Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 33602    https://doi.org/10.1007/s11467-023-1256-8
TOPICAL REVIEW
Optical properties of two-dimensional perovskites
Junchao Hu1, Xinglin Wen1,2(), Dehui Li1,2()
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(16390 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The optical properties of two-dimensional (2D) perovskites recently receive numerous research focus thanks to the strong quantum and dielectric confinement effects. In addition to the strong excitonic effect at room temperature, 2D perovskites also have appealing features that their optical properties can be flexibly tuned by alternating organic or inorganic layers. Particularly, 2D chiral perovskites and 2D perovskites based heterostructures are emerging as new platforms to extend their functionalities. To optimize performance of 2D perovskites-based optoelectronic devices, it is critical to understand the fundamentals and explore the strategies to engineer their optical properties. This review begins with an introduction to the excitons and self-trapped excitons of 2D perovskites. Subsequently, inorganic/organic layer effects on optical properties and 2D perovskites based heterostructures are discussed. We also discussed the nonlinear optical properties of 2D perovskite. We are looking forward to that this review can stimulate more efforts to understand and optimize the optical properties of 2D perovskites.

Keywords optical properties      two-dimensional perovskite      heterostructures      self-trapped excitons     
Corresponding Author(s): Xinglin Wen,Dehui Li   
Issue Date: 15 March 2023
 Cite this article:   
Junchao Hu,Xinglin Wen,Dehui Li. Optical properties of two-dimensional perovskites[J]. Front. Phys. , 2023, 18(3): 33602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1256-8
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/33602
Fig.1  (a) Schematic of 3D and 2D perovskite structure. (b) Characteristic band-alignment in 2D perovskites.
Fig.2  (a) 2D plot of TA spectra of (BA)2PbI4 film [45]. (b) PL spectra of α-(DMEN)PbBr4, (DMAPA)PbBr4 and (DMABA)PbBr4 [47]. (c) Absorption and PL of (NBT)2PbI4 and (EDBE)PbI4 [43]. (d) Structure fragment of three-layered (EA)4Pb3Cl10, (EA)4Pb3Br10 and hydrogen bonding network in (EA)4Pb3Br10. (e) Comparison of the distortion level of outer layer and inner layer of (EA)4Pb3Cl10 and (EA)4Pb3Br10. (f) PL of (EA)4Pb3Br10−xClx (x = 0, 2, 4, 6, 8, 9.5 and 10). (d−f) Reproduced from Ref. [48].
Fig.3  (a) PL spectra of (BA)4AgBiBr8 under high pressure. (b) Pressure dependent PL. (c) Mechanism of pressure-induced emission associated with exciton self-trapping at ambient conditions and upon compression. Bi−Br−Ag bond angle is in bc plane of (BA)4AgBiBr8 under compression. Reproduced from Ref. [49].
Fig.4  (a) and (b) are energy level diagram of 2D RP perovskites (BA)2(MA)n−1PbnI3n+1 and (BA)2(MA)n−1GenI3n+1 (n = 1−5 and n = ∞) [50]. (c) Crystalline structures of the 2D lead iodide perovskites (BA)2(MA)n−1PbnI3n+1 (n = 1−4), the L-value denotes the thickness of the inorganic layer in each compound. (d) and (e) are optical absorption and PL of 2D perovskites with different thickness (n = 1−4 and n = ∞). (c−e) Reproduced from Ref. [49].
Fig.5  (a) UV-Vis absorption and (b) PL spectra of (PEA)2PbX4 nanosheets (X = Cl, Br, I) with different compositions [31]. (c) Electronic band structure of the polar configuration of (BA)2(MA)n−1PbnI3n+1 (n = 1, 3, 4) [30]. (d) The computed electronic bandgaps of (BA)2(MA)n−1MnI3n+1 (M = Ge, Sn and Pb; n = 1−4 and n = ∞) based on the hybrid functional plus SOC schemes. The light-green horizontal bar denotes the optimal bandgap range (0.9 to 1.6 eV) for solar cells [33]. (e) Tauc plots of (PEA)2Ge1−xSnxI4 perovskite with different Sn content [52]. (f) PL spectra of bulk crystal of PEA2PbI4, PEA2SnI4 and PEA2PbI4:Sn (0.36%) at room temperature [54].
Fig.6  (a) Photoluminescence spectra in single crystal of (CnH2n+1NH3)2PbI4 with n = 4, 8, 9, 10 and 12 at 1.6 K and optical density spectra in a cleaved thin crystal of (C10H21NH3)2PbI4 at several temperatures [38]. (b) Absorption spectra at 300 K and 10 K for (C10H21NH3)2PbI4, (PEA)2PbI4 and (PEA)2(MA)Pb2I7 [57]. (c) 3-AMP and 4-AMP molecular structure and general crystal structure of the two series of DJ perovskite from n = 1 to 4. (d) The absorption band energy of n = 1 to 5. (e) Average equatorial Pb−I−Pb angles for 3-AMP and 4-AMP series from n = 1 to 4. (c−e) Reproduced from Ref. [58]. (f) Plot of absorbance peak positions verse A-site cation size of (HA)2(A)Pb2I7 perovskite, and octahedral structure model of different A cation size [60].
Fig.7  (a) CD spectra and normalized extinction spectra of (S-MBA)2PbI4, (R-MBA)2PbI4 and (rac-MBA)2PbI4 film [71]. (b) CD spectra of pure S-MePEA, pure achiral (C4A) and mixed-cation perovskite film [72]. (c) Normalized extinction spectra and (d) CD spectra of (S-MBA)2PbI4(1−x)Br4x and (R-MBA)2PbI4(1−x)Br4x (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) film [73].
Fig.8  Degree of polarization for (a) racemic-RDCP, (b) R-RDCP and (c) S-RDCP of low-dimensional perovskites with magnetic field varied from −7 T to 7 T [70]. Circularly polarized PL spectra of (d) (R-MBA)2PbI4 and (e) (S-MBA)2PbI4 excited by a 473 nm laser at 77 K [83]. (f) In-plane views of [PbBr4]2− layers in R-NPB, S-NPB and racemic-NPB. (g) Hydrogen bonding interactions between the equatorial Br atoms and NEA+ cations in R-NPB, S-NPB and racemic-NPB [92].
Fig.9  (a) Dependence of the circular dichroism (CD) signal on the concentration and temperature of the nanoplatelet (NP) solution [94]. (b) Ligand exchange on an OA-capped perovskite NC using pure enantiomers of DACH and CD spectra of low concentrations of DACH [89]. (c) Schematic representation of CD ligand ratio and CD strength of chiral perovskite nanoplates [90]. (d) Working principle of the circularly polarized light (CPL) system with the handedness superstructure stack [91].
Fig.10  (a) PL of (PEA)2PbI4/(PEA)2(MA)Pb2I7 2D perovskite heterostructures. (b) PL of the 532 nm (n = 1) and 576 nm (n = 2) peaks as a function of excitation power. The β indicates the slope of the relation. (a, b) Reproduced from Ref. [97]. (c) Schematic illustration of the synthesis of (BA)2PbI4/(BA)2(MA)Pb2I7 heterostructures. (d) Normalized PL of (BA)2PbI4/(BA)2(MA)Pb2I7 heterostructures with different mass ratios of BAI/MAI. (e) Normalized PL of (BA)2PbI4/(BA)2(MA)Pb2I7 heterostructures with different maintaining times for a fixed MAI concentration. (c−e) Reproduced from Ref. [96]. (f) PL images of the vertical heterostructures (BA)2PbBr4-(BA)2(MA)2Pb3I10 under the heating treatment process. (g) Evolution of PL of the vertical heterostructures upon heating at 60 ℃. (f, g) Reproduced from Ref. [99]. (h) Schematic illustrations and proposed band alignments of (2T)2PbI4-(2T)2PbBr4 and (BA)2PbI4-(BA)2PbBr4 lateral heterostructures. (i) Optical and PL images of lateral heterostructures. (j) PL of the heterostructures before and after heating. (h−j) Reproduced from Ref. [98].
Fig.11  (a) Normalized PL of WSe2/(iso-BA)2PbI4 (x = 1, 2, 3, 4) and 1L WSe2/(iso-BA)2(MA)Pb2I7 vdW heterostructure. (b) IXs emission energy as a function of the layer number x of the constituent materials and (c) band alignment of the vdW heterostructure formed by WSe2 and (iso-BA)2(MA)n−1PbnI3n+1 perovskites. (a−c) Reproduced from Ref. [105]. (d) Different electron transfer routes for excitons generated far from the WS2/(PEA)2PbI4 interface. (e) PLE of a heterostructure at 110 K. (d, e) Reproduced from Ref. [104]. (f) IXs in the 2D perovskite/monolayer TMD heterostructure. (g) IXs emission of (iso-BA)2PbI4/WSe2, (BA)2PbI4/WSe2 and (S-MBA)2PbI4/WSe2 under a 633 nm laser excitation. (f, g) Reproduced from Ref. [100]. (h) Manipulation of valley polarization in monolayer MoS2 via chiral 2D perovskite/MoS2 heterostructure [101].
Fig.12  (a) Schematics of the SHG measurements. λ/2 and λ/4 plates were used for linearly and circularly polarized experiments, respectively. (b) SHG of an (R-MPEA)1.5PbBr3.5(DMSO)0.5 nanowire pumped at various wavelengths. (c) SHG intensity from the nanowire as function of the rotation angle of the λ/4 plate. (a−c) Reproduced from Ref. [120]. (d) SHG mapping of (R-ClPEA)2PbI4 microwire. (e) Wavelength-dependent SHG of (R-ClPEA)2PbI4 microwire arrays at the excitation wavelength varying from 720 to 880 nm. (f) Linear-polarization-dependent SHG of (R-ClPEA)2PbI4 microwire arrays. (d−f) Reproduced from Ref. [121]. (g) Conceptual illustration of SHG generation of as-prepared microwires. (h) Wavelength-dependent SHG intensity of (S-3AP)4AgBiBr12 microwire arrays at wavelengths varying from 760 to 920 nm. (i) Polarization-dependent SHG of (S-3AP)4AgBiBr12 microwire arrays. (g−i) Reproduced from Ref. [122].
Fig.13  (a) Fundamental wavelength dependence THG of (BA)2Pb(I/Br)4 and (BA)2(MA)n−1PbnI3n+1 (n = 2, 3) perovskite crystals. (b) Thickness dependence THG with four different types of crystals excited at resonance. (a, b) Reproduced from Ref. [124]. (c) Comparison of THG of (BA)2(MA)n−1PbnI3n+1 perovskite, n = 1 (purple), n = 2 (blue), n = 3 (green), n = 4 (red), n = ∞ and AgGaSe2 (black). (d) Fine-scale THG scanned across the band edges of the 2D perovskites, overlaid with the measured absorption spectra (colored traces). (c, d) Reproduced from Ref. [125].
Fig.14  (a) Inverse transmission as a function of peak intensity for (PEA)2PbI4 flake, fitted by TPA saturation (red curve) and nonsaturation (blue dashed line) models. (b) Plot of TPA coefficient versus sample thickness for (PEA)2PbI4 flakes. (a, b) Reproduced from Ref. [127]. (c) PL of (BA)2(FA)Pb2Br7 under the excitation at 800 nm [128]. (d) 2PPL spectra measured on the 316 nm thick (In = 1), 582 nm thick (In = 2), 154 nm thick (In = 3), 155 nm thick (In = 4) and 0.5 mm thick bulk CdS. The 2PPL peaks are normalized by their thickness. (e) Experimentally measured (colored dots) and theoretically calculated (colored curves) degenerate TPA spectra. (d, e) Reproduced from Ref. [129]. (f) Thickness-dependent TPA coefficient and TPA saturation intensity for n = 1/n = 2 heterostructures [130].
1 Hubley A., Bensalah‐Ledoux A., Baguenard B., Guy S., Abécassis B., Mahler B.. Chiral perovskite nanoplatelets exhibiting circularly polarized luminescence through ligand optimization. Adv. Opt. Mater., 2022, 10(19): 2200394
https://doi.org/10.1002/adom.202200394
2 T. Li Y., Han L., Liu H., Sun K., Luo D., L. Guo X., L. Yu D., L. Ren T.. Review on organic−inorganic two-dimensional perovskite-based optoelectronic devices. ACS Appl. Electron. Mater., 2022, 4(2): 547
https://doi.org/10.1021/acsaelm.1c00781
3 Q. Luo S., F. Wang J., Yang B., B. Yuan Y.. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Front. Phys., 2019, 14(5): 53401
https://doi.org/10.1007/s11467-019-0901-8
4 Mao L., C. Stoumpos C., G. Kanatzidis M.. Two-dimensional hybrid halide perovskites: Principles and promises. J. Am. Chem. Soc., 2019, 141(3): 1171
https://doi.org/10.1021/jacs.8b10851
5 Wang H., Fang C., Luo H., Li D.. Recent progress of the optoelectronic properties of 2D Ruddlesden−Popper perovskites. J. Semicond., 2019, 40(4): 041901
https://doi.org/10.1088/1674-4926/40/4/041901
6 Wang F., Zou X., Xu M., Wang H., Wang H., Guo H., Guo J., Wang P., Peng M., Wang Z., Wang Y., Miao J., Chen F., Wang J., Chen X., Pan A., Shan C., Liao L., Hu W.. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. (Weinh.), 2021, 8(14): 2100569
https://doi.org/10.1002/advs.202100569
7 Xing J., Yan F., Zhao Y., Chen S., Yu H., Zhang Q., Zeng R., V. Demir H., Sun X., Huan A., Xiong Q.. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 2016, 10(7): 6623
https://doi.org/10.1021/acsnano.6b01540
8 Zhang Q., Shang Q., Su R., T. H. Do T., Xiong Q.. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett., 2021, 21(5): 1903
https://doi.org/10.1021/acs.nanolett.0c03593
9 T. Ha S., Liu X., Zhang Q., Giovanni D., C. Sum T., Xiong Q.. Synthesis of organic−inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater., 2014, 2(9): 838
https://doi.org/10.1002/adom.201400106
10 Zhao Y., Ma F., Qu Z., Yu S., Shen T., X. Deng H., Chu X., Peng X., Yuan Y., Zhang X., You J.. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605): 531
https://doi.org/10.1126/science.abp8873
11 V. M. Goldschmidt V.. Die gesetze der krystallochemie. Naturwissenschaften, 1926, 14(21): 477
https://doi.org/10.1007/BF01507527
12 Pedesseau L., Sapori D., Traore B., Robles R., H. Fang H., A. Loi M., Tsai H., Nie W., C. Blancon J., Neukirch A., Tretiak S., D. Mohite A., Katan C., Even J., Kepenekian M.. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano, 2016, 10(11): 9776
https://doi.org/10.1021/acsnano.6b05944
13 Lan C., Zhou Z., Wei R., C. Ho J.. Two-dimensional perovskite materials: From synthesis to energy-related applications. Mater. Today Energy, 2019, 11: 61
https://doi.org/10.1016/j.mtener.2018.10.008
14 Lekina Y., X. Shen Z.. Excitonic states and structural stability in two-dimensional hybrid organic−inorganic perovskites. J. Sci. Adv. Mater. Devices, 2019, 4(2): 189
https://doi.org/10.1016/j.jsamd.2019.03.005
15 Guo W., Yang Z., Dang J., Wang M.. Progress and perspective in Dion−Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy, 2021, 86: 106129
https://doi.org/10.1016/j.nanoen.2021.106129
16 Guo J., Liu T., Li M., Liang C., Wang K., Hong G., Tang Y., Long G., F. Yu S., W. Lee T., Huang W., Xing G.. Ultrashort laser pulse doubling by metal-halide perovskite multiple quantum wells. Nat. Commun., 2020, 11(1): 3361
https://doi.org/10.1038/s41467-020-17096-6
17 I. Dolzhenko Y., Inabe T., Maruyama Y.. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4. Bull. Chem. Soc. Jpn., 1986, 59(2): 563
https://doi.org/10.1246/bcsj.59.563
18 Chen S., Shi G.. Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater., 2017, 29(24): 1605448
https://doi.org/10.1002/adma.201605448
19 Jagielski J., Kumar S., Y. Yu W., J. Shih C.. Layer-controlled two-dimensional perovskites: Synthesis and optoelectronics. J. Mater. Chem. C, 2017, 5(23): 5610
https://doi.org/10.1039/C7TC00538E
20 Chen Y., Sun Y., Peng J., Tang J., Zheng K., Liang Z.. 2D Ruddlesden−Popper perovskites for optoelectronics. Adv. Mater., 2018, 30(2): 1703487
https://doi.org/10.1002/adma.201703487
21 Gao X., Zhang X., Yin W., Wang H., Hu Y., Zhang Q., Shi Z., L. Colvin V., W. Yu W., Zhang Y.. Ruddlesden−Popper Perovskites, Synthesis and optical properties for optoelectronic applications. Adv. Sci. (Weinh.), 2019, 6(22): 1900941
https://doi.org/10.1002/advs.201900941
22 Long G., Sabatini R., I. Saidaminov M., Lakhwani G., Rasmita A., Liu X., H. Sargent E., Gao W.. Chiral-perovskite optoelectronics. Nat. Rev. Mater., 2020, 5(6): 423
https://doi.org/10.1038/s41578-020-0181-5
23 Tsai H., Nie W., C. Blancon J., C. Stoumpos C., Asadpour R., Harutyunyan B., J. Neukirch A., Verduzco R., J. Crochet J., Tretiak S., Pedesseau L., Even J., A. Alam M., Gupta G., Lou J., M. Ajayan P., J. Bedzyk M., G. Kanatzidis M., D. Mohite A.. High-efficiency two-dimensional Ruddlesden−Popper perovskite solar cells. Nature, 2016, 536(7616): 312
https://doi.org/10.1038/nature18306
24 C. Stoumpos C., M. M. Soe C., Tsai H., Nie W., C. Blancon J., H. Cao D., Liu F., Traoré B., Katan C., Even J., D. Mohite A., G. Kanatzidis M.. High members of the 2D Ruddlesden−Popper halide perovskites: Synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem, 2017, 2(3): 427
https://doi.org/10.1016/j.chempr.2017.02.004
25 P. Wang H., Li S., Liu X., Shi Z., Fang X., H. He J.. Low-dimensional metal halide perovskite photodetectors. Adv. Mater., 2021, 33(7): 2003309
https://doi.org/10.1002/adma.202003309
26 Zhang Y., Ma Y., Wang Y., Zhang X., Zuo C., Shen L., Ding L.. Lead-free perovskite photodetectors: Progress, challenges, and opportunities. Adv. Mater., 2021, 33(26): 2006691
https://doi.org/10.1002/adma.202006691
27 Xing G., Wu B., Wu X., Li M., Du B., Wei Q., Guo J., K. Yeow E., C. Sum T., Huang W.. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun., 2017, 8(1): 14558
https://doi.org/10.1038/ncomms14558
28 Wang N., Cheng L., Ge R., Zhang S., Miao Y., Zou W., Yi C., Sun Y., Cao Y., Yang R., Wei Y., Guo Q., Ke Y., Yu M., Jin Y., Liu Y., Ding Q., Di D., Yang L., Xing G., Tian H., Jin C., Gao F., H. Friend R., Wang J., Huang W.. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics, 2016, 10(11): 699
https://doi.org/10.1038/nphoton.2016.185
29 Zhou J., Chu Y., Huang J.. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl. Mater. Interfaces, 2016, 8(39): 25660
https://doi.org/10.1021/acsami.6b09489
30 C. Stoumpos C., H. Cao D., J. Clark D., Young J., M. Rondinelli J., I. Jang J., T. Hupp J., G. Kanatzidis M.. Ruddlesden−Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater., 2016, 28(8): 2852
https://doi.org/10.1021/acs.chemmater.6b00847
31 Yang S., Niu W., L. Wang A., Fan Z., Chen B., Tan C., Lu Q., Zhang H.. Ultrathin two-dimensional organic−inorganic hybrid perovskite nanosheets with bright, tunable photoluminescence and high stability. Angew. Chem. Int. Ed., 2017, 56(15): 4252
https://doi.org/10.1002/anie.201701134
32 Paritmongkol W., S. Dahod N., Stollmann A., Mao N., Settens C., L. Zheng S., A. Tisdale W.. Synthetic variation and structural trends in layered two-dimensional alkylammonium lead halide perovskites. Chem. Mater., 2019, 31(15): 5592
https://doi.org/10.1021/acs.chemmater.9b01318
33 Ma L., G. Ju M., Dai J., C. Zeng X.. Tin and germanium based two-dimensional Ruddlesden−Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10(24): 11314
https://doi.org/10.1039/C8NR03589J
34 Li X., M. Hoffman J., G. Kanatzidis M.. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev., 2021, 142: 2230
https://doi.org/10.1021/acs.chemrev.0c01006
35 C. Blancon J., V. Stier A., Tsai H., Nie W., C. Stoumpos C., Traore B., Pedesseau L., Kepenekian M., Katsutani F., T. Noe G., Kono J., Tretiak S., A. Crooker S., Katan C., G. Kanatzidis M., J. Crochet J., Even J., D. Mohite A.. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun., 2018, 9(1): 2254
https://doi.org/10.1038/s41467-018-04659-x
36 T. H. Do T., Granados Del Aguila A., Zhang D., Xing J., Liu S., A. Prosnikov M., Gao W., Chang K., C. M. Christianen P., Xiong Q.. Bright exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett., 2020, 20(7): 5141
https://doi.org/10.1021/acs.nanolett.0c01364
37 Mathieu H., Lefebvre P., Christol P.. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Phys. Rev. B, 1992, 46(7): 4092
https://doi.org/10.1103/PhysRevB.46.4092
38 Ishihara T., Takahashi J., Goto T.. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B, 1990, 42(17): 11099
https://doi.org/10.1103/PhysRevB.42.11099
39 Li X., Hoffman J., Ke W., Chen M., Tsai H., Nie W., D. Mohite A., Kepenekian M., Katan C., Even J., R. Wasielewski M., C. Stoumpos C., G. Kanatzidis M.. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4−9; n = 1−4). J. Am. Chem. Soc., 2018, 140(38): 12226
https://doi.org/10.1021/jacs.8b07712
40 T. Ha S., Su R., Xing J., Zhang Q., Xiong Q.. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. (Camb.), 2017, 8(4): 2522
https://doi.org/10.1039/C6SC04474C
41 Gao Y., Shi E., Deng S., B. Shiring S., M. Snaider J., Liang C., Yuan B., Song R., M. Janke S., Liebman-Pelaez A., Yoo P., Zeller M., W. Boudouris B., Liao P., Zhu C., Blum V., Yu Y., M. Savoie B., Huang L., Dou L.. Molecular engineering of organic−inorganic hybrid perovskites quantum wells. Nat. Chem., 2019, 11(12): 1151
https://doi.org/10.1038/s41557-019-0354-2
42 Li J., Wang H., Li D.. Self-trapped excitons in two-dimensional perovskites. Front Optoelectron., 2020, 13(3): 225
https://doi.org/10.1007/s12200-020-1051-x
43 Cortecchia D., Neutzner S., R. Srimath Kandada A., Mosconi E., Meggiolaro D., De Angelis F., Soci C., Petrozza A.. Broadband emission in two-dimensional hybrid perovskites: The role of structural deformation. J. Am. Chem. Soc., 2017, 139(1): 39
https://doi.org/10.1021/jacs.6b10390
44 Cortecchia D., Yin J., Petrozza A., Soci C.. White light emission in low-dimensional perovskites. J. Mater. Chem. C, 2019, 7(17): 4956
https://doi.org/10.1039/C9TC01036J
45 Wu X., T. Trinh M., Niesner D., Zhu H., Norman Z., S. Owen J., Yaffe O., J. Kudisch B., Y. Zhu X.. Trap states in lead iodide perovskites. J. Am. Chem. Soc., 2015, 137(5): 2089
https://doi.org/10.1021/ja512833n
46 T. Williams R., S. Song K.. The self-trapped exciton. J. Phys. Chem. Solids, 1990, 51(7): 679
https://doi.org/10.1016/0022-3697(90)90144-5
47 Mao L., Wu Y., C. Stoumpos C., R. Wasielewski M., G. Kanatzidis M.. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. J. Am. Chem. Soc., 2017, 139(14): 5210
https://doi.org/10.1021/jacs.7b01312
48 Mao L., Wu Y., C. Stoumpos C., Traore B., Katan C., Even J., R. Wasielewski M., G. Kanatzidis M.. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. J. Am. Chem. Soc., 2017, 139(34): 11956
https://doi.org/10.1021/jacs.7b06143
49 Fang Y., Zhang L., Wu L., Yan J., Lin Y., Wang K., L. Mao W., Zou B.. Pressure-induced emission (PIE) and phase transition of a two-dimensional halide double perovskite (BA)4AgBiBr8 (BA = CH3(CH2)3NH3+). Angew. Chem. Int. Ed., 2019, 58(43): 15249
https://doi.org/10.1002/anie.201906311
50 Babaei M., Ahmadi V., Darvish G.. First-principles study of lead-free Ge-based 2D Ruddlesden−Popper hybrid perovskites for solar cell applications. Phys. Chem. Chem. Phys., 2022, 24(35): 21052
https://doi.org/10.1039/D2CP00638C
51 Tanaka K., Kondo T.. Bandgap and exciton binding energies in lead-iodide-based natural quantum-well crystals. Sci. Technol. Adv. Mater., 2004, 4(6): 599
https://doi.org/10.1016/j.stam.2003.09.019
52 Cheng P., Wu T., Liu J., Q. Deng W., Han K.. Lead-free, two-dimensional mixed germanium and tin perovskites. J. Phys. Chem. Lett., 2018, 9(10): 2518
https://doi.org/10.1021/acs.jpclett.8b00871
53 Evers F., Aharony A., Bar-Gill N., Entin-Wohlman O., Hedeg P., Hod O., Jelinek P., Kamieniarz G., Lemeshko M., Michaeli K., Mujica V., Naaman R., Paltiel Y., Refaely-Abramson S., Tal O., Thijssen J., Thoss M., M. V. Ruitenbeek J., Venkataraman L., H. Waldeck D., Yan B., Kronik L.. Theory of chirality induced spin selectivity: Progress and challenges. Adv. Mater., 2022, 34(13): 2106629
https://doi.org/10.1002/adma.202106629
54 Yu J., Kong J., Hao W., Guo X., He H., R. Leow W., Liu Z., Cai P., Qian G., Li S., Chen X., Chen X.. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Adv. Mater., 2019, 31: e1806385
55 L. Knutson J., D. Martin J., B. Mitzi D.. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem., 2005, 44(13): 4699
https://doi.org/10.1021/ic050244q
56 Zhang F., H. Kim D., Lu H., S. Park J., W. Larson B., Hu J., Gao L., Xiao C., G. Reid O., Chen X., Zhao Q., F. Ndione P., J. Berry J., You W., Walsh A., C. Beard M., Zhu K.. Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc., 2019, 141(14): 5972
https://doi.org/10.1021/jacs.9b00972
57 Hong X., Ishihara T., V. Nurmikko A.. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B, 1992, 45(12): 6961
https://doi.org/10.1103/PhysRevB.45.6961
58 Mao L., Ke W., Pedesseau L., Wu Y., Katan C., Even J., R. Wasielewski M., C. Stoumpos C., G. Kanatzidis M.. Hybrid Dion−Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc., 2018, 140(10): 3775
https://doi.org/10.1021/jacs.8b00542
59 Silver S., Xun S., Li H., L. Brédas J., Kahn A.. Structural and electronic impact of an asymmetric organic ligand in diammonium lead iodide perovskites. Adv. Energy Mater., 2020, 10(14): 1903900
https://doi.org/10.1002/aenm.201903900
60 P. Hautzinger M., Pan D., K. Pigg A., Fu Y., J. Morrow D., Leng M., Y. Kuo M., Spitha N., P. II Lafayette D., D. Kohler D., C. Wright J., Jin S.. Band edge tuning of two-dimensional Ruddlesden−Popper perovskites by a cation size revealed through nanoplates. ACS Energy Lett., 2020, 5(5): 1430
https://doi.org/10.1021/acsenergylett.0c00450
61 Yan J., Fu W., Zhang X., Chen J., Yang W., Qiu W., Wu G., Liu F., Heremans P., Chen H.. Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV. Mater. Chem. Front., 2018, 2(1): 121
https://doi.org/10.1039/C7QM00472A
62 Wang X., Wang Y., Gao W., Song L., Ran C., Chen Y., Huang W.. Polarization-sensitive halide perovskites for polarized luminescence and detection: Recent advances and perspectives. Adv. Mater., 2021, 33(12): 2003615
https://doi.org/10.1002/adma.202003615
63 Zhang C., Wang X., Qiu L.. Circularly polarized photodetectors based on chiral materials: A review. Front. Chem., 2021, 9: 711488
https://doi.org/10.3389/fchem.2021.711488
64 Dang Y., Liu X., Cao B., Tao X.. Chiral halide perovskite crystals for optoelectronic applications. Matter, 2021, 4(3): 794
https://doi.org/10.1016/j.matt.2020.12.018
65 Dong Y., Zhang Y., Li X., Feng Y., Zhang H., Xu J.. Chiral perovskites: Promising materials toward next-generation optoelectronics. Small, 2019, 15(39): 1902237
https://doi.org/10.1002/smll.201902237
66 Ma S., Ahn J., Moon J.. Chiral perovskites for next-generation photonics: From chirality transfer to chiroptical activity. Adv. Mater., 2021, 33(47): 2005760
https://doi.org/10.1002/adma.202005760
67 Alwan S., Dubi Y.. Spinterface origin for the chirality-induced spin-selectivity effect. J. Am. Chem. Soc., 2021, 143(35): 14235
https://doi.org/10.1021/jacs.1c05637
68 Lu H., Xiao C., Song R., Li T., E. Maughan A., Levin A., Brunecky R., J. Berry J., B. Mitzi D., Blum V., C. Beard M.. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc., 2020, 142(30): 13030
https://doi.org/10.1021/jacs.0c03899
69 Feng T., Wang Z., Zhang Z., Xue J., Lu H.. Spin selectivity in chiral metal-halide semiconductors. Nanoscale, 2021, 13(45): 18925
https://doi.org/10.1039/D1NR06407J
70 Long G., Jiang C., Sabatini R., Yang Z., Wei M., N. Quan L., Liang Q., Rasmita A., Askerka M., Walters G., Gong X., Xing J., Wen X., Quintero-Bermudez R., Yuan H., Xing G., R. Wang X., Song D., Voznyy O., Zhang M., Hoogland S., Gao W., Xiong Q., H. Sargent E.. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics, 2018, 12(9): 528
https://doi.org/10.1038/s41566-018-0220-6
71 Ahn J., Lee E., Tan J., Yang W., Kim B., Moon J.. A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic−inorganic hybrid perovskites. Mater. Horiz., 2017, 4(5): 851
https://doi.org/10.1039/C7MH00197E
72 Yan L., K. Jana M., C. Sercel P., B. Mitzi D., You W.. Alkyl−aryl cation mixing in chiral 2D perovskites. J. Am. Chem. Soc., 2021, 143(43): 18114
https://doi.org/10.1021/jacs.1c06841
73 Ahn J., Ma S., Y. Kim J., Kyhm J., Yang W., A. Lim J., A. Kotov N., Moon J.. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. J. Am. Chem. Soc., 2020, 142(9): 4206
https://doi.org/10.1021/jacs.9b11453
74 G. Billing D., Lemmerer A.. Bis[S-β-phenethylammonium] tribromoplumbate(II). Acta Crystallogr. Sect. E, 2003, 59(6): m381
https://doi.org/10.1107/S1600536803010985
75 G. Billing D., Lemmerer A.. Synthesis and crystal structures of inorganic−organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm, 2006, 8(9): 686
https://doi.org/10.1039/B606987H
76 Wang L., Xue Y., Cui M., Huang Y., Xu H., Qin C., Yang J., Dai H., Yuan M.. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed., 2020, 59(16): 6442
https://doi.org/10.1002/anie.201915912
77 T. Lin J., G. Chen D., S. Yang L., C. Lin T., H. Liu Y., C. Chao Y., T. Chou P., W. Chiu C.. Tuning the circular dichroism and circular polarized luminescence intensities of chiral 2D hybrid organic−inorganic perovskites through halogenation of the organic ions. Angew. Chem. Int. Ed., 2021, 60(39): 21434
https://doi.org/10.1002/anie.202107239
78 Dang Y., Liu X., Sun Y., Song J., Hu W., Tao X.. Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence. J. Phys. Chem. Lett., 2020, 11(5): 1689
https://doi.org/10.1021/acs.jpclett.9b03718
79 Guo Z., Li J., Liang J., Wang C., Zhu X., He T.. Regulating optical activity and anisotropic second-harmonic generation in zero-dimensional hybrid copper halides. Nano Lett., 2022, 22(2): 846
https://doi.org/10.1021/acs.nanolett.1c04669
80 Yao L., Zeng Z., Cai C., Xu P., Gu H., Gao L., Han J., Zhang X., Wang X., Wang X., Pan A., Wang J., Liang W., Liu S., Chen C., Tang J.. Strong second- and third-harmonic generation in 1D chiral hybrid bismuth halides. J. Am. Chem. Soc., 2021, 143(39): 16095
https://doi.org/10.1021/jacs.1c06567
81 H. Moon T., J. Oh S., M. Ok K.. [(R-C8H12N)4][Bi2Br10] and [(S-C8H12N)4][Bi2Br10]: Chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega, 2018, 3(12): 17895
https://doi.org/10.1021/acsomega.8b02877
82 Ge F., H. Li B., Cheng P., Li G., Ren Z., Xu J., H. Bu X.. Chiral hybrid copper(I) halides for high efficiency second harmonic generation with a broadband transparency window. Angew. Chem. Int. Ed., 2022, 61(10): e202115024
https://doi.org/10.1002/anie.202115024
83 Ma J., Fang C., Chen C., Jin L., Wang J., Wang S., Tang J., Li D.. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano, 2019, 13(3): 3659
https://doi.org/10.1021/acsnano.9b00302
84 Wang J., Fang C., Ma J., Wang S., Jin L., Li W., Li D.. Aqueous synthesis of low-dimensional lead halide perovskites for room-temperature circularly polarized light emission and detection. ACS Nano, 2019, 13(8): 9473
https://doi.org/10.1021/acsnano.9b04437
85 H. Kim Y., Zhai Y., Lu H., Pan X., Xiao C., A. Gaulding E., P. Harvey S., J. Berry J., V. Vardeny Z., M. Luther J., C. Beard M.. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371(6534): 1129
https://doi.org/10.1126/science.abf5291
86 Ishii A., Miyasaka T.. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv., 2020, 6(46): eabd3274
https://doi.org/10.1126/sciadv.abd3274
87 Ye C., Jiang J., Zou S., Mi W., Xiao Y.. Core-shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J. Am. Chem. Soc., 2022, 144(22): 9707
https://doi.org/10.1021/jacs.2c01214
88 Ma J., Wang H., Li D.. Recent progress of chiral perovskites: Materials, synthesis, and properties. Adv. Mater., 2021, 33(26): 2008785
https://doi.org/10.1002/adma.202008785
89 He T., Li J., Li X., Ren C., Luo Y., Zhao F., Chen R., Lin X., Zhang J.. Spectroscopic studies of chiral perovskite nanocrystals. Appl. Phys. Lett., 2017, 111(15): 151102
https://doi.org/10.1063/1.5001151
90 N. Georgieva Z., Zhang Z., Zhang P., P. Bloom B., N. Beratan D., H. Waldeck D.. Ligand coverage and exciton delocalization control chiral imprinting in perovskite nanoplatelets. J. Phys. Chem. C, 2022, 126(37): 15986
https://doi.org/10.1021/acs.jpcc.2c04192
91 T. Wang C., Chen K., Xu P., Yeung F., S. Kwok H., Li G.. Fully chiral light emission from CsPbX3 perovskite nanocrystals enabled by cholesteric superstructure stacks. Adv. Funct. Mater., 2019, 29(35): 1903155
https://doi.org/10.1002/adfm.201903155
92 K. Jana M., Song R., Liu H., R. Khanal D., M. Janke S., Zhao R., Liu C., Valy Vardeny Z., Blum V., B. Mitzi D.. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba−Dresselhaus spin−orbit coupling. Nat. Commun., 2020, 11(1): 4699
https://doi.org/10.1038/s41467-020-18485-7
93 H. Kim Y., Song R., Hao J., Zhai Y., Yan L., Moot T., F. Palmstrom A., Brunecky R., You W., J. Berry J., L. Blackburn J., C. Beard M., Blum V., M. Luther J.. The structural origin of chiroptical properties in perovskite nanocrystals with chiral organic ligands. Adv. Funct. Mater., 2022, 32(25): 2200454
https://doi.org/10.1002/adfm.202200454
94 N. Georgieva Z., P. Bloom B., Ghosh S., H. Waldeck D.. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater., 2018, 30(23): 1800097
https://doi.org/10.1002/adma.201800097
95 Zhang J., Zhu X., Wang M., Hu B.. Establishing charge-transfer excitons in 2D perovskite heterostructures. Nat. Commun., 2020, 11(1): 2618
https://doi.org/10.1038/s41467-020-16415-1
96 Wang J., Li J., Lan S., Fang C., Shen H., Xiong Q., Li D.. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano, 2019, 13(5): 5473
https://doi.org/10.1021/acsnano.9b00259
97 Fu Y., Zheng W., Wang X., P. Hautzinger M., Pan D., Dang L., C. Wright J., Pan A., Jin S.. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc., 2018, 140(46): 15675
https://doi.org/10.1021/jacs.8b07843
98 Shi E., Yuan B., B. Shiring S., Gao Y., Akriti Y., Guo Y., Su C., Lai M., Yang P., Kong J., M. Savoie B., Yu Y., Dou L.. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580(7805): 614
https://doi.org/10.1038/s41586-020-2219-7
99 Akriti E., Shi E., B. Shiring S., Yang J., L. Atencio-Martinez C., Yuan B., Hu X., Gao Y., P. Finkenauer B., J. Pistone A., Yu Y., Liao P., M. Savoie B., Dou L.. Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nat. Nanotechnol., 2021, 16(5): 584
https://doi.org/10.1038/s41565-021-00848-w
100 Chen Y., Liu Z., Li J., Cheng X., Ma J., Wang H., Li D.. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(8): 10258
https://doi.org/10.1021/acsnano.0c03624
101 Chen Y., Ma J., Liu Z., Li J., Duan X., Li D.. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11): 15154
https://doi.org/10.1021/acsnano.0c05343
102 Shi E., Gao Y., P. Finkenauer B., H. Akriti A., H. Coffey A., Dou L.. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev., 2018, 47(16): 6046
https://doi.org/10.1039/C7CS00886D
103 Fang F., Wan Y., Li H., Fang S., Huang F., Zhou B., Jiang K., Tung V., J. Li L., Shi Y.. Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity via interfacial engineering. ACS Nano, 2022, 16(3): 3985
https://doi.org/10.1021/acsnano.1c09513
104 Zhang Q., Linardy E., Wang X., Eda G.. Excitonic energy transfer in heterostructures of quasi-2D perovskite and monolayer WS2. ACS Nano, 2020, 14(9): 11482
https://doi.org/10.1021/acsnano.0c03893
105 Yao W., Yang D., Chen Y., Hu J., Li J., Li D.. Layer-number engineered momentum-indirect interlayer excitons with large spectral tunability. Nano Lett., 2022, 22(17): 7230
https://doi.org/10.1021/acs.nanolett.2c02742
106 Ye T., Li J., Li D.. Charge-accumulation effect in transition metal dichalcogenide heterobilayers. Small, 2019, 15(42): 1902424
https://doi.org/10.1002/smll.201902424
107 F. Rigosi A., M. Hill H., Li Y., Chernikov A., F. Heinz T.. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
https://doi.org/10.1021/acs.nanolett.5b01055
108 Fang H., Battaglia C., Carraro C., Nemsak S., Ozdol B., S. Kang J., A. Bechtel H., B. Desai S., Kronast F., A. Unal A., Conti G., Conlon C., K. Palsson G., C. Martin M., M. Minor A., S. Fadley C., Yablonovitch E., Maboudian R., Javey A.. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA, 2014, 111(17): 6198
https://doi.org/10.1073/pnas.1405435111
109 Rivera P., R. Schaibley J., M. Jones A., S. Ross J., Wu S., Aivazian G., Klement P., Seyler K., Clark G., J. Ghimire N., Yan J., G. Mandrus D., Yao W., Xu X.. Observation of long-lived interlayer excitons in monolayer MoSe2−WSe2 heterostructures. Nat. Commun., 2015, 6(1): 6242
https://doi.org/10.1038/ncomms7242
110 K. Nayak P., Horbatenko Y., Ahn S., Kim G., U. Lee J., Y. Ma K., R. Jang A., Lim H., Kim D., Ryu S., Cheong H., Park N., S. Shin H.. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano, 2017, 11(4): 4041
https://doi.org/10.1021/acsnano.7b00640
111 Elbanna A., Chaykun K., Lekina Y., Liu Y., Febriansyah B., Li S., Pan J., X. Shen Z., Teng J.. Perovskite-transition metal dichalcogenides heterostructures: Recent advances and future perspectives. Opto-Electron. Sci., 2022, 1(8): 220006
https://doi.org/10.29026/oes.2022.220006
112 Wei Q., Wen X., Hu J., Chen Y., Liu Z., Lin T., Li D.. Site-controlled interlayer coupling in WSe2/2D perovskite heterostructure. Sci. China Mater., 2022, 65(5): 1337
https://doi.org/10.1007/s40843-021-1911-6
113 Zhan G., Zhang J., Zhang L., Ou Z., Yang H., Qian Y., Zhang X., Xing Z., Zhang L., Li C., Zhong J., Yuan J., Cao Y., Zhou D., Chen X., Ma H., Song X., Zha C., Huang X., Wang J., Wang T., Huang W., Wang L.. Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites. Nano Lett., 2022, 22(10): 3961
https://doi.org/10.1021/acs.nanolett.2c00482
114 Xu J., Li X., Xiong J., Yuan C., Semin S., Rasing T., H. Bu X.. Halide perovskites for nonlinear optics. Adv. Mater., 2020, 32(3): 1806736
https://doi.org/10.1002/adma.201806736
115 Wang G., Mei S., Liao J., Wang W., Tang Y., Zhang Q., Tang Z., Wu B., Xing G.. Advances of nonlinear photonics in low-dimensional halide perovskites. Small, 2021, 17(43): 2100809
https://doi.org/10.1002/smll.202100809
116 Wen X., Gong Z., Li D.. Nonlinear optics of two‐dimensional transition metal dichalcogenides. InfoMat, 2019, 1(3): 317
https://doi.org/10.1002/inf2.12024
117 Han X., Zheng Y., Chai S., Chen S., Xu J.. 2D organic−inorganic hybrid perovskite materials for nonlinear optics. Nanophotonics, 2020, 9(7): 1787
https://doi.org/10.1515/nanoph-2020-0038
118 Zhou Y., Huang Y., Xu X., Fan Z., B. Khurgin J., Xiong Q.. Nonlinear optical properties of halide perovskites and their applications. Appl. Phys. Rev., 2020, 7(4): 041313
https://doi.org/10.1063/5.0025400
119 T. H. Do T., G. Del Aguila A., Xing J., Liu S., Xiong Q.. Direct and indirect exciton transitions in two-dimensional lead halide perovskite semiconductors. J. Chem. Phys., 2020, 153(6): 064705
https://doi.org/10.1063/5.0012307
120 Yuan C., Li X., Semin S., Feng Y., Rasing T., Xu J.. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Lett., 2018, 18(9): 5411
https://doi.org/10.1021/acs.nanolett.8b01616
121 Zhao J., Zhao Y., Guo Y., Zhan X., Feng J., Geng Y., Yuan M., Fan X., Gao H., Jiang L., Yan Y., Wu Y.. Layered metal-halide perovskite single-crystalline microwire arrays for anisotropic nonlinear optics. Adv. Funct. Mater., 2021, 31(48): 2105855
https://doi.org/10.1002/adfm.202105855
122 Yu Z., Cao S., Zhao Y., Guo Y., Dong M., Fu Y., Zhao J., Yang J., Jiang L., Wu Y.. Chiral lead-free double perovskite single-crystalline microwire arrays for anisotropic second-harmonic generation. ACS Appl. Mater. Interfaces, 2022, 14(34): 39451
https://doi.org/10.1021/acsami.2c06856
123 J. Wei W., X. Jiang X., Y. Dong L., W. Liu W., B. Han X., Qin Y., Li K., Li W., S. Lin Z., H. Bu X., X. Lu P.. Regulating second-harmonic generation by van der Waals interactions in two-dimensional lead halide perovskite nanosheets. J. Am. Chem. Soc., 2019, 141(23): 9134
https://doi.org/10.1021/jacs.9b01874
124 Abdelwahab I., Grinblat G., Leng K., Li Y., Chi X., Rusydi A., A. Maier S., P. Loh K.. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances. ACS Nano, 2018, 12(1): 644
https://doi.org/10.1021/acsnano.7b07698
125 O. Saouma F., C. Stoumpos C., Wong J., G. Kanatzidis M., I. Jang J.. Selective enhancement of optical nonlinearity in two-dimensional organic−inorganic lead iodide perovskites. Nat. Commun., 2017, 8(1): 742
https://doi.org/10.1038/s41467-017-00788-x
126 Chen Z., Zhang Q., Zhu M., Chen H., Wang X., Xiao S., P. Loh K., Eda G., Meng J., He J.. In-plane anisotropic nonlinear optical properties of two-dimensional organic−inorganic hybrid perovskite. J. Phys. Chem. Lett., 2021, 12(29): 7010
https://doi.org/10.1021/acs.jpclett.1c01890
127 Liu W., Xing J., Zhao J., Wen X., Wang K., Lu P., Xiong Q.. Giant two-photon absorption and its saturation in 2D organic−inorganic perovskite. Adv. Opt. Mater., 2017, 5(7): 1601045
https://doi.org/10.1002/adom.201601045
128 Li L., Shang X., Wang S., Dong N., Ji C., Chen X., Zhao S., Wang J., Sun Z., Hong M., Luo J.. Bilayered hybrid perovskite ferroelectric with giant two-photon absorption. J. Am. Chem. Soc., 2018, 140(22): 6806
https://doi.org/10.1021/jacs.8b04014
129 Zhou F., Abdelwahab I., Leng K., P. Loh K., Ji W.. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater., 2019, 31(48): 1904155
https://doi.org/10.1002/adma.201904155
130 Wang J., Mi Y., Gao X., Li J., Li J., Lan S., Fang C., Shen H., Wen X., Chen R., Liu X., He T., Li D.. Giant nonlinear optical response in 2D perovskite heterostructures. Adv. Opt. Mater., 2019, 7(15): 1900398
https://doi.org/10.1002/adom.201900398
131 Liu W., Li X., Song Y., Zhang C., Han X., Long H., Wang B., Wang K., Lu P.. Cooperative enhancement of two-photon-absorption-induced photoluminescence from a 2D perovskite-microsphere hybrid dielectric structure. Adv. Funct. Mater., 2018, 28(26): 1707550
https://doi.org/10.1002/adfm.201707550
132 Q. Xu C., Kondo T., Sakakura H., Kumatat K., Takahashit Y., Ito R.. Optical third-harmonic generation in layered perovskite-type material (C10H21NH3)2-PbI4. Solid State Commun., 1991, 79(3): 245
https://doi.org/10.1016/0038-1098(91)90643-A
[1] Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53603-.
[2] Shuang-Shuang Kong, Wei-Kai Liu, Xiao-Xia Yu, Ya-Lin Li, Liu-Zhu Yang, Yun Ma, Xiao-Yong Fang. Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs[J]. Front. Phys. , 2023, 18(4): 43302-.
[3] Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures[J]. Front. Phys. , 2023, 18(3): 33307-.
[4] Zhiqiang Yang, Yichuan Chen, Jing Li, Chen Lu, Junfang Zhao, Mengtao Sun. Theoretical investigation on optical properties of Möbius carbon nanobelts in one- and two-photon absorption[J]. Front. Phys. , 2023, 18(3): 33303-.
[5] Zhen Ma, Shuai Li, Meng-Meng Xiao, Ya-Wen Zheng, Ming Lu, Haiwen Liu, Jin-Hua Gao, X. C. Xie. Moiré flat bands of twisted few-layer graphite[J]. Front. Phys. , 2023, 18(1): 13307-.
[6] Xueping Li, Peize Yuan, Lin Li, Ting Liu, Chenhai Shen, Yurong Jiang, Xiaohui Song, Congxin Xia. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment[J]. Front. Phys. , 2023, 18(1): 13305-.
[7] Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst[J]. Front. Phys. , 2022, 17(6): 63509-.
[8] Rui Yang, Jianuo Fan, Mengtao Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties[J]. Front. Phys. , 2022, 17(4): 43202-.
[9] Zhaobo Zhou, Shijun Yuan, Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures[J]. Front. Phys. , 2021, 16(4): 43203-.
[10] Lianzhen Cao, Xia Liu, Yingde Li, Xiusheng Li, Lena Du, Shengyao Chen, Shenlong Zhao, Cong Wang. Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application[J]. Front. Phys. , 2021, 16(3): 33201-.
[11] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[12] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[13] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[14] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[15] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed