PT-symmetric operations" /> PT-symmetric operations" /> PT-symmetric operations" />
Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 51302    https://doi.org/10.1007/s11467-023-1280-8
RESEARCH ARTICLE
Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations
Ling-Yu Yao, Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang()
School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
 Download: PDF(4851 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Uncertainty relation lies at the heart of quantum physics, which is one of the fundamental characteristics of quantum mechanics. With the advent of quantum information theory, entropic uncertainty relation was proposed, which plays an important and irreplaceable role in quantum information science. In this work, we attempt to observe dynamics of entropic uncertainty in the presence of quantum memory under two different types of Lee−Yang dephasing channels. It is interesting to find that the dephasing channels have a negative effect on decreasing the uncertainty and the analogous partition function is anti-correlated with the uncertainty. In addition, we here propose an effective strategy to manipulate the uncertainty of interest of the subsystem by performing a parity-time symmetric (PT-symmetric) operation. It is worth noting that the uncertainty of measurement will be reduced to a certain extent by properly modulating the PT-symmetric operations under the considered channels. In this sense, we argue that our explorations offer insight into dynamics of entropic uncertainty in typical Lee−Yang dephasing channels, and might be beneficial to quantum measurement estimation in practical quantum systems.

Keywords entropic uncertainty relation      quantum correlation      ${\color{[RGB]{12,108,100}}{{\cal {PT}}}} $-symmetric operation     
Corresponding Author(s): Dong Wang   
Issue Date: 17 April 2023
 Cite this article:   
Ling-Yu Yao,Li-Juan Li,Xue-Ke Song, et al. Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations[J]. Front. Phys. , 2023, 18(5): 51302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1280-8
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/51302
Fig.1  Two different dephasing channels under a probe(s)-bath system. (a) N dephasing channels where probes are only respectively coupled to their own bath. (b) The dephasing channel where N probes are coupled to one bath together. The red circles mark probes and the blue circles mark bath spins.
Fig.2  QMA entropic uncertainty, the lower bounds and quantum discord (QD) as a function of the dephasing strength in the case of qubit A passing through the dephasing channel where probes are coupled to their own baths, and keep B as a quantum memory. N = 3 and θ=π /2. Here, LHS denotes the left-hand side of Eq. (3), RHS denotes the right-hand side of the inequality, QD represents quantum discord of A and B.
Fig.3  The relationship between the Lee−Yang zeros, the entropic uncertainty and the lower bounds of the probes coupled to their own baths, LHS for the red line, RHS for the black line and the analogous partition function P 2 for the blue line.
Fig.4  Entropic uncertainty with the change of t under the infinite temperature ( β=0) in the case of qubit A passing through the dephasing channel where probes are coupled to their own baths. (a) The number of the probes N = 3 and the twist angle θ=π /2 for the red line, θ=π /4 for the black line. (b) N = 3 for the red line, N = 5 for the blue line, N = 10 for the black line under θ=π /2. The probes-bath coupling constant is η= 0.01.
Fig.5  Entropic uncertainty, the lower bounds and QD as a function of the dephasing strength in the case of qubit A passing through the dephasing channel where N probes are coupled to one bath together, and keep B as a quantum memory. N = 3 and θ=π /2. Here, LHS denotes the left-hand side of Eq. (3), while RHS denotes the right-hand side of the inequality. QD represents quantum discord of A and B.
Fig.6  The relationship between the Lee−Yang zeros, entropic uncertainty and the lower bounds of the probes coupled to own bath together, LHS for the red line, RHS for the black line and the analogous partition function P for the blue line.
Fig.7  Entropic uncertainty with the change of t under the infinite temperature ( β=0) in the case of qubit A passing through the dephasing channel where probes are coupled to one bath together. (a) N = 3 and θ =π/2 for the red line, θ=π/4 for the black line. (b) N = 3 for the red line, N = 5 for the blue line, N = 10 for the black line under θ=π /2. The probes-bath coupling constant is η= 0.01.
Fig.8  QMA entropic uncertainty under the local PT-symmetric operation with the change of t where probes are coupled to their own baths, N = 3 for the red line, N = 5 for the blue line, N = 10 for the black line. All plotted with α=π4 and θ=π/2.
Fig.9  QMA entropic uncertainty under the local PT-symmetric operation with the change of t where probes are coupled to one bath together, N = 3 for the red line, N = 5 for the blue line, N = 10 for the black line. All plotted with α=π4 and θ=π/2.
1 Heisenberg W.. Über den anschaulichen Inhalt der quantentheoretischen kinematik und mechanik. Eur. Phys. J. A, 1927, 43(3−4): 172
https://doi.org/10.1007/BF01397280
2 H. Kennard E.. Zur quantenmechanik einfacher bewegungstypen. Eur. Phys. J. A, 1927, 44(4−5): 326
https://doi.org/10.1007/BF01391200
3 P. Robertson H.. The uncertainty principle. Phys. Rev., 1929, 34(1): 163
https://doi.org/10.1103/PhysRev.34.163
4 Maassen H., B. M. Uffink J.. Generalized entropic uncertainty relations. Phys. Rev. Lett., 1988, 60(12): 1103
https://doi.org/10.1103/PhysRevLett.60.1103
5 Białynicki-Birula I., Mycielski J.. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys., 1975, 44(2): 129
https://doi.org/10.1007/BF01608825
6 Deutsch D.. Uncertainty in quantum measurements. Phys. Rev. Lett., 1983, 50(9): 631
https://doi.org/10.1103/PhysRevLett.50.631
7 Kraus K.. Complementary observables and uncertainty relations. Phys. Rev. D, 1987, 35(10): 3070
https://doi.org/10.1103/PhysRevD.35.3070
8 M. Renes J., C. Boileau J.. Conjectured strong complementary information tradeoff. Phys. Rev. Lett., 2009, 103(2): 020402
https://doi.org/10.1103/PhysRevLett.103.020402
9 Berta M., Christandl M., Colbeck R., M. Renes J., Renner R.. The uncertainty principle in the presence of quantum memory. Nat. Phys., 2010, 6(9): 659
https://doi.org/10.1038/nphys1734
10 F. Li C., S. Xu J., Y. Xu X., Li K., C. Guo G.. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys., 2011, 7(10): 752
https://doi.org/10.1038/nphys2047
11 J. Li L., Ming F., K. Song X., Ye L., Wang D.. Review on entropic uncertainty relations. Acta Physica Sinica, 2022, 71(7): 070302
https://doi.org/10.7498/aps.71.20212197
12 Tomamichel M., Renner R.. Uncertainty relation for smooth entropies. Phys. Rev. Lett., 2011, 106(11): 110506
https://doi.org/10.1103/PhysRevLett.106.110506
13 J. Coles P., Colbeck R., Yu L., Zwolak M.. Uncertainty relations from simple entropic properties. Phys. Rev. Lett., 2012, 108(21): 210405
https://doi.org/10.1103/PhysRevLett.108.210405
14 Zhang J., Zhang Y., S. Yu C.. Rényi entropy uncertainty relation for successive projective measurements. Quantum Inform. Process., 2015, 14(6): 2239
https://doi.org/10.1007/s11128-015-0950-z
15 Schneeloch J., J. Broadbent C., P. Walborn S., G. Cavalcanti E., C. Howell J.. Einstein−Podolsky−Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A, 2013, 87(6): 062103
https://doi.org/10.1103/PhysRevA.87.062103
16 L. Hu M., Fan H.. Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A, 2012, 86(3): 032338
https://doi.org/10.1103/PhysRevA.86.032338
17 L. Hu M., Fan H.. Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A, 2013, 87(2): 022314
https://doi.org/10.1103/PhysRevA.87.022314
18 L. Hu M., Fan H.. Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A, 2013, 88(1): 014105
https://doi.org/10.1103/PhysRevA.88.014105
19 K. Pati A., M. Wilde M., R. U. Devi A., K. Rajagopal A.. Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A, 2012, 86(4): 042105
https://doi.org/10.1103/PhysRevA.86.042105
20 Zhang J., Zhang Y., S. Yu C.. Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep., 2015, 5(1): 11701
https://doi.org/10.1038/srep11701
21 Liu S., Z. Mu L., Fan H.. Entropic uncertainty relations for multiple measurements. Phys. Rev. A, 2015, 91(4): 042133
https://doi.org/10.1103/PhysRevA.91.042133
22 Adabi F., Salimi S., Haseli S.. Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A, 2016, 93(6): 062123
https://doi.org/10.1103/PhysRevA.93.062123
23 Adabi F., Haseli S., Salimi S.. Reducing the entropic uncertainty lower bound in the presence of quantum memory via LOCC. Europhys. Lett., 2016, 115(6): 60004
https://doi.org/10.1209/0295-5075/115/60004
24 E. Rastegin A., Zyczkowski K.. Majorization entropic uncertainty relations for quantum operations. J. Phys. A Math. Theor., 2016, 49(35): 355301
https://doi.org/10.1088/1751-8113/49/35/355301
25 Wang D., J. Huang A., D. Hoehn R., Ming F., Y. Sun W., D. Shi J., Ye L., Kais S.. Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Sci. Rep., 2017, 7(1): 1066
https://doi.org/10.1038/s41598-017-01094-8
26 Baek K., Son W.. Unsharpness of generalized measurement and its effects in entropic uncertainty relations. Sci. Rep., 2016, 6(1): 30228
https://doi.org/10.1038/srep30228
27 Berta M., Wehner S., M. Wilde M.. Entropic uncertainty and measurement reversibility. New J. Phys., 2016, 18(7): 073004
https://doi.org/10.1088/1367-2630/18/7/073004
28 Y. Yang Y., Y. Sun W., N. Shi W., Ming F., Wang D., Ye L.. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys., 2019, 14(3): 31601
https://doi.org/10.1007/s11467-018-0880-1
29 Wang D., Ming F., L. Hu M., Ye L.. Quantum-memory-assisted entropic uncertainty relations. Ann. Phys., 2019, 531(10): 1900124
https://doi.org/10.1002/andp.201900124
30 Ming F., Wang D., G. Fan X., N. Shi W., Ye L., L. Chen J.. Improved tripartite uncertainty relation with quantum memory. Phys. Rev. A, 2020, 102(1): 012206
https://doi.org/10.1103/PhysRevA.102.012206
31 F. Xie B., Wang D., Ye L., L. Chen J.. Optimized entropic uncertainty relations for multiple measurements. Phys. Rev. A, 2021, 104(6): 062204
https://doi.org/10.1103/PhysRevA.104.062204
32 Wu L., Ye L., Wang D.. Tighter generalized entropic uncertainty relations in multipartite systems. Phys. Rev. A, 2022, 106(6): 062219
https://doi.org/10.1103/PhysRevA.106.062219
33 A. Wang Z.F. Xie B.Ming F.T. Wang Y.Wang D. Meng Y.H. Liu Z.S. Tang J.Ye L.F. Li C. C. Guo G.Kais S., Generalized multipartite entropic uncertainty relations: Theory and experiment, arXiv: 2207.12693 (2022)
34 Y. Cheng L., Ming F., Zhao F., Ye L., Wang D.. The uncertainty and quantum correlation of measurement in double quantum-dot systems. Front. Phys., 2022, 17(6): 61504
https://doi.org/10.1007/s11467-022-1178-x
35 J. Li L., Ming F., K. Song X., Ye L., Wang D.. Quantumness and entropic uncertainty in curved space-time. Eur. Phys. J. C, 2022, 82(8): 726
https://doi.org/10.1140/epjc/s10052-022-10687-1
36 L. Song M., J. Li L., K. Song X., Ye L., Wang D.. Environment-mediated entropic uncertainty in charging quantum batteries. Phys. Rev. E, 2022, 106(5): 054107
https://doi.org/10.1103/PhysRevE.106.054107
37 R. Pourkarimi M., Haddadi S.. Quantum-memory-assisted entropic uncertainty, teleportation, and quantum discord under decohering environments. Laser Phys. Lett., 2020, 17(2): 025206
https://doi.org/10.1088/1612-202X/ab6a15
38 Benabdallah F., U. Rahman A., Haddadi S., Daoud M.. Long-time protection of thermal correlations in a hybrid-spin system under random telegraph noise. Phys. Rev. E, 2022, 106(3): 034122
https://doi.org/10.1103/PhysRevE.106.034122
39 R. Pourkarimi M., Haseli S., Haddadi S., Hadipour M.. Scrutinizing entropic uncertainty and quantum discord in an open system under quantum critical environment. Laser Phys. Lett., 2022, 19(6): 065201
https://doi.org/10.1088/1612-202X/ac6c2f
40 Haddadi S., L. Hu M., Khedif Y., Dolatkhah H., R. Pourkarimi M., Daoud M.. Measurement uncertainty and dense coding in a two-qubit system: Combined effects of bosonic reservoir and dipole–dipole interaction. Results Phys., 2022, 32: 105041
https://doi.org/10.1016/j.rinp.2021.105041
41 Vallone G., G. Marangon D., Tomasin M., Villoresi P.. Quantum randomness certified by the uncertainty principle. Phys. Rev. A, 2014, 90(5): 052327
https://doi.org/10.1103/PhysRevA.90.052327
42 N. Yang C., D. Lee T.. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev., 1952, 87(3): 404
https://doi.org/10.1103/PhysRev.87.404
43 D. Lee T., N. Yang C.. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev., 1952, 87(3): 410
https://doi.org/10.1103/PhysRev.87.410
44 E. Fisher M.. Yang−Lee edge singularity and ϕ3 field theory. Phys. Rev. Lett., 1978, 40(25): 1610
https://doi.org/10.1103/PhysRevLett.40.1610
45 J. Kortman P., B. Griffiths R.. Density of zeros on the Lee−Yang circle for two Ising ferromagnets. Phys. Rev. Lett., 1971, 27(21): 1439
https://doi.org/10.1103/PhysRevLett.27.1439
46 B. Wei B., B. Liu R.. Lee−Yang zeros and critical times in decoherence of a probe spin coupled to a bath. Phys. Rev. Lett., 2012, 109(18): 185701
https://doi.org/10.1103/PhysRevLett.109.185701
47 Schlosshauer M.. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys., 2005, 76(4): 1267
https://doi.org/10.1103/RevModPhys.76.1267
48 B. Liu R., Yao W., J. Sham L.. Control of electron spin decoherence caused by electron–nuclear spin dynamics in a quantum dot. New J. Phys., 2007, 9(7): 226
https://doi.org/10.1088/1367-2630/9/7/226
49 Białynicki-Birula I.. Rényi entropy and the uncertainty relations. AIP Conf. Proc., 2007, 889: 52
https://doi.org/10.1063/1.2713446
50 G. Su Y., B. Liang H., G. Wang X.. Spin squeezing and concurrence under Lee−Yang dephasing channels. Phys. Rev. A, 2020, 102(5): 052423
https://doi.org/10.1103/PhysRevA.102.052423
51 Yin X., Ma J., Wang X., Nori F.. Spin squeezing under non-Markovian channels by the hierarchy equation method. Phys. Rev. A, 2012, 86(1): 012308
https://doi.org/10.1103/PhysRevA.86.012308
52 Wang X., C. Sanders B.. Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A, 2003, 68(1): 012101
https://doi.org/10.1103/PhysRevA.68.012101
53 L. Chen J., L. Ren C., B. Chen C., J. Ye X., K. Pati A.. Bell’s nonlocality can be detected by the violation of Einstein−Podolsky−Rosen steering inequality. Sci. Rep., 2016, 6(1): 39063
https://doi.org/10.1038/srep39063
54 Sun K., J. Ye X., S. Xu J., Y. Xu X., S. Tang J., C. Wu Y., L. Chen J., F. Li C., C. Guo G.. Experimental quantification of asymmetric Einstein−Podolsky−Rosen steering. Phys. Rev. Lett., 2016, 116(16): 160404
https://doi.org/10.1103/PhysRevLett.116.160404
55 R. Pourkarimi M., Haddadi S., Haseli S.. Exploration of entropic uncertainty bound in a symmetric multi-qubit system under noisy channels. Phys. Scr., 2020, 96(1): 015101
https://doi.org/10.1088/1402-4896/abc505
56 M. Bender C., Boettcher S.. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
https://doi.org/10.1103/PhysRevLett.80.5243
57 M. Bender C., C. Brody D., F. Jones H.. Complex extension of quantum mechanics. Phys. Rev. Lett., 2002, 89(27): 270401
https://doi.org/10.1103/PhysRevLett.89.270401
58 Günther U., F. Samsonov B.. Naimark-dilated PT-symmetric brachistochrone. Phys. Rev. Lett., 2008, 101(23): 230404
https://doi.org/10.1103/PhysRevLett.101.230404
[1] Peng-Fei Wei, Qi Luo, Huang-Qiu-Chen Wang, Shao-Jie Xiong, Bo Liu, Zhe Sun. Local quantum Fisher information and quantum correlation in the mixed-spin Heisenberg XXZ chain[J]. Front. Phys. , 2024, 19(2): 21201-.
[2] Long-Yu Cheng, Fei Ming, Fa Zhao, Liu Ye, Dong Wang. The uncertainty and quantum correlation of measurement in double quantum-dot systems[J]. Front. Phys. , 2022, 17(6): 61504-.
[3] Guang-Yong Zhou, Lin-Jian Huang, Jun-Ya Pan, Li-Yun Hu, Jie-Hui Huang. Quantifying quantum correlation via quantum coherence[J]. Front. Phys. , 2018, 13(4): 130701-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed