Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 33304    https://doi.org/10.1007/s11467-022-1243-5
RESEARCH ARTICLE
Correlation-driven threefold topological phase transition in monolayer OsBr2
San-Dong Guo1(), Yu-Ling Tao1, Wen-Qi Mu1, Bang-Gui Liu2,3
1. School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(5506 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Spin−orbit coupling (SOC) combined with electronic correlation can induce topological phase transition, producing novel electronic states. Here, we investigate the impact of SOC combined with correlation effects on physical properties of monolayer OsBr2, based on first-principles calculations with generalized gradient approximation plus U (GGA+U) approach. With intrinsic out-of-plane magnetic anisotropy, OsBr2 undergoes threefold topological phase transition with increasing U, and valley-polarized quantum anomalous Hall insulator (VQAHI) to half-valley-metal (HVM) to ferrovalley insulator (FVI) to HVM to VQAHI to HVM to FVI transitions can be induced. These topological phase transitions are connected with sign-reversible Berry curvature and band inversion between \textcolor[RGB]12,108,100dxy/\textcolor[RGB]12,108,100dx2y2 and \textcolor[RGB]12,108,100dz2 orbitals. Due to \textcolor[RGB]12,108,1006¯m2 symmetry, piezoelectric polarization of OsBr2 is confined along the in-plane armchair direction, and only one d11 is independent. For a given material, the correlation strength should be fixed, and OsBr2 may be a piezoelectric VQAHI (PVQAHI), piezoelectric HVM (PHVM) or piezoelectric FVI (PFVI). The valley polarization can be flipped by reversing the magnetization of Os atoms, and the ferrovalley (FV) and nontrivial topological properties will be suppressed by manipulating out-of-plane magnetization to in-plane one. In considered reasonable U range, the estimated Curie temperatures all are higher than room temperature. Our findings provide a comprehensive understanding on possible electronic states of OsBr2, and confirm that strong SOC combined with electronic correlation can induce multiple quantum phase transition.

Keywords correlation      SOC      phase transition      piezoelectricity     
Corresponding Author(s): San-Dong Guo   
Issue Date: 11 January 2023
 Cite this article:   
San-Dong Guo,Yu-Ling Tao,Wen-Qi Mu, et al. Correlation-driven threefold topological phase transition in monolayer OsBr2[J]. Front. Phys. , 2023, 18(3): 33304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1243-5
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/33304
Fig.1  The top view (a) and side view (b) of crystal structure of OsBr2 monolayer, and the rhombus primitive cell (rectangle supercell) is marked by the red (black) frame.
Fig.2  The energy differences ΔE between AFM1/AFM2 and FM ordering with rectangle supercell (see Fig. S1 of the SI) and MAE of OsBr2 monolayer as a function of U.
Fig.3  The energy band structures of OsBr2 monolayer with out-of-plane magnetic anisotropy by using GGA+SOC at representative U values.
Fig.4  For OsBr2 monolayer with out-of-plane magnetic anisotropy, the global energy band gap and energy band gaps for ?K and K valleys as a function of U. A and E regions mean PVQAHI, and C and G regions mean PFVI, and B, D and F points mean PHVM.
Fig.5  For OsBr2 monolayer with out-of-plane magnetic anisotropy, the Os-dx2?y2/dxy and dz2-orbital characters energy band structures at representative U = 0.25 eV, 1.25 eV, 1.85 eV and 2.15 eV.
Fig.6  For OsBr2 monolayer with out-of-plane magnetic anisotropy, the topological edge states (top) and Berry curvature distribution in 2D BZ (bottom) at representative U = 0.25 eV, 1.25 eV, 1.85 eV and 2.15 eV.
Fig.7  For RuBr2 monolayer, the elastic constants Cij, piezoelectric stress coefficient e11 along with ionic and electronic parts, and piezoelectric strain coefficient d11 as a function of U.
Fig.8  For out-of-plane magnetic anisotropy, the absolute value of valley splitting of monolayer OsBr2 in both conduction (C) and valence (V) bands as a function of U.
Fig.9  For out-of-plane magnetic anisotropy, the band structure of monolayer OsBr2 (a) without SOC; (b) and (c) with SOC for magnetic moment of Os along the positive and negative z direction, respectively. In (a), the blue (red) lines represent the band structure in the spin-up (spin-down) direction.
Fig.10  For OsBr2 monolayer with in-plane magnetic anisotropy, the energy band structures (a) and topological edge states (b) at representative U = 1.85 eV.
Fig.11  For monolayer OsBr2, the normalized magnetic moment (S) and auto-correlation as a function of temperature with U = 2.5 eV.
Fig.12  The intrinsic phase diagrams for monolayer FeClF (a), RuBr2 (b) and OsBr2 (c) with different U values including QAHI, HVM, FVI, FM semiconductor (FMS) and FM semimetal (FMSS).
1 Huang B. , Clark G. , Navarro-Moratalla E. , R. Klein D. , Cheng R. , L. Seyler K. , Zhong D. , Schmidgall E. , A. McGuire M. , H. Cobden D. , Yao W. , Xiao D. , Jarillo-Herrero P. , Xu X. . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
2 Z. Hasan M. , L. Kane C. . Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
3 L. Qi X. , C. Zhang S. . Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
4 Yu R. , Zhang W. , J. Zhang H. , C. Zhang S. , Dai X. , Fang Z. . Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
5 Wan X. , M. Turner A. , Vishwanath A. , Y. Savrasov S. . Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 2011, 83(20): 205101
https://doi.org/10.1103/PhysRevB.83.205101
6 Y. Tong W. , J. Gong S. , Wan X. , G. Duan C. . Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 2016, 7(1): 13612
https://doi.org/10.1038/ncomms13612
7 Choi Y. , Kim H. , Peng Y. , Thomson A. , Lewandowski C. , Polski R. , Zhang Y. , S. Arora H. , Watanabe K. , Taniguchi T. , Alicea J. , Nadj-Perge S. . Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature, 2021, 589(7843): 536
https://doi.org/10.1038/s41586-020-03159-7
8 Cui Z. , J. Grutter A. , Zhou H. , Cao H. , Dong Y. , A. Gilbert D. , Wang J. , S. Liu Y. , Ma J. , Hu Z. , Guo J. , Xia J. , J. Kirby B. , Shafer P. , Arenholz E. , Chen H. , Zhai X. , Lu Y. . Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Sci. Adv., 2020, 6(15): eaay0114
https://doi.org/10.1126/sciadv.aay0114
9 Leonov I. , L. Skornyakov S. , I. Anisimov V. , Vollhardt D. . Correlation-driven topological Fermi surface transition in FeSe. Phys. Rev. Lett., 2015, 115(10): 106402
https://doi.org/10.1103/PhysRevLett.115.106402
10 Wang Y. , Wang Z. , Fang Z. , Dai X. . Interaction-induced quantum anomalous Hall phase in (111) bilayer of LaCoO3. Phys. Rev. B Condens. Matter Mater. Phys., 2015, 91(12): 125139
https://doi.org/10.1103/PhysRevB.91.125139
11 Y. Li J. , S. Yao Q. , Wu L. , X. Hu Z. , Y. Gao B. , G. Wan X. , H. Liu Q. . Designing light-element materials with large effective spin−orbit coupling. Nat. Commun., 2022, 13(1): 919
https://doi.org/10.1038/s41467-022-28534-y
12 Hu H. , Y. Tong W. , H. Shen Y. , Wan X. , G. Duan C. . Concepts of the half-valley-metal and quantum anomalous valley Hall effect. npj Comput. Mater., 2020, 6: 129
https://doi.org/10.1038/s41524-020-00397-1
13 Li S. , Q. Wang Q. , M. Zhang C. , Guo P. , A. Yang S. . Correlation-driven topological and valley states in monolayer VSi2P4. Phys. Rev. B, 2021, 104(8): 085149
https://doi.org/10.1103/PhysRevB.104.085149
14 D. Guo S. , X. Zhu J. , Y. Yin M. , G. Liu B. . Substantial electronic correlation effects on the electronic properties in a Janus FeClF monolayer. Phys. Rev. B, 2022, 105(10): 104416
https://doi.org/10.1103/PhysRevB.105.104416
15 D. Guo S. , Q. Mu W. , G. Liu B. . Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2. 2D Mater., 2022, 9: 035011
https://doi.org/10.1088/2053-1583/ac687f
16 Zhou J. , Sun Q. , Jena P. . Valley-polarized quantum anomalous Hall effect in ferrimagnetic honeycomb lattices. Phys. Rev. Lett., 2017, 119(4): 046403
https://doi.org/10.1103/PhysRevLett.119.046403
17 Zhou T. , Y. Zhang J. , Xue Y. , Zhao B. , S. Zhang H. , Jiang H. , Q. Yang Z. . Quantum spin–quantum anomalous Hall effect with tunable edge states in Sb monolayer-based heterostructures. Phys. Rev. B, 2016, 94(23): 235449
https://doi.org/10.1103/PhysRevB.94.235449
18 Zhou T. , Cheng S. , Schleenvoigt M. , Schüffelgen P. , Jiang H. , Yang Z. , Žutić I. . Quantum spin-valley Hall kink states: From concept to materials design. Phys. Rev. Lett., 2021, 127(11): 116402
https://doi.org/10.1103/PhysRevLett.127.116402
19 D. Guo S. , Q. Mu W. , H. Wang J. , X. Yang Y. , Wang B. , S. Ang Y. . Strain effects on the topological and valley properties of the Janus monolayer VSiGeN4. Phys. Rev. B, 2022, 106(6): 064416
https://doi.org/10.1103/PhysRevB.106.064416
20 Huan H. , Xue Y. , Zhao B. , Y. Gao G. , R. Bao H. , Q. Yang Z. . Strain-induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os). Phys. Rev. B, 2021, 104(16): 165427
https://doi.org/10.1103/PhysRevB.104.165427
21 J. Wang Y. , F. Li F. , L. Zheng H. , F. Han X. , Yan Y. . Large magnetic anisotropy and its strain modulation in two-dimensional intrinsic ferromagnetic monolayer RuO2 and OsO2. Phys. Chem. Chem. Phys., 2018, 20(44): 28162
https://doi.org/10.1039/C8CP05467C
22 Zhang M. , M. Guo H. , Lv J. , S. Wu H. . Electronic and magnetic properties of 5d transition metal substitution doping monolayer antimonene: Within GGA and GGA + U framework. Appl. Surf. Sci., 2020, 508: 145197
https://doi.org/10.1016/j.apsusc.2019.145197
23 Hohenberg P. , Kohn W. . Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): B864
https://doi.org/10.1103/PhysRev.136.B864
24 Kohn W. , J. Sham L. . Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
https://doi.org/10.1103/PhysRev.140.A1133
25 Kresse G. . Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids, 1995, 192−193: 222
https://doi.org/10.1016/0022-3093(95)00355-X
26 Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
27 Kresse G. , Joubert D. . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
28 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
29 Wu X. , Vanderbilt D. , R. Hamann D. . Systematic treatment of displacements. strains .and electric fields in density-functional perturbation theory. Phys. Rev. B, 2005, 72(3): 035105
https://doi.org/10.1103/PhysRevB.72.035105
30 A. Mostofi A. , R. Yates J. , Pizzi G. , S. Lee Y. , Souza I. , Vanderbilt D. , Marzari N. . An updated version of Wannier90: A tool for obtaining maximally-localized Wannier functions. Comput. Phys. Commun., 2014, 185(8): 2309
https://doi.org/10.1016/j.cpc.2014.05.003
31 Wu Q. , Zhang S. , F. Song H. , Troyer M. , A. Soluyanov A. . WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun., 2018, 224: 405
https://doi.org/10.1016/j.cpc.2017.09.033
32 Fukui T. , Hatsugai Y. , Suzuki H. . Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn., 2005, 74(6): 1674
https://doi.org/10.1143/JPSJ.74.1674
33 J. Kim H., Webpage: github.com/Infant83/VASPBERRY, 2018
34 J. Kim H. , Li C. , Feng J. , Cho J.-H. , Zhang Z. . Competing magnetic orderings and tunable topological states in two-dimensional hexagonal organometallic lattices. Phys. Rev. B, 2016, 93: 041404(R)
https://doi.org/10.1103/PhysRevB.93.041404
35 Liu L. , Ren X. , H. Xie J. , Cheng B. , K. Liu W. , Y. An T. , W. Qin H. , F. Hu J. . Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci., 2019, 480: 300
https://doi.org/10.1016/j.apsusc.2019.02.203
36 N. Duerloo K. , T. Ong M. , J. Reed E. . Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett., 2012, 3(19): 2871
https://doi.org/10.1021/jz3012436
37 D. Guo S. , X. Zhu J. , Q. Mu W. , G. Liu B. . Possible way to achieve anomalous valley Hall effect by piezoelectric effect in a GdCl2 monolayer. Phys. Rev. B, 2021, 104(22): 224428
https://doi.org/10.1103/PhysRevB.104.224428
38 Cadelano E. , Colombo L. . Effect of hydrogen coverage on the Young’s modulus of graphene. Phys. Rev. B, 2012, 85(24): 245434
https://doi.org/10.1103/PhysRevB.85.245434
39 Zhao P. , Dai Y. , Wang H. , B. Huang B. , D. Ma Y. . Intrinsic valley polarization and anomalous valley Hall effect in single-layer 2H-FeCl2. ChemPhysMater, 2022, 1(1): 56
https://doi.org/10.1016/j.chphma.2021.09.006
40 Li R. , W. Jiang J. , B. Mi W. , L. Bai H. . Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale, 2021, 13(35): 14807
https://doi.org/10.1039/D1NR04063D
41 Zhou X. , Zhang R. , Zhang Z. , Feng W. , Mokrousov Y. , Yao Y. . Sign-reversible valley-dependent Berry phase effects in 2D valley-half-semiconductors. npj Comput. Mater., 2021, 7: 160
https://doi.org/10.1038/s41524-021-00632-3
[1] fop-21243-OF-guosandong_suppl_1 Download
[1] Yuping Li, Mengwei Dong, Xuejie Zou, Jinhao Zhang, Jian Zhang, Xiao Huang. Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing[J]. Front. Phys. , 2023, 18(6): 63303-.
[2] Ling-Yu Yao, Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang. Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations[J]. Front. Phys. , 2023, 18(5): 51302-.
[3] Lingxiao Li, Min Wu, Xiaobo Lu. Correlation, superconductivity and topology in graphene moiré superlattice[J]. Front. Phys. , 2023, 18(4): 43401-.
[4] Yuting Tan, Dao-Xin Yao. Spin waves and phase transition on a magnetically frustrated square lattice with long-range interactions[J]. Front. Phys. , 2023, 18(3): 33309-.
[5] Long-Yu Cheng, Fei Ming, Fa Zhao, Liu Ye, Dong Wang. The uncertainty and quantum correlation of measurement in double quantum-dot systems[J]. Front. Phys. , 2022, 17(6): 61504-.
[6] Jing-Kai Fang, Jun-Han Huang, Han-Qing Wu, Dao-Xin Yao. Dynamical properties of the Haldane chain with bond disorder[J]. Front. Phys. , 2022, 17(3): 33503-.
[7] Lei Qiao, Ning-hua Wu, Tianhao Li, Siqi Wu, Zhuyi Zhang, Miaocong Li, Jiang Ma, Baijiang Lv, Yupeng Li, Chenchao Xu, Qian Tao, Chao Cao, Guang-Han Cao, Zhu-An Xu. Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure[J]. Front. Phys. , 2021, 16(6): 63501-.
[8] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[9] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[10] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[11] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[12] Ji-Zhou Wu, Yu-Qing Li, Wen-Liang Liu, Jie Ma, Lian-Tuan Xiao, Suo-Tang Jia. Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range 0g state[J]. Front. Phys. , 2020, 15(2): 22602-.
[13] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[14] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[15] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed