiyama S., Hirakawa K., Antonov V.. Metastable excited states of a closed quantum dot probed by an aluminum single-electron transistor. Phys. Rev. B, 2006, 74(4): 045321
https://doi.org/10.1103/PhysRevB.74.045321
|
| 33 |
Sun L., R. Brown K., E. Kane B.. Coulomb blockade in a Si channel gated by an Al single-electron transistor. Appl. Phys. Lett., 2007, 91(14): 142117
https://doi.org/10.1063/1.2793712
|
| 34 |
W. Dellow M., H. Beton P., J. G. M. Langerak C., J. Foster T., C. Main P., Eaves L., Henini M., P. Beaumont S., D. W. Wilkinson C.. Resonant tunneling through the bound states of a single donor atom in a quantum well. Phys. Rev. Lett., 1992, 68(11): 1754
https://doi.org/10.1103/PhysRevLett.68.1754
|
| 35 |
Tsu R., L. Li X., H. Nicollian E.. Slow conductance oscillations in nanoscale silicon clusters of quantum dots. Appl. Phys. Lett., 1994, 65(7): 842
https://doi.org/10.1063/1.112178
|
| 36 |
D. McCluskey M., Janotti A.. Defects in semiconductors. J. Appl. Phys., 2020, 127(19): 190401
https://doi.org/10.1063/5.0012677
|
| [1] |
fop-21225-OF-fengmin_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|