|
|
|
Correlation-driven threefold topological phase transition in monolayer OsBr2 |
San-Dong Guo1( ), Yu-Ling Tao1, Wen-Qi Mu1, Bang-Gui Liu2,3 |
1. School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China 2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Spin−orbit coupling (SOC) combined with electronic correlation can induce topological phase transition, producing novel electronic states. Here, we investigate the impact of SOC combined with correlation effects on physical properties of monolayer OsBr2, based on first-principles calculations with generalized gradient approximation plus U (GGA+U) approach. With intrinsic out-of-plane magnetic anisotropy, OsBr2 undergoes threefold topological phase transition with increasing U, and valley-polarized quantum anomalous Hall insulator (VQAHI) to half-valley-metal (HVM) to ferrovalley insulator (FVI) to HVM to VQAHI to HVM to FVI transitions can be induced. These topological phase transitions are connected with sign-reversible Berry curvature and band inversion between / and orbitals. Due to symmetry, piezoelectric polarization of OsBr2 is confined along the in-plane armchair direction, and only one d11 is independent. For a given material, the correlation strength should be fixed, and OsBr2 may be a piezoelectric VQAHI (PVQAHI), piezoelectric HVM (PHVM) or piezoelectric FVI (PFVI). The valley polarization can be flipped by reversing the magnetization of Os atoms, and the ferrovalley (FV) and nontrivial topological properties will be suppressed by manipulating out-of-plane magnetization to in-plane one. In considered reasonable U range, the estimated Curie temperatures all are higher than room temperature. Our findings provide a comprehensive understanding on possible electronic states of OsBr2, and confirm that strong SOC combined with electronic correlation can induce multiple quantum phase transition.
|
| Keywords
correlation
SOC
phase transition
piezoelectricity
|
|
Corresponding Author(s):
San-Dong Guo
|
|
Issue Date: 11 January 2023
|
|
| 1 |
Huang B. , Clark G. , Navarro-Moratalla E. , R. Klein D. , Cheng R. , L. Seyler K. , Zhong D. , Schmidgall E. , A. McGuire M. , H. Cobden D. , Yao W. , Xiao D. , Jarillo-Herrero P. , Xu X. . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
|
| 2 |
Z. Hasan M. , L. Kane C. . Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
|
| 3 |
L. Qi X. , C. Zhang S. . Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
|
| 4 |
Yu R. , Zhang W. , J. Zhang H. , C. Zhang S. , Dai X. , Fang Z. . Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
|
| 5 |
Wan X. , M. Turner A. , Vishwanath A. , Y. Savrasov S. . Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
https://doi.org/10.1103/PhysRevB.83.205101
|
| 6 |
Y. Tong W. , J. Gong S. , Wan X. , G. Duan C. . Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 2016, 7(1): 13612
https://doi.org/10.1038/ncomms13612
|
| 7 |
Choi Y. , Kim H. , Peng Y. , Thomson A. , Lewandowski C. , Polski R. , Zhang Y. , S. Arora H. , Watanabe K. , Taniguchi T. , Alicea J. , Nadj-Perge S. . Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature, 2021, 589(7843): 536
https://doi.org/10.1038/s41586-020-03159-7
|
| 8 |
Cui Z. , J. Grutter A. , Zhou H. , Cao H. , Dong Y. , A. Gilbert D. , Wang J. , S. Liu Y. , Ma J. , Hu Z. , Guo J. , Xia J. , J. Kirby B. , Shafer P. , Arenholz E. , Chen H. , Zhai X. , Lu Y. . Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Sci. Adv., 2020, 6(15): eaay0114
https://doi.org/10.1126/sciadv.aay0114
|
| 9 |
Leonov I. , L. Skornyakov S. , I. Anisimov V. , Vollhardt D. . Correlation-driven topological Fermi surface transition in FeSe. Phys. Rev. Lett., 2015, 115(10): 106402
https://doi.org/10.1103/PhysRevLett.115.106402
|
| 10 |
Wang Y. , Wang Z. , Fang Z. , Dai X. . Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3. Phys. Rev. B Condens. Matter Mater. Phys., 2015, 91(12): 125139
https://doi.org/10.1103/PhysRevB.91.125139
|
| 11 |
Y. Li J. , S. Yao Q. , Wu L. , X. Hu Z. , Y. Gao B. , G. Wan X. , H. Liu Q. . Designing light-element materials with large effective spin−orbit coupling. Nat. Commun., 2022, 13(1): 919
https://doi.org/10.1038/s41467-022-28534-y
|
| 12 |
Hu H. , Y. Tong W. , H. Shen Y. , Wan X. , G. Duan C. . Concepts of the half-valley-metal and quantum anomalous valley Hall effect. npj Comput. Mater., 2020, 6: 129
https://doi.org/10.1038/s41524-020-00397-1
|
| 13 |
Li S. , Q. Wang Q. , M. Zhang C. , Guo P. , A. Yang S. . Correlation-driven topological and valley states in monolayer VSi2P4. Phys. Rev. B, 2021, 104(8): 085149
https://doi.org/10.1103/PhysRevB.104.085149
|
| 14 |
D. Guo S. , X. Zhu J. , Y. Yin M. , G. Liu B. . Substantial electronic correlation effects on the electronic properties in a Janus FeClF monolayer. Phys. Rev. B, 2022, 105(10): 104416
https://doi.org/10.1103/PhysRevB.105.104416
|
| 15 |
D. Guo S. , Q. Mu W. , G. Liu B. . Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2. 2D Mater., 2022, 9: 035011
https://doi.org/10.1088/2053-1583/ac687f
|
| 16 |
Zhou J. , Sun Q. , Jena P. . Valley-polarized quantum anomalous Hall effect in ferrimagnetic honeycomb lattices. Phys. Rev. Lett., 2017, 119(4): 046403
https://doi.org/10.1103/PhysRevLett.119.046403
|
| 17 |
Zhou T. , Y. Zhang J. , Xue Y. , Zhao B. , S. Zhang H. , Jiang H. , Q. Yang Z. . Quantum spin–quantum anomalous Hall effect with tunable edge states in Sb monolayer-based heterostructures. Phys. Rev. B, 2016, 94(23): 235449
https://doi.org/10.1103/PhysRevB.94.235449
|
| 18 |
Zhou T. , Cheng S. , Schleenvoigt M. , Schüffelgen P. , Jiang H. , Yang Z. , Žutić I. . Quantum spin-valley Hall kink states: From concept to materials design. Phys. Rev. Lett., 2021, 127(11): 116402
https://doi.org/10.1103/PhysRevLett.127.116402
|
| 19 |
D. Guo S. , Q. Mu W. , H. Wang J. , X. Yang Y. , Wang B. , S. Ang Y. . Strain effects on the topological and valley properties of the Janus monolayer VSiGeN4. Phys. Rev. B, 2022, 106(6): 064416
https://doi.org/10.1103/PhysRevB.106.064416
|
| 20 |
Huan H. , Xue Y. , Zhao B. , Y. Gao G. , R. Bao H. , Q. Yang Z. . Strain-induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os). Phys. Rev. B, 2021, 104(16): 165427
https://doi.org/10.1103/PhysRevB.104.165427
|
| 21 |
J. Wang Y. , F. Li F. , L. Zheng H. , F. Han X. , Yan Y. . Large magnetic anisotropy and its strain modulation in two-dimensional intrinsic ferromagnetic monolayer RuO2 and OsO2. Phys. Chem. Chem. Phys., 2018, 20(44): 28162
https://doi.org/10.1039/C8CP05467C
|
| 22 |
Zhang M. , M. Guo H. , Lv J. , S. Wu H. . Electronic and magnetic properties of 5d transition metal substitution doping monolayer antimonene: Within GGA and GGA + U framework. Appl. Surf. Sci., 2020, 508: 145197
https://doi.org/10.1016/j.apsusc.2019.145197
|
| 23 |
Hohenberg P. , Kohn W. . Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): B864
https://doi.org/10.1103/PhysRev.136.B864
|
| 24 |
Kohn W. , J. Sham L. . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
https://doi.org/10.1103/PhysRev.140.A1133
|
| 25 |
Kresse G. . Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids, 1995, 192−193: 222
https://doi.org/10.1016/0022-3093(95)00355-X
|
| 26 |
Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
|
| 27 |
Kresse G. , Joubert D. . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
|
| 28 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
| 29 |
Wu X. , Vanderbilt D. , R. Hamann D. . Systematic treatment of displacements. strains .and electric fields in density-functional perturbation theory. Phys. Rev. B, 2005, 72(3): 035105
https://doi.org/10.1103/PhysRevB.72.035105
|
| 30 |
A. Mostofi A. , R. Yates J. , Pizzi G. , S. Lee Y. , Souza I. , Vanderbilt D. , Marzari N. . An updated version of Wannier90: A tool for obtaining maximally-localized Wannier functions. Comput. Phys. Commun., 2014, 185(8): 2309
https://doi.org/10.1016/j.cpc.2014.05.003
|
| 31 |
Wu Q. , Zhang S. , F. Song H. , Troyer M. , A. Soluyanov A. . WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun., 2018, 224: 405
https://doi.org/10.1016/j.cpc.2017.09.033
|
| 32 |
Fukui T. , Hatsugai Y. , Suzuki H. . Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn., 2005, 74(6): 1674
https://doi.org/10.1143/JPSJ.74.1674
|
| 33 |
J. Kim H., Webpage: github.com/Infant83/VASPBERRY, 2018
|
| 34 |
J. Kim H. , Li C. , Feng J. , Cho J.-H. , Zhang Z. . Competing magnetic orderings and tunable topological states in two-dimensional hexagonal organometallic lattices. Phys. Rev. B, 2016, 93: 041404(R)
https://doi.org/10.1103/PhysRevB.93.041404
|
| 35 |
Liu L. , Ren X. , H. Xie J. , Cheng B. , K. Liu W. , Y. An T. , W. Qin H. , F. Hu J. . Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci., 2019, 480: 300
https://doi.org/10.1016/j.apsusc.2019.02.203
|
| 36 |
N. Duerloo K. , T. Ong M. , J. Reed E. . Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett., 2012, 3(19): 2871
https://doi.org/10.1021/jz3012436
|
| 37 |
D. Guo S. , X. Zhu J. , Q. Mu W. , G. Liu B. . Possible way to achieve anomalous valley Hall effect by piezoelectric effect in a GdCl2 monolayer. Phys. Rev. B, 2021, 104(22): 224428
https://doi.org/10.1103/PhysRevB.104.224428
|
| 38 |
Cadelano E. , Colombo L. . Effect of hydrogen coverage on the Young’s modulus of graphene. Phys. Rev. B, 2012, 85(24): 245434
https://doi.org/10.1103/PhysRevB.85.245434
|
| 39 |
Zhao P. , Dai Y. , Wang H. , B. Huang B. , D. Ma Y. . Intrinsic valley polarization and anomalous valley Hall effect in single-layer 2H-FeCl2. ChemPhysMater, 2022, 1(1): 56
https://doi.org/10.1016/j.chphma.2021.09.006
|
| 40 |
Li R. , W. Jiang J. , B. Mi W. , L. Bai H. . Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale, 2021, 13(35): 14807
https://doi.org/10.1039/D1NR04063D
|
| 41 |
Zhou X. , Zhang R. , Zhang Z. , Feng W. , Mokrousov Y. , Yao Y. . Sign-reversible valley-dependent Berry phase effects in 2D valley-half-semiconductors. npj Comput. Mater., 2021, 7: 160
https://doi.org/10.1038/s41524-021-00632-3
|
| [1] |
fop-21243-OF-guosandong_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|