Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 43301    https://doi.org/10.1007/s11467-023-1262-x
RESEARCH ARTICLE
Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator
Shengshi Li1(), Weixiao Ji1, Jianping Zhang1, Yaping Wang2(), Changwen Zhang1, Shishen Yan1
1. Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan 250022, China
2. State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
 Download: PDF(4925 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dual topological insulator (DTI), which simultaneously hosts topological insulator (TI) and topological crystalline insulator (TCI) phases, has attracted extensive attention since it has a better robustness of topological nature and broad application prospects in spintronics. However, the realization of DTI phase in two-dimensional (2D) system is extremely scarce. By first-principles calculations, we predict that the 2D rectangular bismuth (R−Bi) bilayer is a novel DTI, featured by \textcolor [RGB ]12,108,100Z2 topological invariant \textcolor[ RGB] 12,108,100Z2 = 1, mirror Chern number CM = −1, and metallic edge states within the bulk band gap. More interestingly, the TCI phase in bilayer is protected by horizontal glide mirror symmetries, rather than the usual mirror symmetry. The bulk band gap can be effectively tuned by vertical electric field and strain. Besides, the electric field can trigger the transition between TI and metallic phases for the bilayer, accompanied by the annihilation of TCI phase. On this basis, a topological field effect transistor is proposed, which can rapidly manipulate spin and charge carriers via electric field. The KBr(110) surface is demonstrated as an ideal substrate for the deposition of bilayer. These findings provide not only a new strategy for exploiting 2D DTI, but also a promising candidate for spintronic applications.

Keywords dual topological insulator      Bi bilayer      glide mirror symmetry      first-principles calculations     
Corresponding Author(s): Shengshi Li,Yaping Wang   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 27 February 2023
 Cite this article:   
Shengshi Li,Weixiao Ji,Jianping Zhang, et al. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1262-x
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/43301
Fig.1  (a) Top and side views, as well as bonding mode of R−Bi bilayer. The purple and bule balls represent upper and lower Bi atoms, respectively. (b−d) Orbital-resolved band structure without SOC and calculated charge density distributions of CΓ and VΓ. (e, f) Orbital-resolved band structure with SOC and calculated charge density distributions of CΓ and VΓ. The green and orange circles in (b) and (e) indicate pz and px,y orbitals, respectively.
Fig.2  (a) Variations of energy levels and band gap as a function of SOC strength η for R−Bi bilayer. (b, c) Calculated WCCs and edge states of R−Bi bilayer. (d) Evolution of atomic orbitals under chemical bonding, crystal field, and SOC effects.
Fig.3  (a) Variation of band gap as a function of E for R−Bi bilayer. The upper and lower insets are schematic diagram of electric field applied to bilayer and SOC band structure of bilayer under the E of −0.45 V/Å, respectively. (b) Prototype of designed TFET based on R−Bi bilayer.
Fig.4  (a, b) Top and side views of vdW heterostructure composed of R−Bi bilayer and KBr(110) surface. (c) Calculated SOC band structure of vdW heterostructure.
Fig.5  (a−c) Variations of energy levels and band gap as a function of a-axial, b-axial, and biaxial strains, respectively. (d) Phase diagram of band gap for R−Bi bilayer under the dual regulation of a-axial and b-axial strains. The dotted line is the boundary of DTI and metal phases.
1 E. Moore J.. The birth of topological insulators. Nature, 2010, 464(7286): 194
https://doi.org/10.1038/nature08916
2 Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
3 Fu L.. Topological crystalline insulators. Phys. Rev. Lett., 2011, 106(10): 106802
https://doi.org/10.1103/PhysRevLett.106.106802
4 Ando Y.. Topological insulator materials. J. Phys. Soc. Jpn., 2013, 82(10): 102001
https://doi.org/10.7566/JPSJ.82.102001
5 Ando Y., Fu L.. Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys., 2015, 6(1): 361
https://doi.org/10.1146/annurev-conmatphys-031214-014501
6 Niu C., M. Buhl P., Bihlmayer G., Wortmann D., Dai Y., Blügel S., Mokrousov Y.. Robust dual topological character with spin-valley polarization in a monolayer of the Dirac semimetal Na3Bi. Phys. Rev. B, 2017, 95(7): 075404
https://doi.org/10.1103/PhysRevB.95.075404
7 Mao N., Hu X., Niu C., Huang B., Dai Y.. Dual topological insulator and insulator−semimetal transition in mirror-symmetric honeycomb materials. Phys. Rev. B, 2019, 100(20): 205116
https://doi.org/10.1103/PhysRevB.100.205116
8 Avraham N., Kumar Nayak A., Steinbok A., Norris A., Fu H., Sun Y., Qi Y., Pan L., Isaeva A., Zeugner A., Felser C., Yan B., Beidenkopf H.. Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI. Nat. Mater., 2020, 19(6): 610
https://doi.org/10.1038/s41563-020-0651-6
9 Cucchi I., Marrazzo A., Cappelli E., Riccò S., Y. Bruno F., Lisi S., Hoesch M., K. Kim T., Cacho C., Besnard C., Giannini E., Marzari N., Gibertini M., Baumberger F., Tamai A.. Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3. Phys. Rev. Lett., 2020, 124(10): 106402
https://doi.org/10.1103/PhysRevLett.124.106402
10 Eschbach M., Lanius M., Niu C., Młyńczak E., Gospodarič P., Kellner J., Schüffelgen P., Gehlmann M., Döring S., Neumann E., Luysberg M., Mussler G., Plucinski L., Morgenstern M., Grützmacher D., Bihlmayer G., Blügel S., M. Schneider C.. Bi1Te1 is a dual topological insulator. Nat. Commun., 2017, 8(1): 14976
https://doi.org/10.1038/ncomms14976
11 I. Facio J., K. Das S., Zhang Y., Koepernik K., van den Brink J., C. Fulga I.. Dual topology in jacutingaite Pt2HgSe3. Phys. Rev. Mater., 2019, 3(7): 074202
https://doi.org/10.1103/PhysRevMaterials.3.074202
12 Lee H., G. Kang Y., C. Jung M., J. Han M., J. Chang K.. Robust dual topological insulator phase in NaZnBi. NPG Asia Mater., 2022, 14(1): 36
https://doi.org/10.1038/s41427-022-00383-7
13 Matsuda I., Yaji K., A. Taskin A., D’angelo M., Yukawa R., Ohtsubo Y., Le Fèvre P., Bertran F., Yoshizawa S., Taleb-Ibrahimi A., Kakizaki A., Ando Y., Komori F.. Surface state of the dual topological insulator Bi0.91Sb0.09(11 2¯). Physica B, 2017, 516: 100
https://doi.org/10.1016/j.physb.2017.04.031
14 Rauch T., Flieger M., Henk J., Mertig I., Ernst A.. Dual topological character of chalcogenides: Theory for Bi2Te3. Phys. Rev. Lett., 2014, 112(1): 016802
https://doi.org/10.1103/PhysRevLett.112.016802
15 C. Y. Teo J., Fu L., L. Kane C.. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx. Phys. Rev. B, 2008, 78(4): 045426
https://doi.org/10.1103/PhysRevB.78.045426
16 Fang C., Fu L.. New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic. Phys. Rev. B, 2015, 91(16): 161105
https://doi.org/10.1103/PhysRevB.91.161105
17 Kim H., Murakami S.. Glide-symmetric topological crystalline insulator phase in a nonprimitive lattice. Phys. Rev. B, 2020, 102(19): 195202
https://doi.org/10.1103/PhysRevB.102.195202
18 Ma J., Yi C., Lv B., J. Wang Z., Nie S., Wang L., Kong L., Huang Y., Richard P., Zhang P., Yaji K., Kuroda K., Shin S., Weng H., A. Bernevig B., Shi Y., Qian T., Ding H.. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv., 2017, 3(5): e1602415
https://doi.org/10.1126/sciadv.1602415
19 Wang Z., Alexandradinata A., J. Cava R., A. Bernevig B.. Hourglass fermions. Nature, 2016, 532(7598): 189
https://doi.org/10.1038/nature17410
20 L. Chen Y., Kanou M., K. Liu Z., J. Zhang H., A. Sobota J., Leuenberger D., K. Mo S., Zhou B., L. Yang S., S. Kirchmann P., H. Lu D., G. Moore R., Hussain Z., X. Shen Z., L. Qi X., Sasagawa T.. Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nat. Phys., 2013, 9(11): 704
https://doi.org/10.1038/nphys2768
21 Yan B., Jansen M., Felser C.. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys., 2013, 9(11): 709
https://doi.org/10.1038/nphys2762
22 Zhang H., X. Liu C., L. Qi X., Dai X., Fang Z., C. Zhang S., Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 438
https://doi.org/10.1038/nphys1270
23 M. Otrokov M., I. Klimovskikh I., Bentmann H., Estyunin D., Zeugner A., S. Aliev Z., Gaß S., U. B. Wolter A., V. Koroleva A., M. Shikin A., Blanco-Rey M., Hoffmann M., P. Rusinov I., Y. Vyazovskaya A., V. Eremeev S., M. Koroteev Y., M. Kuznetsov V., Freyse F., Sánchez-Barriga J., R. Amiraslanov I., B. Babanly M., T. Mamedov N., A. Abdullayev N., N. Zverev V., Alfonsov A., Kataev V., Büchner B., F. Schwier E., Kumar S., Kimura A., Petaccia L., Di Santo G., C. Vidal R., Schatz S., Kißner K., Ünzelmann M., H. Min C., Moser S., R. F. Peixoto T., Reinert F., Ernst A., M. Echenique P., Isaeva A., V. Chulkov E.. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
https://doi.org/10.1038/s41586-019-1840-9
24 Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., L. Wang L., Q. Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
25 Reis F., Li G., Dudy L., Bauernfeind M., Glass S., Hanke W., Thomale R., Schäfer J., Claessen R.. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357(6348): 287
https://doi.org/10.1126/science.aai8142
26 Lu Y., Xu W., Zeng M., Yao G., Shen L., Yang M., Luo Z., Pan F., Wu K., Das T., He P., Jiang J., Martin J., P. Feng Y., Lin H., Wang X.. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett., 2015, 15(1): 80
https://doi.org/10.1021/nl502997v
27 Bai Y., Cai L., Mao N., Li R., Dai Y., Huang B., Niu C.. Doubled quantum spin Hall effect with high-spin Chern number in α-antimonene and α-bismuthene. Phys. Rev. B, 2022, 105(19): 195142
https://doi.org/10.1103/PhysRevB.105.195142
28 Kou L., Tan X., Ma Y., Tahini H., Zhou L., Sun Z., Aijun D., Chen C., C. Smith S.. Tetragonal bismuth bilayer: A stable and robust quantum spin Hall insulator. 2D Mater., 2015, 2: 045010
https://doi.org/10.1088/2053-1583/2/4/045010
29 W. Zhang R., W. Zhang C., X. Ji W., S. Yan S., G. Yao Y.. First-principles prediction on bismuthylene monolayer as a promising quantum spin Hall insulator. Nanoscale, 2017, 9(24): 8207
https://doi.org/10.1039/C7NR01992K
30 Kong X., Li L., Leenaerts O., J. Liu X., M. Peeters F.. New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings. Phys. Rev. B, 2017, 96(3): 035123
https://doi.org/10.1103/PhysRevB.96.035123
31 Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
32 Kresse G., Hafner J.. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
https://doi.org/10.1103/PhysRevB.49.14251
33 Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
34 Grimme S.. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
https://doi.org/10.1002/jcc.20495
35 P. Perdew J., Wang Y.. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244
https://doi.org/10.1103/PhysRevB.45.13244
36 Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu. J. Chem. Phys., 2010, 132(15): 154104
https://doi.org/10.1063/1.3382344
37 Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7): 1456
https://doi.org/10.1002/jcc.21759
38 A. Soluyanov A., Vanderbilt D.. Wannier representation of Z2 topological insulators. Phys. Rev. B, 2011, 83(3): 035108
https://doi.org/10.1103/PhysRevB.83.035108
39 A. Soluyanov A., Vanderbilt D.. Computing topological invariants without inversion symmetry. Phys. Rev. B, 2011, 83(23): 235401
https://doi.org/10.1103/PhysRevB.83.235401
40 P. L. Sancho M., M. L. Sancho J., Rubio J.. Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100). J. Phys. F Met. Phys., 1984, 14(5): 1205
https://doi.org/10.1088/0305-4608/14/5/016
41 P. L. Sancho M., M. L. Sancho J., M. L. Sancho J., Rubio J.. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys., 1985, 15(4): 851
https://doi.org/10.1088/0305-4608/15/4/009
42 Liu J., H. Hsieh T., Wei P., Duan W., Moodera J., Fu L.. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater., 2014, 13(2): 178
https://doi.org/10.1038/nmat3828
43 Liu J., Qian X., Fu L.. Crystal field effect induced topological crystalline insulators in monolayer IV–VI semiconductors. Nano Lett., 2015, 15(4): 2657
https://doi.org/10.1021/acs.nanolett.5b00308
44 Niu C., M. Buhl P., Bihlmayer G., Wortmann D., Blügel S., Mokrousov Y.. Topological crystalline insulator and quantum anomalous Hall states in IV-VI-based monolayers and their quantum wells. Phys. Rev. B, 2015, 91(20): 201401
https://doi.org/10.1103/PhysRevB.91.201401
45 Yan L., M. Lopez C., P. Shrestha R., A. Irene E., A. Suvorova A., Saunders M.. Magnesium oxide as a candidate high-κ gate dielectric. Appl. Phys. Lett., 2006, 88(14): 142901
https://doi.org/10.1063/1.2191419
46 Posadas A., J. Walker F., H. Ahn C., L. Goodrich T., Cai Z., S. Ziemer K.. Epitaxial MgO as an alternative gate dielectric for SiC transistor applications. Appl. Phys. Lett., 2008, 92(23): 233511
https://doi.org/10.1063/1.2944865
47 Hirahara T., Bihlmayer G., Sakamoto Y., Yamada M., Miyazaki H., I. Kimura S., Blügel S., Hasegawa S.. Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te2. Phys. Rev. Lett., 2011, 107(16): 166801
https://doi.org/10.1103/PhysRevLett.107.166801
48 Yang F., Miao L., F. Wang Z., Y. Yao M., Zhu F., R. Song Y., X. Wang M., P. Xu J., V. Fedorov A., Sun Z., B. Zhang G., Liu C., Liu F., Qian D., L. Gao C., F. Jia J.. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett., 2012, 109(1): 016801
https://doi.org/10.1103/PhysRevLett.109.016801
49 Zhu F., Chen W., Xu Y., Gao C., Guan D., Liu C., Qian D., C. Zhang S., Jia J.. Epitaxial growth of two-dimensional stanene. Nat. Mater., 2015, 14(10): 1020
https://doi.org/10.1038/nmat4384
[1] fop-21262-OF-shengshili_suppl_1 Download
[1] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[2] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[3] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[4] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[5] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[6] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[7] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[8] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[9] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
[10] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[11] Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials[J]. Front. Phys. , 2015, 10(2): 108102-.
[12] Wei Li, Chandan Setty, X. H. Chen, Jiangping Hu. Electronic and magnetic structures of chain structured iron selenide compounds[J]. Front. Phys. , 2014, 9(4): 465-471.
[13] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed