|
|
|
Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator |
Shengshi Li1( ), Weixiao Ji1, Jianping Zhang1, Yaping Wang2( ), Changwen Zhang1, Shishen Yan1 |
1. Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan 250022, China 2. State Key Lab of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
|
|
Abstract Dual topological insulator (DTI), which simultaneously hosts topological insulator (TI) and topological crystalline insulator (TCI) phases, has attracted extensive attention since it has a better robustness of topological nature and broad application prospects in spintronics. However, the realization of DTI phase in two-dimensional (2D) system is extremely scarce. By first-principles calculations, we predict that the 2D rectangular bismuth (R−Bi) bilayer is a novel DTI, featured by topological invariant = 1, mirror Chern number CM = −1, and metallic edge states within the bulk band gap. More interestingly, the TCI phase in bilayer is protected by horizontal glide mirror symmetries, rather than the usual mirror symmetry. The bulk band gap can be effectively tuned by vertical electric field and strain. Besides, the electric field can trigger the transition between TI and metallic phases for the bilayer, accompanied by the annihilation of TCI phase. On this basis, a topological field effect transistor is proposed, which can rapidly manipulate spin and charge carriers via electric field. The KBr(110) surface is demonstrated as an ideal substrate for the deposition of bilayer. These findings provide not only a new strategy for exploiting 2D DTI, but also a promising candidate for spintronic applications.
|
| Keywords
dual topological insulator
Bi bilayer
glide mirror symmetry
first-principles calculations
|
|
Corresponding Author(s):
Shengshi Li,Yaping Wang
|
| About author: Changjian Wang and Zhiying Yang contributed equally to this work. |
|
Issue Date: 27 February 2023
|
|
| 1 |
E. Moore J.. The birth of topological insulators. Nature, 2010, 464(7286): 194
https://doi.org/10.1038/nature08916
|
| 2 |
Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
|
| 3 |
Fu L.. Topological crystalline insulators. Phys. Rev. Lett., 2011, 106(10): 106802
https://doi.org/10.1103/PhysRevLett.106.106802
|
| 4 |
Ando Y.. Topological insulator materials. J. Phys. Soc. Jpn., 2013, 82(10): 102001
https://doi.org/10.7566/JPSJ.82.102001
|
| 5 |
Ando Y., Fu L.. Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys., 2015, 6(1): 361
https://doi.org/10.1146/annurev-conmatphys-031214-014501
|
| 6 |
Niu C., M. Buhl P., Bihlmayer G., Wortmann D., Dai Y., Blügel S., Mokrousov Y.. Robust dual topological character with spin-valley polarization in a monolayer of the Dirac semimetal Na3Bi. Phys. Rev. B, 2017, 95(7): 075404
https://doi.org/10.1103/PhysRevB.95.075404
|
| 7 |
Mao N., Hu X., Niu C., Huang B., Dai Y.. Dual topological insulator and insulator−semimetal transition in mirror-symmetric honeycomb materials. Phys. Rev. B, 2019, 100(20): 205116
https://doi.org/10.1103/PhysRevB.100.205116
|
| 8 |
Avraham N., Kumar Nayak A., Steinbok A., Norris A., Fu H., Sun Y., Qi Y., Pan L., Isaeva A., Zeugner A., Felser C., Yan B., Beidenkopf H.. Visualizing coexisting surface states in the weak and crystalline topological insulator Bi2TeI. Nat. Mater., 2020, 19(6): 610
https://doi.org/10.1038/s41563-020-0651-6
|
| 9 |
Cucchi I., Marrazzo A., Cappelli E., Riccò S., Y. Bruno F., Lisi S., Hoesch M., K. Kim T., Cacho C., Besnard C., Giannini E., Marzari N., Gibertini M., Baumberger F., Tamai A.. Bulk and surface electronic structure of the dual-topology semimetal Pt2HgSe3. Phys. Rev. Lett., 2020, 124(10): 106402
https://doi.org/10.1103/PhysRevLett.124.106402
|
| 10 |
Eschbach M., Lanius M., Niu C., Młyńczak E., Gospodarič P., Kellner J., Schüffelgen P., Gehlmann M., Döring S., Neumann E., Luysberg M., Mussler G., Plucinski L., Morgenstern M., Grützmacher D., Bihlmayer G., Blügel S., M. Schneider C.. Bi1Te1 is a dual topological insulator. Nat. Commun., 2017, 8(1): 14976
https://doi.org/10.1038/ncomms14976
|
| 11 |
I. Facio J., K. Das S., Zhang Y., Koepernik K., van den Brink J., C. Fulga I.. Dual topology in jacutingaite Pt2HgSe3. Phys. Rev. Mater., 2019, 3(7): 074202
https://doi.org/10.1103/PhysRevMaterials.3.074202
|
| 12 |
Lee H., G. Kang Y., C. Jung M., J. Han M., J. Chang K.. Robust dual topological insulator phase in NaZnBi. NPG Asia Mater., 2022, 14(1): 36
https://doi.org/10.1038/s41427-022-00383-7
|
| 13 |
Matsuda I., Yaji K., A. Taskin A., D’angelo M., Yukawa R., Ohtsubo Y., Le Fèvre P., Bertran F., Yoshizawa S., Taleb-Ibrahimi A., Kakizaki A., Ando Y., Komori F.. Surface state of the dual topological insulator Bi0.91Sb0.09(11 2¯). Physica B, 2017, 516: 100
https://doi.org/10.1016/j.physb.2017.04.031
|
| 14 |
Rauch T., Flieger M., Henk J., Mertig I., Ernst A.. Dual topological character of chalcogenides: Theory for Bi2Te3. Phys. Rev. Lett., 2014, 112(1): 016802
https://doi.org/10.1103/PhysRevLett.112.016802
|
| 15 |
C. Y. Teo J., Fu L., L. Kane C.. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx. Phys. Rev. B, 2008, 78(4): 045426
https://doi.org/10.1103/PhysRevB.78.045426
|
| 16 |
Fang C., Fu L.. New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic. Phys. Rev. B, 2015, 91(16): 161105
https://doi.org/10.1103/PhysRevB.91.161105
|
| 17 |
Kim H., Murakami S.. Glide-symmetric topological crystalline insulator phase in a nonprimitive lattice. Phys. Rev. B, 2020, 102(19): 195202
https://doi.org/10.1103/PhysRevB.102.195202
|
| 18 |
Ma J., Yi C., Lv B., J. Wang Z., Nie S., Wang L., Kong L., Huang Y., Richard P., Zhang P., Yaji K., Kuroda K., Shin S., Weng H., A. Bernevig B., Shi Y., Qian T., Ding H.. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv., 2017, 3(5): e1602415
https://doi.org/10.1126/sciadv.1602415
|
| 19 |
Wang Z., Alexandradinata A., J. Cava R., A. Bernevig B.. Hourglass fermions. Nature, 2016, 532(7598): 189
https://doi.org/10.1038/nature17410
|
| 20 |
L. Chen Y., Kanou M., K. Liu Z., J. Zhang H., A. Sobota J., Leuenberger D., K. Mo S., Zhou B., L. Yang S., S. Kirchmann P., H. Lu D., G. Moore R., Hussain Z., X. Shen Z., L. Qi X., Sasagawa T.. Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nat. Phys., 2013, 9(11): 704
https://doi.org/10.1038/nphys2768
|
| 21 |
Yan B., Jansen M., Felser C.. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys., 2013, 9(11): 709
https://doi.org/10.1038/nphys2762
|
| 22 |
Zhang H., X. Liu C., L. Qi X., Dai X., Fang Z., C. Zhang S., Topological insulators in Bi2Se3. Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys., 2009, 5(6): 438
https://doi.org/10.1038/nphys1270
|
| 23 |
M. Otrokov M., I. Klimovskikh I., Bentmann H., Estyunin D., Zeugner A., S. Aliev Z., Gaß S., U. B. Wolter A., V. Koroleva A., M. Shikin A., Blanco-Rey M., Hoffmann M., P. Rusinov I., Y. Vyazovskaya A., V. Eremeev S., M. Koroteev Y., M. Kuznetsov V., Freyse F., Sánchez-Barriga J., R. Amiraslanov I., B. Babanly M., T. Mamedov N., A. Abdullayev N., N. Zverev V., Alfonsov A., Kataev V., Büchner B., F. Schwier E., Kumar S., Kimura A., Petaccia L., Di Santo G., C. Vidal R., Schatz S., Kißner K., Ünzelmann M., H. Min C., Moser S., R. F. Peixoto T., Reinert F., Ernst A., M. Echenique P., Isaeva A., V. Chulkov E.. Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019, 576(7787): 416
https://doi.org/10.1038/s41586-019-1840-9
|
| 24 |
Z. Chang C., Zhang J., Feng X., Shen J., Zhang Z., Guo M., Li K., Ou Y., Wei P., L. Wang L., Q. Ji Z., Feng Y., Ji S., Chen X., Jia J., Dai X., Fang Z., C. Zhang S., He K., Wang Y., Lu L., C. Ma X., K. Xue Q.. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
|
| 25 |
Reis F., Li G., Dudy L., Bauernfeind M., Glass S., Hanke W., Thomale R., Schäfer J., Claessen R.. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357(6348): 287
https://doi.org/10.1126/science.aai8142
|
| 26 |
Lu Y., Xu W., Zeng M., Yao G., Shen L., Yang M., Luo Z., Pan F., Wu K., Das T., He P., Jiang J., Martin J., P. Feng Y., Lin H., Wang X.. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett., 2015, 15(1): 80
https://doi.org/10.1021/nl502997v
|
| 27 |
Bai Y., Cai L., Mao N., Li R., Dai Y., Huang B., Niu C.. Doubled quantum spin Hall effect with high-spin Chern number in α-antimonene and α-bismuthene. Phys. Rev. B, 2022, 105(19): 195142
https://doi.org/10.1103/PhysRevB.105.195142
|
| 28 |
Kou L., Tan X., Ma Y., Tahini H., Zhou L., Sun Z., Aijun D., Chen C., C. Smith S.. Tetragonal bismuth bilayer: A stable and robust quantum spin Hall insulator. 2D Mater., 2015, 2: 045010
https://doi.org/10.1088/2053-1583/2/4/045010
|
| 29 |
W. Zhang R., W. Zhang C., X. Ji W., S. Yan S., G. Yao Y.. First-principles prediction on bismuthylene monolayer as a promising quantum spin Hall insulator. Nanoscale, 2017, 9(24): 8207
https://doi.org/10.1039/C7NR01992K
|
| 30 |
Kong X., Li L., Leenaerts O., J. Liu X., M. Peeters F.. New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings. Phys. Rev. B, 2017, 96(3): 035123
https://doi.org/10.1103/PhysRevB.96.035123
|
| 31 |
Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
| 32 |
Kresse G., Hafner J.. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
https://doi.org/10.1103/PhysRevB.49.14251
|
| 33 |
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
|
| 34 |
Grimme S.. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
https://doi.org/10.1002/jcc.20495
|
| 35 |
P. Perdew J., Wang Y.. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244
https://doi.org/10.1103/PhysRevB.45.13244
|
| 36 |
Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu. J. Chem. Phys., 2010, 132(15): 154104
https://doi.org/10.1063/1.3382344
|
| 37 |
Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7): 1456
https://doi.org/10.1002/jcc.21759
|
| 38 |
A. Soluyanov A., Vanderbilt D.. Wannier representation of Z2 topological insulators. Phys. Rev. B, 2011, 83(3): 035108
https://doi.org/10.1103/PhysRevB.83.035108
|
| 39 |
A. Soluyanov A., Vanderbilt D.. Computing topological invariants without inversion symmetry. Phys. Rev. B, 2011, 83(23): 235401
https://doi.org/10.1103/PhysRevB.83.235401
|
| 40 |
P. L. Sancho M., M. L. Sancho J., Rubio J.. Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100). J. Phys. F Met. Phys., 1984, 14(5): 1205
https://doi.org/10.1088/0305-4608/14/5/016
|
| 41 |
P. L. Sancho M., M. L. Sancho J., M. L. Sancho J., Rubio J.. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys., 1985, 15(4): 851
https://doi.org/10.1088/0305-4608/15/4/009
|
| 42 |
Liu J., H. Hsieh T., Wei P., Duan W., Moodera J., Fu L.. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater., 2014, 13(2): 178
https://doi.org/10.1038/nmat3828
|
| 43 |
Liu J., Qian X., Fu L.. Crystal field effect induced topological crystalline insulators in monolayer IV–VI semiconductors. Nano Lett., 2015, 15(4): 2657
https://doi.org/10.1021/acs.nanolett.5b00308
|
| 44 |
Niu C., M. Buhl P., Bihlmayer G., Wortmann D., Blügel S., Mokrousov Y.. Topological crystalline insulator and quantum anomalous Hall states in IV-VI-based monolayers and their quantum wells. Phys. Rev. B, 2015, 91(20): 201401
https://doi.org/10.1103/PhysRevB.91.201401
|
| 45 |
Yan L., M. Lopez C., P. Shrestha R., A. Irene E., A. Suvorova A., Saunders M.. Magnesium oxide as a candidate high-κ gate dielectric. Appl. Phys. Lett., 2006, 88(14): 142901
https://doi.org/10.1063/1.2191419
|
| 46 |
Posadas A., J. Walker F., H. Ahn C., L. Goodrich T., Cai Z., S. Ziemer K.. Epitaxial MgO as an alternative gate dielectric for SiC transistor applications. Appl. Phys. Lett., 2008, 92(23): 233511
https://doi.org/10.1063/1.2944865
|
| 47 |
Hirahara T., Bihlmayer G., Sakamoto Y., Yamada M., Miyazaki H., I. Kimura S., Blügel S., Hasegawa S.. Interfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te2. Phys. Rev. Lett., 2011, 107(16): 166801
https://doi.org/10.1103/PhysRevLett.107.166801
|
| 48 |
Yang F., Miao L., F. Wang Z., Y. Yao M., Zhu F., R. Song Y., X. Wang M., P. Xu J., V. Fedorov A., Sun Z., B. Zhang G., Liu C., Liu F., Qian D., L. Gao C., F. Jia J.. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett., 2012, 109(1): 016801
https://doi.org/10.1103/PhysRevLett.109.016801
|
| 49 |
Zhu F., Chen W., Xu Y., Gao C., Guan D., Liu C., Qian D., C. Zhang S., Jia J.. Epitaxial growth of two-dimensional stanene. Nat. Mater., 2015, 14(10): 1020
https://doi.org/10.1038/nmat4384
|
| [1] |
fop-21262-OF-shengshili_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|