|
|
|
Manipulating the measured uncertainty under Lee−Yang dephasing channels through local -symmetric operations |
Ling-Yu Yao, Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang( ) |
| School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China |
|
|
|
|
Abstract Uncertainty relation lies at the heart of quantum physics, which is one of the fundamental characteristics of quantum mechanics. With the advent of quantum information theory, entropic uncertainty relation was proposed, which plays an important and irreplaceable role in quantum information science. In this work, we attempt to observe dynamics of entropic uncertainty in the presence of quantum memory under two different types of Lee−Yang dephasing channels. It is interesting to find that the dephasing channels have a negative effect on decreasing the uncertainty and the analogous partition function is anti-correlated with the uncertainty. In addition, we here propose an effective strategy to manipulate the uncertainty of interest of the subsystem by performing a parity-time symmetric (-symmetric) operation. It is worth noting that the uncertainty of measurement will be reduced to a certain extent by properly modulating the -symmetric operations under the considered channels. In this sense, we argue that our explorations offer insight into dynamics of entropic uncertainty in typical Lee−Yang dephasing channels, and might be beneficial to quantum measurement estimation in practical quantum systems.
|
| Keywords
entropic uncertainty relation
quantum correlation
${\color{[RGB]{12,108,100}}{{\cal {PT}}}} $-symmetric operation
|
|
Corresponding Author(s):
Dong Wang
|
|
Issue Date: 17 April 2023
|
|
| 1 |
Heisenberg W.. Über den anschaulichen Inhalt der quantentheoretischen kinematik und mechanik. Eur. Phys. J. A, 1927, 43(3−4): 172
https://doi.org/10.1007/BF01397280
|
| 2 |
H. Kennard E.. Zur quantenmechanik einfacher bewegungstypen. Eur. Phys. J. A, 1927, 44(4−5): 326
https://doi.org/10.1007/BF01391200
|
| 3 |
P. Robertson H.. The uncertainty principle. Phys. Rev., 1929, 34(1): 163
https://doi.org/10.1103/PhysRev.34.163
|
| 4 |
Maassen H., B. M. Uffink J.. Generalized entropic uncertainty relations. Phys. Rev. Lett., 1988, 60(12): 1103
https://doi.org/10.1103/PhysRevLett.60.1103
|
| 5 |
Białynicki-Birula I., Mycielski J.. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys., 1975, 44(2): 129
https://doi.org/10.1007/BF01608825
|
| 6 |
Deutsch D.. Uncertainty in quantum measurements. Phys. Rev. Lett., 1983, 50(9): 631
https://doi.org/10.1103/PhysRevLett.50.631
|
| 7 |
Kraus K.. Complementary observables and uncertainty relations. Phys. Rev. D, 1987, 35(10): 3070
https://doi.org/10.1103/PhysRevD.35.3070
|
| 8 |
M. Renes J., C. Boileau J.. Conjectured strong complementary information tradeoff. Phys. Rev. Lett., 2009, 103(2): 020402
https://doi.org/10.1103/PhysRevLett.103.020402
|
| 9 |
Berta M., Christandl M., Colbeck R., M. Renes J., Renner R.. The uncertainty principle in the presence of quantum memory. Nat. Phys., 2010, 6(9): 659
https://doi.org/10.1038/nphys1734
|
| 10 |
F. Li C., S. Xu J., Y. Xu X., Li K., C. Guo G.. Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys., 2011, 7(10): 752
https://doi.org/10.1038/nphys2047
|
| 11 |
J. Li L., Ming F., K. Song X., Ye L., Wang D.. Review on entropic uncertainty relations. Acta Physica Sinica, 2022, 71(7): 070302
https://doi.org/10.7498/aps.71.20212197
|
| 12 |
Tomamichel M., Renner R.. Uncertainty relation for smooth entropies. Phys. Rev. Lett., 2011, 106(11): 110506
https://doi.org/10.1103/PhysRevLett.106.110506
|
| 13 |
J. Coles P., Colbeck R., Yu L., Zwolak M.. Uncertainty relations from simple entropic properties. Phys. Rev. Lett., 2012, 108(21): 210405
https://doi.org/10.1103/PhysRevLett.108.210405
|
| 14 |
Zhang J., Zhang Y., S. Yu C.. Rényi entropy uncertainty relation for successive projective measurements. Quantum Inform. Process., 2015, 14(6): 2239
https://doi.org/10.1007/s11128-015-0950-z
|
| 15 |
Schneeloch J., J. Broadbent C., P. Walborn S., G. Cavalcanti E., C. Howell J.. Einstein−Podolsky−Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A, 2013, 87(6): 062103
https://doi.org/10.1103/PhysRevA.87.062103
|
| 16 |
L. Hu M., Fan H.. Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A, 2012, 86(3): 032338
https://doi.org/10.1103/PhysRevA.86.032338
|
| 17 |
L. Hu M., Fan H.. Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A, 2013, 87(2): 022314
https://doi.org/10.1103/PhysRevA.87.022314
|
| 18 |
L. Hu M., Fan H.. Upper bound and shareability of quantum discord based on entropic uncertainty relations. Phys. Rev. A, 2013, 88(1): 014105
https://doi.org/10.1103/PhysRevA.88.014105
|
| 19 |
K. Pati A., M. Wilde M., R. U. Devi A., K. Rajagopal A.. Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A, 2012, 86(4): 042105
https://doi.org/10.1103/PhysRevA.86.042105
|
| 20 |
Zhang J., Zhang Y., S. Yu C.. Entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep., 2015, 5(1): 11701
https://doi.org/10.1038/srep11701
|
| 21 |
Liu S., Z. Mu L., Fan H.. Entropic uncertainty relations for multiple measurements. Phys. Rev. A, 2015, 91(4): 042133
https://doi.org/10.1103/PhysRevA.91.042133
|
| 22 |
Adabi F., Salimi S., Haseli S.. Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A, 2016, 93(6): 062123
https://doi.org/10.1103/PhysRevA.93.062123
|
| 23 |
Adabi F., Haseli S., Salimi S.. Reducing the entropic uncertainty lower bound in the presence of quantum memory via LOCC. Europhys. Lett., 2016, 115(6): 60004
https://doi.org/10.1209/0295-5075/115/60004
|
| 24 |
E. Rastegin A., Zyczkowski K.. Majorization entropic uncertainty relations for quantum operations. J. Phys. A Math. Theor., 2016, 49(35): 355301
https://doi.org/10.1088/1751-8113/49/35/355301
|
| 25 |
Wang D., J. Huang A., D. Hoehn R., Ming F., Y. Sun W., D. Shi J., Ye L., Kais S.. Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Sci. Rep., 2017, 7(1): 1066
https://doi.org/10.1038/s41598-017-01094-8
|
| 26 |
Baek K., Son W.. Unsharpness of generalized measurement and its effects in entropic uncertainty relations. Sci. Rep., 2016, 6(1): 30228
https://doi.org/10.1038/srep30228
|
| 27 |
Berta M., Wehner S., M. Wilde M.. Entropic uncertainty and measurement reversibility. New J. Phys., 2016, 18(7): 073004
https://doi.org/10.1088/1367-2630/18/7/073004
|
| 28 |
Y. Yang Y., Y. Sun W., N. Shi W., Ming F., Wang D., Ye L.. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions. Front. Phys., 2019, 14(3): 31601
https://doi.org/10.1007/s11467-018-0880-1
|
| 29 |
Wang D., Ming F., L. Hu M., Ye L.. Quantum-memory-assisted entropic uncertainty relations. Ann. Phys., 2019, 531(10): 1900124
https://doi.org/10.1002/andp.201900124
|
| 30 |
Ming F., Wang D., G. Fan X., N. Shi W., Ye L., L. Chen J.. Improved tripartite uncertainty relation with quantum memory. Phys. Rev. A, 2020, 102(1): 012206
https://doi.org/10.1103/PhysRevA.102.012206
|
| 31 |
F. Xie B., Wang D., Ye L., L. Chen J.. Optimized entropic uncertainty relations for multiple measurements. Phys. Rev. A, 2021, 104(6): 062204
https://doi.org/10.1103/PhysRevA.104.062204
|
| 32 |
Wu L., Ye L., Wang D.. Tighter generalized entropic uncertainty relations in multipartite systems. Phys. Rev. A, 2022, 106(6): 062219
https://doi.org/10.1103/PhysRevA.106.062219
|
| 33 |
A. Wang Z.F. Xie B.Ming F.T. Wang Y.Wang D. Meng Y.H. Liu Z.S. Tang J.Ye L.F. Li C. C. Guo G.Kais S., Generalized multipartite entropic uncertainty relations: Theory and experiment, arXiv: 2207.12693 (2022)
|
| 34 |
Y. Cheng L., Ming F., Zhao F., Ye L., Wang D.. The uncertainty and quantum correlation of measurement in double quantum-dot systems. Front. Phys., 2022, 17(6): 61504
https://doi.org/10.1007/s11467-022-1178-x
|
| 35 |
J. Li L., Ming F., K. Song X., Ye L., Wang D.. Quantumness and entropic uncertainty in curved space-time. Eur. Phys. J. C, 2022, 82(8): 726
https://doi.org/10.1140/epjc/s10052-022-10687-1
|
| 36 |
L. Song M., J. Li L., K. Song X., Ye L., Wang D.. Environment-mediated entropic uncertainty in charging quantum batteries. Phys. Rev. E, 2022, 106(5): 054107
https://doi.org/10.1103/PhysRevE.106.054107
|
| 37 |
R. Pourkarimi M., Haddadi S.. Quantum-memory-assisted entropic uncertainty, teleportation, and quantum discord under decohering environments. Laser Phys. Lett., 2020, 17(2): 025206
https://doi.org/10.1088/1612-202X/ab6a15
|
| 38 |
Benabdallah F., U. Rahman A., Haddadi S., Daoud M.. Long-time protection of thermal correlations in a hybrid-spin system under random telegraph noise. Phys. Rev. E, 2022, 106(3): 034122
https://doi.org/10.1103/PhysRevE.106.034122
|
| 39 |
R. Pourkarimi M., Haseli S., Haddadi S., Hadipour M.. Scrutinizing entropic uncertainty and quantum discord in an open system under quantum critical environment. Laser Phys. Lett., 2022, 19(6): 065201
https://doi.org/10.1088/1612-202X/ac6c2f
|
| 40 |
Haddadi S., L. Hu M., Khedif Y., Dolatkhah H., R. Pourkarimi M., Daoud M.. Measurement uncertainty and dense coding in a two-qubit system: Combined effects of bosonic reservoir and dipole–dipole interaction. Results Phys., 2022, 32: 105041
https://doi.org/10.1016/j.rinp.2021.105041
|
| 41 |
Vallone G., G. Marangon D., Tomasin M., Villoresi P.. Quantum randomness certified by the uncertainty principle. Phys. Rev. A, 2014, 90(5): 052327
https://doi.org/10.1103/PhysRevA.90.052327
|
| 42 |
N. Yang C., D. Lee T.. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev., 1952, 87(3): 404
https://doi.org/10.1103/PhysRev.87.404
|
| 43 |
D. Lee T., N. Yang C.. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev., 1952, 87(3): 410
https://doi.org/10.1103/PhysRev.87.410
|
| 44 |
E. Fisher M.. Yang−Lee edge singularity and ϕ3 field theory. Phys. Rev. Lett., 1978, 40(25): 1610
https://doi.org/10.1103/PhysRevLett.40.1610
|
| 45 |
J. Kortman P., B. Griffiths R.. Density of zeros on the Lee−Yang circle for two Ising ferromagnets. Phys. Rev. Lett., 1971, 27(21): 1439
https://doi.org/10.1103/PhysRevLett.27.1439
|
| 46 |
B. Wei B., B. Liu R.. Lee−Yang zeros and critical times in decoherence of a probe spin coupled to a bath. Phys. Rev. Lett., 2012, 109(18): 185701
https://doi.org/10.1103/PhysRevLett.109.185701
|
| 47 |
Schlosshauer M.. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys., 2005, 76(4): 1267
https://doi.org/10.1103/RevModPhys.76.1267
|
| 48 |
B. Liu R., Yao W., J. Sham L.. Control of electron spin decoherence caused by electron–nuclear spin dynamics in a quantum dot. New J. Phys., 2007, 9(7): 226
https://doi.org/10.1088/1367-2630/9/7/226
|
| 49 |
Białynicki-Birula I.. Rényi entropy and the uncertainty relations. AIP Conf. Proc., 2007, 889: 52
https://doi.org/10.1063/1.2713446
|
| 50 |
G. Su Y., B. Liang H., G. Wang X.. Spin squeezing and concurrence under Lee−Yang dephasing channels. Phys. Rev. A, 2020, 102(5): 052423
https://doi.org/10.1103/PhysRevA.102.052423
|
| 51 |
Yin X., Ma J., Wang X., Nori F.. Spin squeezing under non-Markovian channels by the hierarchy equation method. Phys. Rev. A, 2012, 86(1): 012308
https://doi.org/10.1103/PhysRevA.86.012308
|
| 52 |
Wang X., C. Sanders B.. Spin squeezing and pairwise entanglement for symmetric multiqubit states. Phys. Rev. A, 2003, 68(1): 012101
https://doi.org/10.1103/PhysRevA.68.012101
|
| 53 |
L. Chen J., L. Ren C., B. Chen C., J. Ye X., K. Pati A.. Bell’s nonlocality can be detected by the violation of Einstein−Podolsky−Rosen steering inequality. Sci. Rep., 2016, 6(1): 39063
https://doi.org/10.1038/srep39063
|
| 54 |
Sun K., J. Ye X., S. Xu J., Y. Xu X., S. Tang J., C. Wu Y., L. Chen J., F. Li C., C. Guo G.. Experimental quantification of asymmetric Einstein−Podolsky−Rosen steering. Phys. Rev. Lett., 2016, 116(16): 160404
https://doi.org/10.1103/PhysRevLett.116.160404
|
| 55 |
R. Pourkarimi M., Haddadi S., Haseli S.. Exploration of entropic uncertainty bound in a symmetric multi-qubit system under noisy channels. Phys. Scr., 2020, 96(1): 015101
https://doi.org/10.1088/1402-4896/abc505
|
| 56 |
M. Bender C., Boettcher S.. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
https://doi.org/10.1103/PhysRevLett.80.5243
|
| 57 |
M. Bender C., C. Brody D., F. Jones H.. Complex extension of quantum mechanics. Phys. Rev. Lett., 2002, 89(27): 270401
https://doi.org/10.1103/PhysRevLett.89.270401
|
| 58 |
Günther U., F. Samsonov B.. Naimark-dilated PT-symmetric brachistochrone. Phys. Rev. Lett., 2008, 101(23): 230404
https://doi.org/10.1103/PhysRevLett.101.230404
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|