Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 52302    https://doi.org/10.1007/s11467-023-1277-3
RESEARCH ARTICLE
Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection
Mengting Song1, Nan An1, Yuke Zou1, Yue Zhang1, Wenjuan Huang1,2(), Huayi Hou1, Xiangbai Chen1()
1. Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
2. State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(5155 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As an emerging group III−VI semiconductor two-dimensional (2D) material, gallium selenide (GaSe) has attracted much attention due to its excellent optical and electrical properties. In this work, high-quality epitaxial growth of few-layer GaSe nanoflakes with different thickness is achieved via chemical vapor deposition (CVD) method. Due to the non-centrosymmetric structure, the grown GaSe nanoflakes exhibits excellent second harmonic generation (SHG). In addition, the constructed GaSe nanoflake-based photodetector exhibits stable and fast response under visible light excitation, with a rise time of 6 ms and decay time of 10 ms. These achievements clearly demonstrate the possibility of using GaSe nanoflake in the applications of nonlinear optics and (opto)-electronics.

Keywords 2D materials      gallium selenide      second harmonic generation      chemical vapor deposition      photodetector     
Corresponding Author(s): Wenjuan Huang,Xiangbai Chen   
Issue Date: 10 April 2023
 Cite this article:   
Mengting Song,Nan An,Yuke Zou, et al. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection[J]. Front. Phys. , 2023, 18(5): 52302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1277-3
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/52302
Fig.1  Synthesis of GaSe nanoflakes by CVD method. (a) Schematic diagram of 2D GaSe nanoflakes growth by a CVD system. (b) Optical image of GaSe nanoflake. Inset: AFM image of GaSe nanoflake. (c) TEM image of GaSe nanoflake. (d) HRTEM image of GaSe nanoflake. Inset: Corresponding SAED pattern. (e) EDX spectrum of GaSe nanoflake. Inset: Atomic ratio of Ga/Se.
Fig.2  (a) Thickness-dependent Raman spectra of GaSe nanoflakes. (b) Thickness-dependent PL spectra of GaSe nanoflakes.
Fig.3  The second harmonic generation (SHG) test of 2D GaSe nanoflake: (a) SHG intensity of GaSe flake with different excitation power and (b) the corresponding linear fitting. (c) SHG intensity of GaSe nanoflakes with different thicknesses. (d) Wavelength dependence of SHG intensity from 800 to 1080 nm. (e) SHG polarization test of 2D GaSe nanoflake, rotating the sample angle θ at a step of 15o, showing a 6-axis rotating scale; (f) SHG mapping of a single GaSe nanoflake.
DeviceFabrication methodsRλ (mA·W?1)EQE (%)D* (Jones)Rise time (ms)Decay time (ms)Ref.
GrapheneME1.06?16???[52]
MoSe2CVD13??~60~60[53]
WS2CVD7.3 × 1031814?55[13]
ReSe2CVD2.98 × 103458?5.47 × 1038.41 × 103[54]
HfS2CVD2.8??5555[55]
InSeCVD1.5 × 1032303.1 × 108500800[56]
In2Se3MBE30.67109≈7≈7[57]
GaSCVD5023???[58]
GaSeVPM175.2???[59]
GaSeCVD2.70.638.7 × 107610This work
Tab.1  Comparison of the key parameters of our device to the reported 2D materials and the other structures of GaSe-based photodetectors.
Fig.4  (a) Schematic image of the photodetector. (b) I?V characteristics of the device in the dark and under light illumination with wavelength at 532 nm (Vbias = 5 V). (c) Time-resolved photoresponse of the device at 532 nm (Vbias = 2 V). (d) Rise and decay curve measured under 532 nm excitation at Vbias = 2 V. (e) Photocurrent as a function of illumination intensity at Vbias = 1 V under 532 nm excitation. (f) The corresponding fitting curve of photocurrent versus incident light intensities by the power law.
1 L. Zhao J. , Ma D. , Wang C. , N. Guo Z. , Zhang B. , Q. Li J. , H. Nie G. , Xie N. , Zhang H. . Recent advances in anisotropic two-dimensional materials and device applications. Nano Res., 2021, 14(4): 897
https://doi.org/10.1007/s12274-020-3018-z
2 Zavabeti A. , Jannat A. , Zhong L. , A. Haidry A. , Yao Z. , Z. Ou J. . Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett., 2020, 12(1): 66
https://doi.org/10.1007/s40820-020-0402-x
3 Alexeev A.Barnes M.K. Nagareddy V.Craciun M.Wright D., A simple process for the fabrication of large-area CVD graphene based devices via selective in situ functionalization and patterning, 2D Mater. 4, 011010 (2016)
4 E. Safie N. , A. Azam M. , F. A. Aziz M. , Ismail M. . Recent progress of graphene‐based materials for efficient charge transfer and device performance stability in perovskite solar cells. Int. J. Energy Res., 2021, 45(2): 1347
https://doi.org/10.1002/er.5876
5 K. Geim A. . Graphene: Status and prospects. Science, 2009, 324(5934): 1530
https://doi.org/10.1126/science.1158877
6 Huang L. , H. Chang Q. , L. Guo G. , Liu Y. , Q. Xie Y. , Wang T. , Ling B. , F. Yang H. . Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon, 2012, 50(2): 551
https://doi.org/10.1016/j.carbon.2011.09.012
7 N. Xia F. , Wang H. , C. Jia Y. . Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 2014, 5(1): 4458
https://doi.org/10.1038/ncomms5458
8 Chen Y. , B. Jiang G. , Q. Chen S. , N. Guo Z. , F. Yu X. , J. Zhao C. , Zhang H. , L. Bao Q. , C. Wen S. , Y. Tang D. , Y. Fan D. . Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 2015, 23(10): 12823
https://doi.org/10.1364/OE.23.012823
9 Buscema M. , J. Groenendijk D. , I. Blanter S. , A. Steele G. , S. van der Zant H. , Castellanos-Gomez A. . Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14(6): 3347
https://doi.org/10.1021/nl5008085
10 K. Li L. , J. Yu Y. , J. Ye G. , Q. Ge Q. , D. Ou X. , Wu H. , L. Feng D. , H. Chen X. , B. Zhang Y. . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
https://doi.org/10.1038/nnano.2014.35
11 Singh A. , Moun M. , Sharma M. , Barman A. , Kumar Kapoor A. , Singh R. . NaCl-assisted substrate dependent 2D planar nucleated growth of MoS2. Appl. Surf. Sci., 2021, 538: 148201
https://doi.org/10.1016/j.apsusc.2020.148201
12 Wang W. , Shu H. , Wang J. , Cheng Y. , Liang P. , Chen X. . Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth. ACS Appl. Mater. Interfaces, 2020, 12(8): 9563
https://doi.org/10.1021/acsami.9b19224
13 Chen Y. . Growth of a large, single-crystalline WS2 monolayer for high-performance photodetectors by chemical vapor deposition. Micromachines (Basel), 2021, 12(2): 137
https://doi.org/10.3390/mi12020137
14 Wang Z. , Xie Y. , Wang H. , Wu R. , Nan T. , Zhan Y. , Sun J. , Jiang T. , Zhao Y. , Lei Y. , Yang M. , Wang W. , Zhu Q. , Ma X. , Hao Y. . NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures. Nanotechnology, 2017, 28(32): 325602
https://doi.org/10.1088/1361-6528/aa6f01
15 Chhowalla M. , S. Shin H. , Eda G. , J. Li L. , P. Loh K. , Zhang H. . The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5(4): 263
https://doi.org/10.1038/nchem.1589
16 S. Novoselov K.Mishchenko A.Carvalho A.H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
17 K. Geim A. , V. Grigorieva I. . Van der Waals heterostructures. Nature, 2013, 499(7459): 419
https://doi.org/10.1038/nature12385
18 F. Li J. , Kolekar S. , Ghorbani-Asl M. , Lehnert T. , Biskupek J. , Kaiser U. , V. Krasheninnikov A. , Batzill M. . Layer-dependent band gaps of platinum dichalcogenides. ACS Nano, 2021, 15(8): 13249
https://doi.org/10.1021/acsnano.1c02971
19 W. Jiang J. , Tang H. , S. Wang B. , B. Su Z. . Raman and infrared properties and layer dependence of the phonon dispersions in multilayered graphene. Phys. Rev. B, 2008, 77(23): 235421
https://doi.org/10.1103/PhysRevB.77.235421
20 Tamulewicz M. , Kutrowska-Girzycka J. , Gajewski K. , Serafinczuk J. , Sierakowski A. , Jadczak J. , Bryja L. , P. Gotszalk T. . Layer number dependence of the work function and optical properties of single and few layers MoS2: Effect of substrate. Nanotechnology, 2019, 30(24): 245708
https://doi.org/10.1088/1361-6528/ab0caf
21 L. Li X. , P. Han W. , B. Wu J. , R. Qiao X. , Zhang J. , H. Tan P. . Layer-number-dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 2017, 27(19): 1604468
https://doi.org/10.1002/adfm.201604468
22 He R. , van Baren J. , Yan J. , Xi X. , Ye Z. , Ye G. , H. Lu I. , M. Leong S. , H. Lui C. . Interlayer breathing and shear modes in NbSe2 atomic layers. 2D Mater., 2016, 3(3): 031008
https://doi.org/10.1088/2053-1583/3/3/031008
23 Quan L. , Q. Song Y. , Lin Y. , H. Zhang G. , M. Dai Y. , K. Wu Y. , Jin K. , Y. Ding H. , Pan N. , Luo Y. , P. Wang X. . The Raman enhancement effect on a thin GaSe flake and its thickness dependence. J. Mater. Chem. C, 2015, 3(42): 11129
https://doi.org/10.1039/C5TC02209F
24 F. Li X. , W. Lin M. , A. Puretzky A. , C. Idrobo J. , Ma C. , F. Chi M. , Yoon M. , M. Rouleau C. , I. Kravchenko I. , B. Geohegan D. , Xiao K. . Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse. Sci. Rep., 2014, 4(1): 5497
https://doi.org/10.1038/srep05497
25 V. Capozzi V. , Montagna M. . Optical spectroscopy of extrinsic recombinations in gallium selenide. Phys. Rev. B, 1989, 40(5): 3182
https://doi.org/10.1103/PhysRevB.40.3182
26 X. Zou Z. , W. Liang J. , H. Zhang X. , Ma C. , Xu P. , Yang X. , X. Zeng Z. , X. Sun X. , G. Zhu C. , L. Liang D. , J. Zhuang X. , Li D. , L. Pan A. . Liquid−metal-assisted growth of vertical GaSe/MoS2 p–n heterojunctions for sensitive self-driven photodetectors. ACS Nano, 2021, 15(6): 10039
https://doi.org/10.1021/acsnano.1c01643
27 Tang Y. , C. Mandal K. , A. McGuire J. , W. Lai C. . Layer- and frequency-dependent second harmonic generation in reflection from GaSe atomic crystals. Phys. Rev. B, 2016, 94(12): 125302
https://doi.org/10.1103/PhysRevB.94.125302
28 X. Yan D. , Y. Wang Y. , G. Xu D. , X. Liu P. , Yan C. , Shi J. , X. Liu H. , X. He Y. , H. Tang L. , C. Feng J. , Q. Guo J. , Shi W. , Zhong K. , H. Tsang Y. , Q. Yao J. . High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator. Photon. Res., 2017, 5(2): 82
https://doi.org/10.1364/PRJ.5.000082
29 C. Hsu H. , M. Hsu G. , Lai Y. , C. Feng Z. , Y. Tseng S. , Lundskog A. , Forsberg U. , Janzén E. , H. Chen K. , C. Chen L. . Polarized and diameter-dependent Raman scattering from individual aluminum nitride nanowires: The antenna and cavity effects. Appl. Phys. Lett., 2012, 101(12): 121902
https://doi.org/10.1063/1.4753798
30 H. Lee S. , Hsu Y. , Hsu H. , Chang C. , Hsieh W. . Fabrication and optical property of GaSe thin films grown by pulsed laser deposition. Jpn. J. Appl. Phys., 2003, 42(Part1(8): 5217
https://doi.org/10.1143/JJAP.42.5217
31 R. Jian S. , Juang J. , W. Luo C. , N. Ku S. , Wu K. . Nanomechanical properties of GaSe thin films deposited on Si(111) substrates by pulsed laser deposition. J. Alloys Compd., 2012, 542: 124
https://doi.org/10.1016/j.jallcom.2012.07.089
32 V. Sorokin S. , S. Avdienko P. , V. Sedova I. , A. Kirilenko D. , A. Yagovkina M. , N. Smirnov A. , Y. Davydov V. , V. Ivanov S. . Molecular-beam epitaxy of two-dimensional GaSe layers on GaAs(001) and GaAs(112) substrates: Structural and optical properties. Semiconductors, 2019, 53(8): 1131
https://doi.org/10.1134/S1063782619080189
33 Yuan X. , Tang L. , S. Liu S. , Wang P. , G. Chen Z. , Zhang C. , W. Liu Y. , Y. Wang W. , C. Zou Y. , Liu C. , Guo N. , Zou J. , Zhou P. , D. Hu W. , X. Xiu F. . Arrayed van der Waals vertical heterostructures based on 2D GaSe grown by molecular beam epitaxy. Nano Lett., 2015, 15(5): 3571
https://doi.org/10.1021/acs.nanolett.5b01058
34 W. Liu C. , J. Dai J. , K. Wu S. , Q. Diep N. , H. Huynh S. , T. Mai T. , C. Wen H. , T. Yuan C. , C. Chou W. , L. Shen J. , H. Luc H. . Substrate-induced strain in 2D layered GaSe materials grown by molecular beam epitaxy. Sci. Rep., 2020, 10(1): 12972
https://doi.org/10.1038/s41598-020-69946-4
35 Çınar Demir K. , Aydoğan Ş. , Gür E. , Coşkun C. , Aygün Z. . Synthesis and characterization of p-GaSe thin films and the analyses of IV and CV measurements of p-GaSe/p-Si heterojunction under electron irradiation. Radiat. Eff. Defects Solids, 2017, 172(7-8): 650
https://doi.org/10.1080/10420150.2017.1377713
36 Sutter P. , S. French J. , Khosravi Khorashad L. , Argyropoulos C. , Sutter E. . Optoelectronics and nanophotonics of vapor-liquid-solid grown GaSe van der Waals nanoribbons. Nano Lett., 2021, 21(10): 4335
https://doi.org/10.1021/acs.nanolett.1c00891
37 Peng L. , Xu Z. , Liu Z. , Y. Wei Y. , Y. Sun H. , Li Z. , L. Zhao X. , Gao C. . An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun., 2015, 6(1): 5716
https://doi.org/10.1038/ncomms6716
38 L. Tan L. , B. Liu Q. , F. Ding Y. , G. Lin X. , Hu W. , Q. Cai M. , Zhou H. . Effective shape-controlled synthesis of gallium selenide nanosheets by vapor phase deposition. Nano Res., 2020, 13(2): 557
https://doi.org/10.1007/s12274-020-2653-8
39 Zhou N.Y. Wang R.Zhou X.Y. Song H.Xiong X.Ding Y.T. Lu J.Gan L.Y. Zhai T., P-GaSe/N-MoS2 vertical heterostructures synthesized by van der Waals epitaxy for photoresponse modulation, Small 14(7), 1702731 (2018)
40 B. Zhou Y. , Deng B. , Zhou Y. , B. Ren X. , B. Yin J. , H. Jin C. , F. Liu Z. , L. Peng H. . Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid. Nano Lett., 2016, 16(3): 2103
https://doi.org/10.1021/acs.nanolett.6b00324
41 Xiong X. , Zhang Q. , Zhou X. , Jin B. , Q. Li H. , Y. Zhai T. . One-step synthesis of p-type GaSe nanoribbons and their excellent performance in photodetectors and phototransistors. J. Mater. Chem. C, 2016, 4(33): 7817
https://doi.org/10.1039/C6TC02700H
42 Li X. , Dong J. , C. Idrobo J. , A. Puretzky A. , M. Rouleau C. , B. Geohegan D. , Ding F. , Xiao K. . Edge-controlled growth and etching of two-dimensional GaSe monolayers. J. Am. Chem. Soc., 2017, 139(1): 482
https://doi.org/10.1021/jacs.6b11076
43 Li X. , Lin M. , Lin J. , Huang B. , A. Puretzky A. , Ma C. , Wang K. , Zhou W. , T. Pantelides S. , Chi M. , Kravchenko I. , Fowlkes J. , M. Rouleau C. , B. Geohegan D. , Xiao K. . Two-dimensional GaSe-MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Nanomaterials (Basel), 2016, 2: e1501882
44 Han G. , G. Chen Z. , Yang L. , Cheng L. , Jack K. , Drennan J. , Zou J. . Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures. Appl. Phys. Lett., 2013, 103(26): 263105
https://doi.org/10.1063/1.4857655
45 J. Huang W. , Gan L. , Q. Li H. , Ma Y. , Y. Zhai T. . Phase-engineered growth of ultrathin InSe flakes by chemical vapor deposition for high-efficiency second harmonic generation. Chemistry, 2018, 24(58): 15678
https://doi.org/10.1002/chem.201803634
46 Kuhn A. , Chevy A. , Chevalier R. . Crystal structure and interatomic distances in GaSe. Phys. Status Solidi A, 1975, 31(2): 469
https://doi.org/10.1002/pssa.2210310216
47 N. Guo Z. , Zhang H. , B. Lu S. , T. Wang Z. , Y. Tang S. , D. Shao J. , B. Sun Z. , H. Xie H. , Y. Wang H. , F. Yu X. , K. Chu P. . From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater., 2015, 25(45): 6996
https://doi.org/10.1002/adfm.201502902
48 F. Quan S. , Y. Wang Y. , Liang Y. , Jiang J. , Zhong B. , Yu K. , Zhang H. , F. Kan G. . Interference effect on photoluminescence intensity in GaSe up to 200 layers. J. Phys. Chem. C, 2020, 124(18): 10185
https://doi.org/10.1021/acs.jpcc.0c00844
49 Zhou X. , Cheng J. , Zhou Y. , Cao T. , Hong H. , Liao Z. , Wu S. , Peng H. , Liu K. , Yu D. . Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc., 2015, 137(25): 7994
https://doi.org/10.1021/jacs.5b04305
50 Tang L. , Teng C. , Luo Y. , Khan U. , Pan H. , Cai Z. , Zhao Y. , Liu B. , M. Cheng H. . Confined van der Waals epitaxial growth of two-dimensional large single-crystal In2Se3 for flexible broadband photodetectors. Research, 2019, 2019: 2763704
https://doi.org/10.1155/2019/2763704
51 Zhou X. , Zhang Q. , Gan L. , Q. Li H. , Y. Zhai T. . Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater., 2016, 26(24): 4405
https://doi.org/10.1002/adfm.201600318
52 Xia F. , Mueller T. , M. Lin Y. , Valdes-Garcia A. , Avouris P. . Ultrafast graphene photodetector. Nat. Nanotechnol., 2009, 4(12): 839
https://doi.org/10.1038/nnano.2009.292
53 Xia J.Huang X.Z. Liu L.Wang M.Wang L.Huang B.D. Zhu D.J. Li J.Z. Gu C.M. Meng X., CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors, Nanoscale 6(15), 8949 (2014)
54 Hafeez M. , Gan L. , Q. Li H. , Ma Y. , Y. Zhai T. . Chemical vapor deposition synthesis of ultrathin hexagonal rese2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater., 2016, 28(37): 8296
https://doi.org/10.1002/adma.201601977
55 Y. Yan C. , Gan L. , Zhou X. , Guo J. , J. Huang W. , W. Huang J. , Jin B. , Xiong J. , Y. Zhai T. , R. Li Y. . Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater., 2017, 27(39): 1702918
https://doi.org/10.1002/adfm.201702918
56 J. Huang W. , Y. Hou H. , B. Chen X. , Y. Zhai T. . Synthesis of superlattice InSe nanosheets with enhanced electronic and optoelectronic performance. Chem. J. Chin. Univ., 2020, 41(4): 682
57 S. Claro M. , Grzonka J. , Nicoara N. , J. Ferreira P. , Sadewasser S. . Wafer‐scale fabrication of 2D β‐In2Se3 photodetectors. Adv. Opt. Mater., 2021, 9(1): 2001034
https://doi.org/10.1002/adom.202001034
58 Lu Y. , Chen J. , Chen T. , Shu Y. , J. Chang R. , Sheng Y. , Shautsova V. , Mkhize N. , Holdway P. , Bhaskaran H. , H. Warner J. . Controlling defects in continuous 2D GaS films for high-performance wavelength-tunable UV-discriminating photodetectors. Adv. Mater., 2020, 32(7): 1906958
https://doi.org/10.1002/adma.201906958
59 Lei S. , Ge L. , Liu Z. , Najmaei S. , Shi G. , You G. , Lou J. , Vajtai R. , M. Ajayan P. . Synthesis and photoresponse of large GaSe atomic layers. Nano Lett., 2013, 13(6): 2777
https://doi.org/10.1021/nl4010089
[1] Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202-.
[2] Zihan Wang, Yan Yang, Bin Hua, Qingqing Ji. Synthetic two-dimensional electronics for transistor scaling[J]. Front. Phys. , 2023, 18(6): 63601-.
[3] Kaiyue He, Jijie Zhu, Zishun Li, Zhe Chen, Hehe Zhang, Chao Liu, Xu Zhang, Shuo Wang, Peiyi Zhao, Yu Zhou, Shizheng Zhang, Yao Yin, Xiaorui Zheng, Wei Huang, Lin Wang. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel[J]. Front. Phys. , 2023, 18(6): 63305-.
[4] Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53603-.
[5] Jia-En Yang, Hang Xie. Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states[J]. Front. Phys. , 2022, 17(6): 63504-.
[6] Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang. Narrow-bandgap materials for optoelectronics applications[J]. Front. Phys. , 2022, 17(1): 13304-.
[7] Sabir Hussain, Rui Xu, Kunqi Xu, Le Lei, Shuya Xing, Jianfeng Guo, Haoyu Dong, Adeel Liaqat, Rashid Iqbal, Muhammad Ahsan Iqbal, Shangzhi Gu, Feiyue Cao, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Liming Xie, Shanshan Chen, Zhihai Cheng. Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy[J]. Front. Phys. , 2021, 16(5): 53504-.
[8] Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng. Organic single crystal phototransistors: Recent approaches and achievements[J]. Front. Phys. , 2021, 16(4): 43202-.
[9] Ning Zhang, Jiayu Wu, Taoyuan Yu, Jiaqi Lv, He Liu, Xiping Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials[J]. Front. Phys. , 2021, 16(2): 23201-.
[10] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[11] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[12] Shi-Qiang Luo, Ji-Fei Wang, Bin Yang, Yong-Bo Yuan. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device[J]. Front. Phys. , 2019, 14(5): 53401-.
[13] Sabir Hussain, Kunqi Xu, Shili Ye, Le Lei, Xinmeng Liu, Rui Xu, Liming Xie, Zhihai Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy[J]. Front. Phys. , 2019, 14(3): 33401-.
[14] Jun Mao (毛军), Yong Wang (王勇), Zhilong Zheng (郑智龙), Dehui Deng (邓德会). The rise of two-dimensional MoS2 for catalysis[J]. Front. Phys. , 2018, 13(4): 138118-.
[15] Shiru Lin, Yanchao Wang, Zhongfang Chen. Two-dimensional aluminum monoxide nanosheets: A computational study[J]. Front. Phys. , 2018, 13(3): 138109-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed