Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 53302    https://doi.org/10.1007/s11467-023-1285-3
RESEARCH ARTICLE
Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties
Guibo Zheng1, Shuixian Qu1, Wenzhe Zhou1(), Fangping Ouyang1,2,3()
1. School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China
2. School of Physics and Technology, Xinjiang University, Urumqi 830046, China
3. State Key Laboratory of Powder Metallurgy, and Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
 Download: PDF(5798 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Materials with large intrinsic valley splitting and high Curie temperature are a huge advantage for studying valleytronics and practical applications. In this work, using first-principles calculations, a new Janus TaNF monolayer is predicted to exhibit excellent piezoelectric properties and intrinsic valley splitting, resulting from the spontaneous spin polarization, the spatial inversion symmetry breaking and strong spin−orbit coupling (SOC). TaNF is also a potential two-dimensional (2D) magnetic material due to its high Curie temperature and large magnetic anisotropy energy. The effective control of the band gap of TaNF can be achieved by biaxial strain, which can transform TaNF monolayer from semiconductor to semi-metal. The magnitude of valley splitting at the CBM can be effectively tuned by biaxial strain due to the changes of orbital composition at the valleys. The magnetic anisotropy energy (MAE) can be manipulated by changing the energy and occupation (unoccupation) states of d orbital compositions through biaxial strain. In addition, Curie temperature reaches 373 K under only −3% biaxial strain, indicating that Janus TaNF monolayer can be used at high temperatures for spintronic and valleytronic devices.

Keywords Janus      valley splitting      Curie temperature      magnetic anisotropy energy      first-principles calculations     
Corresponding Author(s): Wenzhe Zhou,Fangping Ouyang   
Issue Date: 21 April 2023
 Cite this article:   
Guibo Zheng,Shuixian Qu,Wenzhe Zhou, et al. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1285-3
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/53302
Fig.1  (a) Top and (b) side views of the crystal structure of the Janus TaNF monolayer. The bond length of Ta−F is longer than that of Ta−N (l1 > l2), thus the distance between different sublayers d1 is longer than d2. (c) Phonon dispersion and (d) variation of total free energy with time during the ab initio molecular dynamics simulation (AIMD) for Janus TaNF monolayer at 300 K. The inset in (d) corresponds the snapshot taken from the end of the simulation. (e) Top views of the spin-polarized charge density of Janus TaNF monolayer. The spin-up and spin-down charge are indicated by red and green isosurfaces. (f) The differential charge density of F−Ta−N cross section, where the red and blue represent depletion and accumulation of electrons respectively.
a, b (Å) l1 (Å) l2 (Å) d1 (Å) d2 (Å) C11 (N/m) C12 (N/m) Eg (eV)
TaNF 3.355 2.307 2.028 1.248 0.600 102.9 46.6 0.246
Tab.1  Structural parameters and band gap of Janus TaNF monolayer. The lattice constant (a = b), the bond length of Ta−F (l1) and Ta−N (l2), the distance between the sublayers of Ta, F(d1) and Ta, N (d2) and elastic constants (C11 and C12) are shown. The band gap of Janus TaNF monolayer within PBE + SOC are also shown.
e11 (10−10 C/m) e31 (10−10 C/m) d11 (pm/V) d31 (pm/V)
TaNF 3.63 0.64 6.27 0.33
MoS2 [48] 3.64 3.73
MoSe2 [48] 3.92 4.72
MoSSe [49] 3.74 0.032 3.76 0.02
MoSTe [49] 4.53 0.038 5.04 0.028
Tab.2  Piezoelectric coefficients (e11, e31, d11, and d31) of Janus TaNF monolayer, along with the ones of some typical TMDs 2D materials.
Fig.2  (a) The spin projected band with SOC and (b) orbital projected band structure of Janus TaNF monolayer. The blue and red solid dots correspond to spin-up and spin-down of z direction.
Fig.3  (a) Dependence of valley splitting (ΔK−K′) and band gap (Eg) as functions of biaxial strain in the Janus TaNF monolayer. (b) The orbital components of K valley as functions of biaxial strain.
Fig.4  Atomic arrangement of magnetic moments for (a) ferromagnetic and (b, c) antiferromagnetic orders of Janus TaNF monolayer. (b) The schematic plot of magnetic bond energies EF,1 and EA,1 between the nearest Ta−Ta moments, and EF,2 and EA,2 between the next-nearest Ta−Ta moments. The spin-up and spin-down charge are indicated by yellow and green isosurfaces.
Fig.5  The variations of exchange interaction parameters J1 and J2 (a), MAE and Curie temperature Tc (b) and projected orbital coupling matrix elements of Ta atoms (c) of the Janus TaNF monolayer as a function of the biaxial strain. (d) The d orbital PDOS near the Fermi level of Ta atom of Janus TaNF monolayer under a −2%, 0% and 3% biaxial strain. The black solid line represents Fermi level, and the two vertical black dashed lines show the bottom of spin-up and spin-down unoccupied states.
Fig.6  (a) The d-orbital-projected-MAE of Ta atom for Janus TaNF monolayer. (b) Temperature variation of the magnetic moment and magnetic susceptibility for the Janus TaNF monolayer.
1 R. Schaibley J., Yu H., Clark G., Rivera P., S. Ross J., L. Seyler K., Yao W., Xu X.. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
2 P. Feng Y., Shen L., Yang M., Wang A., Zeng M., Wu Q., Chintalapati S., R. Chang C.. Prospects of spintronics based on 2D materials. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(5): e1313
https://doi.org/10.1002/wcms.1313
3 Y. Wang Y., P. Li F., Wei W., B. Huang B., Dai Y.. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
https://doi.org/10.1007/s11467-020-0991-3
4 Y. Gao P., Gao B., H. Lu S., Lv J., C. Wang Y., M. Ming Y.. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys., 2022, 17(2): 23203
https://doi.org/10.1007/s11467-021-1109-2
5 Z. Lu H., Yao W., Xiao D., Q. Shen S.. Intervalley scattering and localization behaviors of spin-valley coupled Dirac fermions. Phys. Rev. Lett., 2013, 110(1): 016806
https://doi.org/10.1103/PhysRevLett.110.016806
6 L. Sanchez O., Ovchinnikov D., Misra S., Allain A., Kis A.. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett., 2016, 16(9): 5792
https://doi.org/10.1021/acs.nanolett.6b02527
7 Zhou W., Chen J., Yang Z., Liu J., Ouyang F.. Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe. Phys. Rev. B, 2019, 99(7): 075160
https://doi.org/10.1103/PhysRevB.99.075160
8 C. Zhou Z., Y. Yang F., Wang S., Wang L., F. Wang S., Wang C., Xie Y., Liu Q.. Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
https://doi.org/10.1007/s11467-021-1114-5
9 X. Wen J.Wang H.J. Chen H.Z. Deng S.S. Xu N., Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2, Chin. Phys. B 27 09610 (2018)
10 P. Liu Y., J. Gao Y., Y. Zhang S., Yu J, W. Liu He. Valleytronics in transition metal dichalcogenides materials. Nano Res., 2019, 12: 2695
https://doi.org/10.1007/s12274-019-2497-2
11 Li X., Luo N., Chen Y., Zou X., Zhu H.. Real-time observing ultrafast carrier and phonon dynamics in colloidal tin chalcogenide van der Waals nanosheets. J. Phys. Chem. Lett., 2019, 10(13): 3750
https://doi.org/10.1021/acs.jpclett.9b01470
12 X. Nguyen P., K. Tse W.. Photoinduced anomalous Hall effect in two-dimensional transition metal dichalcogenides. Phys. Rev. B, 2021, 103(12): 125420
https://doi.org/10.1103/PhysRevB.103.125420
13 Peng R., Ma Y., Zhang S., Huang B., Dai Y.. Valley polarization in Janus single-layer MoSSe via magnetic doping. J. Phys. Chem. Lett., 2018, 9(13): 3612
https://doi.org/10.1021/acs.jpclett.8b01625
14 T. Nguyen L., P. Dhakal K., Lee Y., Choi W., D. Nguyen T., Hong C., H. Luong D., M. Kim Y., Kim J., Lee M., Choi T., J. Heinrich A., H. Kim J., Lee D., L. Duong D., H. Lee Y.. Spin-selective hole–exciton coupling in a v-doped WSe2 ferromagnetic semiconductor at room temperature. ACS Nano, 2021, 15(12): 20267
https://doi.org/10.1021/acsnano.1c08375
15 Zhou W., Yang Z., Li A., Long M., Ouyang F.. Spin and valley splittings in Janus monolayer WSSe on a MnO(111) surface: Large effective Zeeman field and opening of a helical gap. Phys. Rev. B, 2020, 101(4): 045113
https://doi.org/10.1103/PhysRevB.101.045113
16 Zhao X., Liu F., Ren J., Qu F.. Valleytronic and magneto-optical properties of Janus and conventional TiBrI/CrI3 and TiX2/CrI3 (X = Br, I) heterostructures. Phys. Rev. B, 2021, 104(8): 085119
https://doi.org/10.1103/PhysRevB.104.085119
17 D. Zhu X., Q. Chen Y., Liu Z., L. Han Y., H. Qiao Z.. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302
https://doi.org/10.1007/s11467-022-1228-4
18 B. Zheng G., Zhang B., M. Duan W. Z. Zhou H., P. Ouyang F.. Magnetic proximity controlled Rashba and valley splittings in monolayer Janus ZrNX/VTe2 (X = Br, I) heterostructure. Physica E, 2023, 148: 115616
https://doi.org/10.1016/j.physe.2022.115616
19 J. Zou C., X. Cong C., Z. Shang J., Zhao C., Eginligil M., S. Wu L., Chen Y., B. Zhang H., Feng S., Zhang J., Zeng H., Huang W., Yu T.. Probing magnetic-proximity-effect enlarged valley splitting in monolayer WSe2 by photoluminescence. Nano Res., 2018, 11: 6252
https://doi.org/10.1007/s12274-018-2148-z
20 Y. Tong W., J. Gong S., Wan X., G. Duan C.. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 2016, 7(1): 13612
https://doi.org/10.1038/ncomms13612
21 W. Shen X., Y. Tong W., J. Gong S., G. Duan C.. Electrically tunable polarizer based on 2D orthorhombic ferrovalley materials. 2D Mater., 2018, 5: 011001
https://doi.org/10.1088/2053-1583/aa8d3b
22 Zhang F., Mi W., Wang X.. Tunable valley and spin splitting in 2H-VSe2/BiFeO3 (111) triferroic heterostructures. Nanoscale, 2019, 11(21): 10329
https://doi.org/10.1039/C9NR01171D
23 Zhu Y., Cui Q., Ga Y., Liang J., Yang H.. Anomalous valley Hall effect in A-type antiferromagnetic van der Waals heterostructures. Phys. Rev. B, 2022, 105(13): 134418
https://doi.org/10.1103/PhysRevB.105.134418
24 Y. Tong W., G. Duan C.. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers. npj Quantum Mater., 2017, 2: 47
https://doi.org/10.1038/s41535-017-0051-6
25 Hu H., Y. Tong W., H. Shen Y., G. Duan C.. Electrical control of the valley degree of freedom in 2D ferroelectric/antiferromagnetic heterostructures. J. Mater. Chem. C, 2020, 8(24): 8098
https://doi.org/10.1039/D0TC01680B
26 Zhang D., Li A., Chen X., Zhou W., Ouyang F., Tuning valley splitting, magnetic anisotropy of multiferroic CuMP2X6 (M = Cr, V; X = S. Se) monolayer. Phys. Rev. B, 2022, 105(8): 085408
https://doi.org/10.1103/PhysRevB.105.085408
27 Sheng K., K. Yuan H., Y. Wang Z., Monolayer gadolinium halides, GdX2 (X = F. Br): Intrinsic ferrovalley materials with spontaneous spin and valley polarizations. Phys. Chem. Chem. Phys., 2022, 24(6): 3865
https://doi.org/10.1039/D1CP05097D
28 Huang B., Liu W., Wu X., Z. Li S., Li H., Yang Z., B. Zhang W., Large spontaneous valley polarization, high magnetic transition temperature in stable two-dimensional ferrovalley YX2 (X = I. Br, and Cl). Phys. Rev. B, 2023, 107(4): 045423
https://doi.org/10.1103/PhysRevB.107.045423
29 Hu H., Y. Tong W., H. Shen Y., Wan X., G. Duan C.. Concepts of the half-valley-metal and quantum anomalous valley Hall effect. npj Comput. Mater., 2020, 6: 129
https://doi.org/10.1038/s41524-020-00397-1
30 J. Sun R., J. Lu J., W. Zhao X., C. Hu G., B. Yuan X., F. Ren J., valley polarization induced by super-exchange effects in HfNX (X = Cl Robust. Br, I)/FeCl2 two-dimensional ferrovalley heterostructures. Appl. Phys. Lett., 2022, 120(6): 063103
https://doi.org/10.1063/5.0080466
31 D. Guo S., L. Tao Y., Q. Mu W., G. Liu B.. Correlation-driven threefold topological phase transition in monolayer OsBr2. Front. Phys., 2023, 18(3): 33304
https://doi.org/10.1007/s11467-022-1243-5
32 F. Zhao Y., H. Shen Y., Hu H., Y. Tong W., G. Duan C.. Combined piezoelectricity and ferrovalley properties in Janus monolayer VClBr. Phys. Rev. B, 2021, 103(11): 115124
https://doi.org/10.1103/PhysRevB.103.115124
33 Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
34 Liu L., Ren X., Xie J., Cheng B., Liu W., An T., Qin H., Hu J.. Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci., 2019, 480: 300
https://doi.org/10.1016/j.apsusc.2019.02.203
35 E. Blöchl P.. Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
36 Kresse G., Furthmüller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
37 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
38 Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
39 Dudarev S., Botton G., Savrasov S., Humphreys C., Sutton A.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 1998, 57(3): 1505
https://doi.org/10.1103/PhysRevB.57.1505
40 J. Kulik H., Cococcioni M., A. Scherlis D., Marzari N.. Density functional theory in transition-metal chemistry: A self-consistent Hubbard U approach. Phys. Rev. Lett., 2006, 97(10): 103001
https://doi.org/10.1103/PhysRevLett.97.103001
41 J. Zhou J.Park J.Timrov I.Floris A.Cococcioni M.Marzari N.Bernardi M., Ab initio electron-phonon interactions in correlated electron systems, Phys. Rev. Lett. 127(12), 126404 (2021)
42 H. Shim J., Kang H., Lee S., M. Kim Y.. Utilization of electron-beam irradiation under atomic-scale chemical mapping for evaluating the cycling performance of lithium transition metal oxide cathodes. J. Mater. Chem. A, 2021, 9(4): 2429
https://doi.org/10.1039/D0TA10415A
43 Yang Y., Li J., Zhang C., Yang Z., Sun P., Liu S., Cao Q., insights into nitrogen-doped graphene-supported Fe Theoretical. Co, and Ni as single-atom catalysts for CO2 reduction reaction. J. Phys. Chem. C, 2022, 126(9): 4338
https://doi.org/10.1021/acs.jpcc.1c09740
44 Togo A., Tanaka I.. First principles phonon calculations in materials science. Scr. Mater., 2015, 108: 1
https://doi.org/10.1016/j.scriptamat.2015.07.021
45 N. Barnett R., Landman U.. Born−Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. Phys. Rev. B, 1993, 48(4): 2081
https://doi.org/10.1103/PhysRevB.48.2081
46 Wang P., Zong Y., Liu H., Wen H., B. Wu H., B. Xia J.. Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J. Mater. Chem. C, 2021, 9(14): 4989
https://doi.org/10.1039/D1TC00318F
47 Choopani S., M. Alyörük M.. Piezoelectricity in two-dimensional aluminum, boron and Janus aluminum-boron monochalcogenide monolayers. J. Phys. D Appl. Phys., 2022, 55(15): 155301
https://doi.org/10.1088/1361-6463/ac4769
48 A. N. Duerloo K., T. Ong M., J. Reed E.. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett., 2012, 3(19): 2871
https://doi.org/10.1021/jz3012436
49 Dong L., Lou J., B. Shenoy V.. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11(8): 8242
https://doi.org/10.1021/acsnano.7b03313
50 K. Mohanta M., Seksaria H., De Sarkar A.. Insights into CrS2 monolayer and n-CrS2/p-HfN2 interface for low-power digital and analog nanoelectronics. Appl. Surf. Sci., 2022, 579: 152211
https://doi.org/10.1016/j.apsusc.2021.152211
51 Feng S., Mi W.. Strain and interlayer coupling tailored magnetic properties and valley splitting in layered ferrovalley 2H-VSe2. Appl. Surf. Sci., 2018, 458: 191
https://doi.org/10.1016/j.apsusc.2018.07.070
52 J. Sun R., Liu R., J. Lu J., W. Zhao X., C. Hu G., B. Yuan X., F. Ren J., switching of anomalous valley Hall effect in ferrovalley Janus 1T-CrOX (X = F Reversible. Br, I) and the multiferroic heterostructure CrOX/In2Se3. Phys. Rev. B, 2022, 105(23): 235416
https://doi.org/10.1103/PhysRevB.105.235416
53 Wang C., An Y.. Effects of strain and stacking patterns on the electronic structure, valley polarization and magnetocrystalline anisotropy of layered VTe2. Appl. Surf. Sci., 2021, 538: 148098
https://doi.org/10.1016/j.apsusc.2020.148098
54 Torun E., Sahin H., Singh S., Peeters F.. Stable half-metallic monolayers of FeCl2. Appl. Phys. Lett., 2015, 106(19): 192404
https://doi.org/10.1063/1.4921096
55 Sarkar S., Kratzer P., Magnetic exchange interactions in bilayer Cr X3 (X =Cl. Br, and I): A critical assessment of the DFT + U approach. Phys. Rev. B, 2021, 103(22): 224421
https://doi.org/10.1103/PhysRevB.103.224421
56 Xu C., J. Wang Q., Xu B., Hu J.. Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3. Front. Phys., 2021, 16: 53502
https://doi.org/10.1007/s11467-021-1073-x
57 Y. Yu X., Zhang X., Shi Q., C. Lei H., Xu K., D. Hosono H.. Large magnetocaloric effect in van der Waals crystal CrBr3. Front. Phys., 2019, 14: 43501
https://doi.org/10.1007/s11467-019-0883-6
58 D. Wang H.H. Lei P.Y. Mao X.Kong X.Y. Ye X. F. Wang P.Wang Y.Qin X.Meijer J.L. Zeng H., Magnetic phase transition in two-dimensional CrBr3 probed by a quantum sensor, Chin. Phys. Lett. 39 047601 (2022)
59 C. Zhong J., S. Wang M., Liu T., H. Zhao Y., Xu X., S. Zhou S., B. Han J., Gan L., Y. Zhai T.. Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Res., 2022, 15: 1254
https://doi.org/10.1007/s12274-021-3633-3
60 Liu M., L. Huang Y., Gou J., Liang Q., Chua R., Duan Arramel, Zhang S., L. Cai L., Yu L., Zhong X., Zhang D., T. S. Wee W.. Diverse structures and magnetic properties in nonlayered monolayer chromium selenide. J. Phys. Chem. Lett., 2021, 12(32): 7752
https://doi.org/10.1021/acs.jpclett.1c01493
[1] Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202-.
[2] Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201-.
[3] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[4] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[5] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[6] Weibin Zhang, Woochul Yang, Yingkai Liu, Zhiyong Liu, Fuchun Zhang. Computational exploration and screening of novel Janus MA2Z4 (M = Sc−Zn, Y−Ag, Hf−Au; A=Si, Ge; Z=N, P) monolayers and potential application as a photocatalyst[J]. Front. Phys. , 2022, 17(6): 63509-.
[7] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[8] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[9] Wen-Jin Yin, Xiao-Long Zeng, Bo Wen, Qing-Xia Ge, Ying Xu, Gilberto Teobaldi, Li-Min Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures[J]. Front. Phys. , 2021, 16(3): 33501-.
[10] Lin Ju, Mei Bie, Xiwei Zhang, Xiangming Chen, Liangzhi Kou. Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses[J]. Front. Phys. , 2021, 16(1): 13201-.
[11] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[12] Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie. Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3[J]. Front. Phys. , 2019, 14(1): 13604-.
[13] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[14] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[15] Xiao-Hong Li, Hong-Ling Cui, Rui-Zhou Zhang. Structural, optical, and thermal properties of MAX-phase Cr2AlB2[J]. Front. Phys. , 2018, 13(2): 136501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed