Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 33310    https://doi.org/10.1007/s11467-023-1275-5
RESEARCH ARTICLE
Universal behaviors of magnon-mediated spin transport in disordered nonmagnetic metal-ferromagnetic insulator heterostructures
Gaoyang Li1, Fuming Xu1, Jian Wang1,2()
1. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2. Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
 Download: PDF(5630 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We numerically investigate magnon-mediated spin transport through nonmagnetic metal/ferromagnetic insulator (NM/FI) heterostructures in the presence of Anderson disorder, and discover universal behaviors of the spin conductance in both one-dimensional (1D) and 2D systems. In the localized regime, the variance of logarithmic spin conductance σ2(lnGT) shows a universal linear scaling with its average ⟨lnGT⟩, independent of Fermi energy, temperature, and system size in both 1D and 2D cases. In 2D, the competition between disorder-enhanced density of states at the NM/FI interface and disorder-suppressed spin transport leads to a non-monotonic dependence of average spin conductance on the disorder strength. As a result, in the metallic regime, average spin conductance is enhanced by disorder, and a new linear scaling between spin conductance fluctuation rms(GT) and average spin conductance GT is revealed which is universal at large system width. These universal scaling behaviors suggest that spin transport mediated by magnon in disordered 2D NM/FI systems belongs to a new universality class, different from that of charge conductance in 2D normal metal systems.

Keywords universal statistical behaviors      magnon-mediated spin transport      disorder-enhanced spin conductance     
Corresponding Author(s): Jian Wang   
Issue Date: 24 March 2023
 Cite this article:   
Gaoyang Li,Fuming Xu,Jian Wang. Universal behaviors of magnon-mediated spin transport in disordered nonmagnetic metal-ferromagnetic insulator heterostructures[J]. Front. Phys. , 2023, 18(3): 33310.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1275-5
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/33310
Fig.1  Schematic view of the 2D NM/FI system. The left NM lead and the right FI lead are connected to the central NM scattering region, which is of width L1 and length L2. Magnon-mediated transport is along the x direction. A typical experimental setup for this model is the bilayer structure of Pt/YIG.
Fig.2  (a) Average spin conductance ?GT? and its fluctuation rms(GT) as a function of the disorder strength W. (b) The variance of lnG T dependence on ?ln GT? for different Fermi energies and temperatures. (c–e) Spin conductance distribution P(GT) and P( lnGT) for different W. 40000 disorder samples are collected. Parameters: μL= 40 meV and T=50 K. The gray dashed line separates the diffusive (ii) and localized (iii) regimes.
Fig.3  (a) Average ?GT? and its fluctuation rms(G T) as a function of W in the first and second subbands of the 2D NM/FI system. Parameters for the first and second subbands: μL= {0.9,3} meV, ωc= {0.24,0.2} meV, and T=5 K. (b) Local DOS in the scattering region without disorder. (c–e) LDOS for three typical configurations at disorder strength W=1.84. The spin conductances for these configurations are GT={4.107 ,4.7,0.0786}, respectively. Here iDOS is the total interfacial DOS at the NM/FI interface and we set parameters in the first subband.
Fig.4  Spin conductance distribution P(lnGT) of the 2D system for different W in the first subband (a) and the second subband (b). Parameters are the same as Fig.3.
Fig.5  Statistics of spin conductance for Fermi energies μL={ 0.9,1.0,1.1,1.2,1.3 } meV and temperatures T={ 2,3,5 } K. All Fermi energies are in the first subband. Figure legends are shown in (d). The gray dashed lines separate (ii) the diffusive regime and (iii) the localized regime. (a) Average spin conductance as a function of the disorder strength W. (b) ?lnGT? versus the disorder strength. (c) Scaling of the variance σ2(ln GT) on average ln GT in the localized regime. Inset: data for different Fermi energies at T=5 K. (d) Scaling of spin conductance fluctuation on average spin conductance in the metallic regime.
Fig.6  (a–d) Skewness γ1, kurtosis γ2, third and fourth cumulants κ3, κ4 of lnGT for the 2D NM/FI system in the first subband. Parameters are the same as in Fig.5 [65]. Legends are shown in (d). The gray dashed lines separate the localized regime and diffusive regime. The inset of (c) shows κ3 versus ?ln?GT?3/2. (e) P(ln?GT) at a fixed value ?ln GT?=12.80 for different Fermi energies and temperatures in the localized regime with W=13.78. The red curve is the fitted Gaussian distribution
Fig.7  ? GT? (a, b) and ? lnGT? (c) versus the 1D system length L for different W. (d) Localization length ξ extracted from the slopes in (c). (e) Universal scaling of σ2(lnGT ) on ?lnGT? in the localized regime (iii) for different system lengths. The red line is the same as in Fig.2(c). (f) The scaling of ?GT ? as a function of the ratio L/ξ for different disorder strengths. 30000 disorder samples are collected to smooth the curve. The gray dashed line corresponds to the localization length ξ 10, which is much smaller than the system size.
Fig.8  The average of GT (a), lnGT (b) and the scaling in the localized regime (c) for different 2D system widths L1={20 ,30,40} and lengths L2={20,30 ,40}. The legends for (a)–(c) is shown in (c). (d) The scaling of rm s(GT) on ?GT? in the metallic regime for different L1 and L2. (e) The localization length ξ of system width L1=20 as a function of W. The black points are numerically extracted and the red curve is the fitted exponential function. Parameters are chosen in the first subband, μL={0.9,0.5 ,0.3} meV, T={5,2 ,1.1} K, and ωc ={0.24 ,0.05,0.03} meV for width L1={20,30 ,40}, respectively.
1 P. Umbach C., Washburn S., B. Laibowitz R., A. Webb R.. Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines. Phys. Rev. B, 1984, 30(7): 4048
https://doi.org/10.1103/PhysRevB.30.4048
2 A. Lee P., D. Stone A.. Universal Conductance Fluctuations in Metals. Phys. Rev. Lett., 1985, 55(15): 1622
https://doi.org/10.1103/PhysRevLett.55.1622
3 L. Altshuler B.. Fluctuations in the extrinsic conductivity of disordered conductors. JETP Lett., 1985, 41: 648
4 A. Lee P., D. Stone A., Fukuyama H.. Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys. Rev. B, 1987, 35(3): 1039
https://doi.org/10.1103/PhysRevB.35.1039
5 Qiao Z., Xing Y., Wang J.. Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime. Phys. Rev. B, 2010, 81(8): 085114
https://doi.org/10.1103/PhysRevB.81.085114
6 Zhang L., Zhuang J., Xing Y., Li J., Wang J., Guo H.. Universal transport properties of three-dimensional topological insulator nanowires. Phys. Rev. B, 2014, 89(24): 245107
https://doi.org/10.1103/PhysRevB.89.245107
7 L. Han Y., H. Qiao Z.. Universal conductance fluctuations in Sierpinski carpets. Front. Phys., 2019, 14(6): 63603
https://doi.org/10.1007/s11467-019-0919-y
8 W. Anderson P.. Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
https://doi.org/10.1103/PhysRev.109.1492
9 Kramer B., MacKinnon A.. Localization: Theory and experiment. Rep. Prog. Phys., 1993, 56(12): 1469
https://doi.org/10.1088/0034-4885/56/12/001
10 Abrahams E., 50 Years of Anderson Localization, World Scientific, Singapore, 2010
11 F. Mott N.. Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids, 1968, 1(1): 1
https://doi.org/10.1016/0022-3093(68)90002-1
12 T. Edwards J., J. Thouless D.. Numerical studies of localization in disordered systems. J. Phys. C, 1972, 5: 807
https://doi.org/10.1088/0022-3719/5/8/007
13 Abrahams E., W. Anderson P., C. Licciardello D., V. Ramakrishnan T.. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 1979, 42(10): 673
https://doi.org/10.1103/PhysRevLett.42.673
14 W. Anderson P., J. Thouless D., Abrahams E., S. Fisher D.. New method for a scaling theory of localization. Phys. Rev. B, 1980, 22(8): 3519
https://doi.org/10.1103/PhysRevB.22.3519
15 A. Müller C.Delande D., Disorder and interference: Localization phenomena, arXiv: 1005.0915 (2010)
16 Shapiro B., in: Percolation Structures and Processes, edited by G. Deutscher, R. Zallen, and J. Adler, Ann. Isr. Phys. Soc. 5, 367 (1983)
17 Shapiro B.. Scaling properties of probability distributions in disordered systems. Philos. Mag. B, 1987, 56: 1031
18 MacKinnon A., Kramer B.. One-parameter scaling of localization length and conductance in disordered systems. Phys. Rev. Lett., 1981, 47(21): 1546
https://doi.org/10.1103/PhysRevLett.47.1546
19 MacKinnon A., Kramer B.. The scaling theory of electrons in disordered solids: Additional numerical results. Z. Phys. B, 1983, 53(1): 1
https://doi.org/10.1007/BF01578242
20 Prior J., M. Somoza A., Ortuno M.. Conductance fluctuations and single-parameter scaling in two-dimensional disordered systems. Phys. Rev. B, 2005, 72(2): 024206
https://doi.org/10.1103/PhysRevB.72.024206
21 La Magna A., Deretzis I., Forte G., Pucci R.. Violation of the single-parameter scaling hypothesis in disordered graphene nanoribbons. Phys. Rev. B, 2008, 78(15): 153405
https://doi.org/10.1103/PhysRevB.78.153405
22 La Magna A., Deretzis I., Forte G., Pucci R.. Conductance distribution in doped and defected graphene nanoribbons. Phys. Rev. B, 2009, 80(19): 195413
https://doi.org/10.1103/PhysRevB.80.195413
23 N. Dorokhov O.. Transmission coefficient and the localization length of an electron in N bond disorder chains. JETP Lett., 1982, 36: 318
24 A. Mello P., Pereyra P., Kumar N.. Macroscopic approach to multichannel disordered conductors. Ann. Phys., 1988, 181(2): 290
https://doi.org/10.1016/0003-4916(88)90169-8
25 Plerou V., Q. Wang Z.. Conductances, conductance fluctuations, and level statistics on the surface of multilayer quantum Hall states. Phys. Rev. B, 1998, 58(4): 1967
https://doi.org/10.1103/PhysRevB.58.1967
26 A. Muttalib K., Wolfle P.. “One-sided” log-normal distribution of conductances for a disordered quantum wire. Phys. Rev. Lett., 1999, 83(15): 3013
https://doi.org/10.1103/PhysRevLett.83.3013
27 J. Roberts P.. Joint probability distributions for disordered 1D wires. J. Phys.: Condens. Matter, 1992, 4(38): 7795
https://doi.org/10.1088/0953-8984/4/38/011
28 I. Deych L., A. Lisyansky A., L. Altshuler B.. Single parameter scaling in one-dimensional localization revisited. Phys. Rev. Lett., 2000, 84(12): 2678
https://doi.org/10.1103/PhysRevLett.84.2678
29 García-Martín A., J. Saenz J.. Universal conductance distributions in the crossover between diffusive and localization regimes. Phys. Rev. Lett., 2001, 87(11): 116603
https://doi.org/10.1103/PhysRevLett.87.116603
30 Schreiber M., Ottomeier M.. Localization of electronic states in 2D disordered systems. J. Phys.: Condens. Matter, 1992, 4(8): 1959
https://doi.org/10.1088/0953-8984/4/8/011
31 M. Somoza A., Ortuno M., Prior J.. Universal distribution functions in two-dimensional localized systems. Phys. Rev. Lett., 2007, 99(11): 116602
https://doi.org/10.1103/PhysRevLett.99.116602
32 M. Somoza A., Prior J., Ortuno M., V. Lerner I.. Crossover from diffusive to strongly localized regime in two-dimensional systems. Phys. Rev. B, 2009, 80(21): 212201
https://doi.org/10.1103/PhysRevB.80.212201
33 W. Kantelhardt J., Bunde A.. Sublocalization, superlocalization, and violation of standard single-parameter scaling in the Anderson model. Phys. Rev. B, 2002, 66(3): 035118
https://doi.org/10.1103/PhysRevB.66.035118
34 L. A. Queiroz S.. Failure of single-parameter scaling of wave functions in Anderson localization. Phys. Rev. B, 2002, 66(19): 195113
https://doi.org/10.1103/PhysRevB.66.195113
35 In Ref. [20], lnR is used instead of lnG. Note the resistence R is the inverse of conductance G, then we have ⟨ln G ⟩ = ⟨ln R⟩ thus the same result is obtained
36 Brataas A., van Wees B., Klein O., de Loubens G., Viret M.. Spin insulatronics. Phys. Rep., 2020, 885: 1
https://doi.org/10.1016/j.physrep.2020.08.006
37 Tserkovnyak Y., Brataas A., E. W. Bauer G.. Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B, 2002, 66(22): 224403
https://doi.org/10.1103/PhysRevB.66.224403
38 Tserkovnyak Y., Brataas A., E. W. Bauer G., I. Halperin B.. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys., 2005, 77(4): 1375
https://doi.org/10.1103/RevModPhys.77.1375
39 Azevedo A., H. V. Leão L., L. Rodriguez-Suarez R., B. Oliveira A., M. Rezende S.. dc effect in ferromagnetic resonance: Evidence of the spin-pumping effect?. J. Appl. Phys., 2005, 97: 10C715
https://doi.org/10.1063/1.1855251
40 Saitoh E., Ueda M., Miyajima H., Tatara G.. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett., 2006, 88(18): 182509
https://doi.org/10.1063/1.2199473
41 Uchida K., Takahashi S., Harii K., Ieda J., Koshibae W., Ando K., Maekawa S., Saitoh E.. Observation of the spin Seebeck effect. Nature, 2008, 455(7214): 778
https://doi.org/10.1038/nature07321
42 Uchida K., Xiao J., Adachi H., Ohe J., Takahashi S., Ieda J., Ota T., Kajiwara Y., Umezawa H., Kawai H., E. W. Bauer G., Maekawa S., Saitoh E.. Spin Seebeck insulator. Nat. Mater., 2010, 9(11): 894
https://doi.org/10.1038/nmat2856
43 E. W. Bauer G., Saitoh E., J. vanWees B.. Spin caloritronics. Nat. Mater., 2012, 11(5): 391
https://doi.org/10.1038/nmat3301
44 Adachi H., Uchida K., Saitoh E., Maekawa S.. Theory of the spin Seebeck effect. Rep. Prog. Phys., 2013, 76(3): 036501
https://doi.org/10.1088/0034-4885/76/3/036501
45 M. Tang G., B. Chen X., Ren J., Wang J.. Rectifying full-counting statistics in a spin Seebeck engine. Phys. Rev. B, 2018, 97(8): 081407
https://doi.org/10.1103/PhysRevB.97.081407
46 Wu H., Huang L., Fang C., S. Yang B., H. Wan C., Q. Yu G., F. Feng J., X. Wei H., F. Han X.. Magnon valve effect between two magnetic insulators. Phys. Rev. Lett., 2018, 120(9): 097205
https://doi.org/10.1103/PhysRevLett.120.097205
47 F. Miao B., Y. Huang S., Qu D., L. Chien C.. Inverse spin Hall effect in a ferromagnetic metal. Phys. Rev. Lett., 2013, 111(6): 066602
https://doi.org/10.1103/PhysRevLett.111.066602
48 F. Jakobsen M., Qaiumzadeh A., Brataas A.. Scattering theory of transport through disordered magnets. Phys. Rev. B, 2019, 100(13): 134431
https://doi.org/10.1103/PhysRevB.100.134431
49 Yang L., Gu Y., Chen L., Zhou K., Fu Q., Wang W., Li L., Yan C., Li H., Liang L., Li Z., Pu Y., Du Y., Liu R.. Absence of spin transport in amorphous YIG evidenced by nonlocal spin transport experiments. Phys. Rev. B, 2021, 104(14): 144415
https://doi.org/10.1103/PhysRevB.104.144415
50 Li G., Jin H., Wei Y., Wang J.. Giant effective electron−magnon coupling in a nonmagnetic metal–ferromagnetic insulator heterostructure. Phys. Rev. B, 2022, 106(20): 205303
https://doi.org/10.1103/PhysRevB.106.205303
51 S. Wang J., K. Agarwalla B., Li H., Thingna J.. Nonequilibrium Green’s function method for quantum thermal transport. Front. Phys., 2014, 9(6): 673
https://doi.org/10.1007/s11467-013-0340-x
52 Zhang C., Xu F., Wang J.. Full counting statistics of phonon transport in disordered systems. Front. Phys., 2021, 16(3): 33502
https://doi.org/10.1007/s11467-020-1027-8
53 Z. Yu Z.H. Xiong G.F. Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
54 S. Wang J., Peng J., Q. Zhang Z., M. Zhang Y., Zhu T.. Transport in electron–photon systems. Front. Phys., 2023, 18(4): 43602
https://doi.org/10.1007/s11467-023-1260-z
55 Holstein T., Primakoff H.. Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev., 1940, 58(12): 1098
https://doi.org/10.1103/PhysRev.58.1098
56 S. Zheng J., Bender S., Armaitis J., E. Troncoso R., A. Duine R.. Green’s function formalism for spin transport in metal−insulator−metal heterostructures. Phys. Rev. B, 2017, 96(17): 174422
https://doi.org/10.1103/PhysRevB.96.174422
57 Ren J.. Predicted rectification and negative differential spin Seebeck effect at magnetic interfaces. Phys. Rev. B, 2013, 88(22): 220406
https://doi.org/10.1103/PhysRevB.88.220406
58 Christen T., Buttiker M.. Low frequency admittance of a quantum point contact. Phys. Rev. Lett., 1996, 77(1): 143
https://doi.org/10.1103/PhysRevLett.77.143
59 Datta S., Electronic Transport in Mesoscopic Systems, Cambridge University Press, New York, 1995, Chapter 3
60 I. Melnikov V., Fluctuations in the resistivity of a finite disordered system, Fiz. Tverd. Tela (Leningrad) 23, 782 (1981) [Sov. Phys. Solid State 23, 444 (1981)]
61 A. Abrikosov A.. The paradox with the static conductivity of a one-dimensional metal. Solid State Commun., 1981, 37(12): 997
https://doi.org/10.1016/0038-1098(81)91203-5
62 Janssen M.. Statistics and scaling in disordered mesoscopic electron systems. Phys. Rep., 1998, 295(1−2): 1
https://doi.org/10.1016/S0370-1573(97)00050-1
63 Ren W., Wang J., S. Ma Z.. Conductance fluctuations and higher order moments of a disordered carbon nanotube. Phys. Rev. B, 2005, 72(19): 195407
https://doi.org/10.1103/PhysRevB.72.195407
64 When calculating spin conductance for one specific disorder sample, one has to perform a double integration [see Eq. (13)]. In the calculation, we have chosen grid points 100 × 100 which amounts to an increase of computational cost by the factor of 10000 comparing with the charge conductance calculation in normal metal systems
65 The Fermi energies used in scaling analysis (Fig.5 and Fig.6) are near the center of the first subband. This is the region where SPS works in normal metal system [20]. Although the ranges of Fermi energies and temperatures are not very wide, the spin conductance in Fig.5(a) varies large enough in magnitude to support our scaling analysis.
66 Mohanty P., A. Webb R.. Anomalous conductance distribution in quasi-one-dimensional gold wires: Possible violation of the one-parameter scaling hypothesis. Phys. Rev. Lett., 2002, 88: 146601
https://doi.org/10.1103/PhysRevLett.88.146601
67 M. Somoza A., Prior J., Ortuño M.. Conductance fluctuations in the localized regime: Numerical study in disordered noninteracting systems. Phys. Rev. B, 2006, 73: 184201
https://doi.org/10.1103/PhysRevB.73.184201
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed