|
|
Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6 |
Fan-Ying Wu1, Qi-Yi Wu1, Chen Zhang1, Yang Luo1, Xiangqi Liu2, Yuan-Feng Xu3, Dong-Hui Lu4, Makoto Hashimoto4, Hao Liu1, Yin-Zou Zhao1, Jiao-Jiao Song1, Ya-Hua Yuan1, Hai-Yun Liu5, Jun He1, Yu-Xia Duan1, Yan-Feng Guo2,6( ), Jian-Qiao Meng1( ) |
1. School of Physics and Electronics, Central South University, Changsha 410083, China 2. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 3. Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, China 4. Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA 5. Beijing Academy of Quantum Information Sciences, Beijing 100085, China 6. ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China |
|
|
Abstract The three-dimensional electronic structure and the nature of Ce 4f electrons of the Kondo insulator CeRu4Sn6 are investigated by angle-resolved photoemission spectroscopy, utilizing tunable photon energies. Our results reveal (i) the three-dimensional k-space nature of the Fermi surface, (ii) the localized-to-itinerant transition of f electrons occurs at a much high temperature than the hybridization gap opening temperature, and (iii) the “relocalization” of itinerant f-electrons below 25 K, which could be the precursor to the establishment of magnetic order.
|
Keywords
Kondo insulator
heavy fermion
ARPES
electronic structure
relocalization
|
Corresponding Author(s):
Yan-Feng Guo,Jian-Qiao Meng
|
Issue Date: 22 May 2023
|
|
1 |
S. Riseborough P.. Heavy fermion semiconductors. Adv. Phys., 2000, 49(3): 257
https://doi.org/10.1080/000187300243345
|
2 |
G. Stewart S.. Heavy-fermion systems. Rev. Mod. Phys., 1984, 56(4): 755
https://doi.org/10.1103/RevModPhys.56.755
|
3 |
Coleman P., et al.., Handbook of Magnetism and Advanced Magnetic Materials, John Wiley & Sons, 2007
|
4 |
Dzero M., Sun K., Galitski V., Coleman P.. Topological Kondo insulators. Phys. Rev. Lett., 2010, 104(10): 106408
https://doi.org/10.1103/PhysRevLett.104.106408
|
5 |
Dzero M., Sun K., Coleman P., Galitski V.. Theory of topological Kondo insulators. Phys. Rev. B, 2012, 85(4): 045130
https://doi.org/10.1103/PhysRevB.85.045130
|
6 |
Lu F., Zhao J., Weng H., Fang Z., Dai X.. Correlated topological insulators with mixed valence. Phys. Rev. Lett., 2013, 110(9): 096401
https://doi.org/10.1103/PhysRevLett.110.096401
|
7 |
Jiang J., Li S., Zhang T., Sun Z., Chen F., R. Ye Z., Xu M., Q. Ge Q., Y. Tan S., H. Niu X., Xia M., P. Xie B., F. Li Y., H. Chen X., H. Wen H., L. Feng D.. Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nat. Commun., 2013, 4(1): 3010
https://doi.org/10.1038/ncomms4010
|
8 |
Neupane M., Alidoust N., Y. Xu S., Kondo T., Ishida Y., J. Kim D., Liu C., Belopolski I., J. Jo Y., R. Chang T., T. Jeng H., Durakiewicz T., Balicas L., Lin H., Bansil A., Shin S., Fisk Z., Z. Hasan M.. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun., 2013, 4(1): 2991
https://doi.org/10.1038/ncomms3991
|
9 |
Xu N., Shi X., K. Biswas P., E. Matt C., S. Dhaka R., Huang Y., C. Plumb N., Radović M., H. Dil J., Pomjakushina E., Conder K., Amato A., Salman Z., McK. Paul D., Mesot J., Ding H., Shi M.. Surface and bulk electronic structure of the strongly correlated system SmB6 and implications for a topological Kondo insulator. Phys. Rev. B, 2013, 88(12): 121102
https://doi.org/10.1103/PhysRevB.88.121102
|
10 |
Xu N., K. Biswas P., H. Dil J., S. Dhaka R., Landolt G., Muff S., E. Matt C., Shi X., C. Plumb N., Radović M., Pomjakushina E., Conder K., Amato A., V. Borisenko S., Yu R., M. Weng H., Fang Z., Dai X., Mesot J., Ding H., Shi M.. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun., 2014, 5(1): 4566
https://doi.org/10.1038/ncomms5566
|
11 |
Li G., Xiang Z., Yu F., Asaba T., Lawson B., Cai P., Tinsman C., Berkley A., Wolgast S., S. Eo Y., J. Kim D., Kurdak C., W. Allen J., Sun K., H. Chen X., Y. Wang Y., Fisk Z., Li L.. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science, 2014, 346(6214): 1208
https://doi.org/10.1126/science.1250366
|
12 |
Hartstein M., H. Toews W., T. Hsu Y., Zeng B., Chen X., C. Hatnean M., R. Zhang Q., Nakamura S., S. Padgett A., Rodway-Gant G., Berk J., K. Kingston M., H. Zhang G., K. Chan M., Yamashita S., Sakakibara T., Takano Y., H. Park J., Balicas L., Harrison N., Shitsevalova N., Balakrishnan G., G. Lonzarich G., W. Hill R., Sutherland M., E. Sebastian S.. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6. Nat. Phys., 2018, 14(2): 166
https://doi.org/10.1038/nphys4295
|
13 |
Lai H., E. Grefe S., Paschen S., Si Q.. Weyl–Kondo semimetal in heavy-fermion systems. Proc. Natl. Acad. Sci. USA, 2018, 115(1): 93
https://doi.org/10.1073/pnas.1715851115
|
14 |
Cao C., X. Zhi G., X. Zhu J.. From trivial Kondo insulator Ce3Pt3Bi4 to topological nodal-line semimetal Ce3Pd3Bi4. Phys. Rev. Lett., 2020, 124(16): 166403
https://doi.org/10.1103/PhysRevLett.124.166403
|
15 |
S. Kang J., G. Olson C., Inada Y., Ōnuki Y., K. Kwon S., I. Min B.. Valence-band photoemission study of single crystalline CeNiSn. Phys. Rev. B, 1998, 58(8): 4426
https://doi.org/10.1103/PhysRevB.58.4426
|
16 |
Nakamoto G.Takabatake T.Bando Y.Fujii H.Izawa K. Suzuki T.Fujita T.Minami A.Oguro I.T. Tai L. A. Menovsky A., Effect of impurity phases on the anisotropic transport properties of CeNiSn, Physica B 206–207, 840 (1995)
|
17 |
Stockert U., J. Sun P., Oeschler N., Steglich F., Takabatake T., Coleman P., Paschen S.. Giant isotropic Nernst effect in an anisotropic Kondo semimetal. Phys. Rev. Lett., 2016, 117(21): 216401
https://doi.org/10.1103/PhysRevLett.117.216401
|
18 |
M. Tomczak J.. Thermoelectricity in correlated narrow-gap semiconductors. J. Phys.: Condens. Matter, 2018, 30(18): 183001
https://doi.org/10.1088/1361-648X/aab284
|
19 |
Moreno J., Coleman P.. Gap-anisotropic model for the narrow-gap Kondo insulators. Phys. Rev. Lett., 2000, 84(2): 342
https://doi.org/10.1103/PhysRevLett.84.342
|
20 |
Kyogaku M.Kitaoka Y.Nakamura H.Asayama K.Takabatake T.Teshima F.Fujii H., NMR investigation of energy gap formation in the valence fluctuating compound CeNiSn, J. Phys. Soc. Jpn. 59(5), 1728 (1990)
|
21 |
Schlottmann P.. Impurity bands in Kondo insulators. Phys. Rev. B, 1992, 46(2): 998
https://doi.org/10.1103/PhysRevB.46.998
|
22 |
Winkler H., A. Lorenzer K., Prokofiev A., Paschen S.. Anisotropic electrical resistivity of the Kondo insulator CeRu4Sn6. J. Phys. Conf. Ser., 2012, 391: 012077
https://doi.org/10.1088/1742-6596/391/1/012077
|
23 |
Das I., V. Sampathkumaran E.. Electrical-resistance anomalies in a Ce−Ru−Sn phase. Phys. Rev. B, 1992, 46(7): 4250
https://doi.org/10.1103/PhysRevB.46.4250
|
24 |
Paschen S., Winkler H., Nezu T., Kriegisch M., Hilscher G., Custers J., Prokofiev A., Strydom A.. Anisotropy of the Kondo insulator CeRu4Sn6. J. Phys. Conf. Ser., 2010, 200(1): 012156
https://doi.org/10.1088/1742-6596/200/1/012156
|
25 |
Guritanu V., Wissgott P., Weig T., Winkler H., Sichelschmidt J., Scheffler M., Prokofiev A., Kimura S., Iizuka T., M. Strydom A., Dressel M., Steglich F., Held K., Paschen S.. Anisotropic optical conductivity of the putative Kondo insulator CeRu4Sn6. Phys. Rev. B, 2013, 87(11): 115129
https://doi.org/10.1103/PhysRevB.87.115129
|
26 |
Pöttgen R., D. Hoffmann R., Sampathkumaran E., Das I., Mosel B., Müllmann R.. Crystal structure, specific heat, and 119Sn Mössbauer spectroscopy of CeRu4Sn6: A ternary stannide with condensed, distorted RuSn6 octahedra. J. Solid State Chem., 1997, 134(2): 326
https://doi.org/10.1006/jssc.1997.7565
|
27 |
Brüning E., Brando M., Baenitz M., Bentien A., Strydom A., Walstedt R., Steglich F.. Low-temperature properties of CeRu4Sn6 from NMR and specific heat measurements: Heavy fermions emerging from a Kondo-insulating state. Phys. Rev. B, 2010, 82(12): 125115
https://doi.org/10.1103/PhysRevB.82.125115
|
28 |
Amorese A., Kummer K., B. Brookes N., Stockert O., T. Adroja D., E. M. Strydom A., Sidorenko A., Winkler H., A. Zocco D., Prokofiev A., Paschen S., W. Haverkort M., H. Tjeng L., Severing A.. Determining the local low-energy excitations in the Kondo semimetal CeRu4Sn6 using resonant inelastic X-ray scattering. Phys. Rev. B, 2018, 98(8): 081116
https://doi.org/10.1103/PhysRevB.98.081116
|
29 |
Sundermann M., Strigari F., Willers T., Winkler H., Prokofiev A., M. Ablett J., Rueff J., Schmitz D., Weschke E., M. Sala M., Al-Zein A., Tanaka A., W. Haverkort M., Kasinathan D., H. Tjeng L., Paschen S., Severing A.. CeRu4Sn6: A strongly correlated material with nontrivial topology. Sci. Rep., 2015, 5(1): 17937
https://doi.org/10.1038/srep17937
|
30 |
T. Fuhrman W., Sidorenko A., Hänel J., Winkler H., Prokofiev A., A. Rodriguez-Rivera J., Qiu Y., Blaha P., Si Q., L. Broholm C., Paschen S.. Pristine quantum criticality in a Kondo semimetal. Sci. Adv., 2021, 7(21): eabf9134
https://doi.org/10.1126/sciadv.abf9134
|
31 |
Strydom A.Guo Z.Paschen S.Viennois R.Steglich F., Electronic properties of semiconducting, Physica B 359–361, 293 (2005)
|
32 |
Brüning E.Baenitz M.Gippius A. Strydom A.Steglich F.Walstedt R., 119Sn NMR on the correlated semi-metal, J. Magn. Magn. Mater. 310(2), 393 (2007)
|
33 |
M. Strydom A., D. Hillier A., T. Adroja D., Paschen S., Steglich F.. Low-temperature muon spin relaxation measurements on CeRu4Sn6. J. Magn. Magn. Mater., 2007, 310(2): 377
https://doi.org/10.1016/j.jmmm.2006.10.084
|
34 |
Wissgott P., Held K.. Electronic structure of CeRu4Sn6: A density functional plus dynamical mean field theory study. Eur. Phys. J. B, 2016, 89(1): 5
https://doi.org/10.1140/epjb/e2015-60753-5
|
35 |
F. Xu Y., M. Yue C., M. Weng H., Dai X.. Heavy Weyl fermion state in CeRu4Sn6. Phys. Rev. X, 2017, 7(1): 011027
https://doi.org/10.1103/PhysRevX.7.011027
|
36 |
N. Strocov V.. Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom., 2003, 130(1−3): 65
https://doi.org/10.1016/S0368-2048(03)00054-9
|
37 |
Wadati H., Yoshida T., Chikamatsu A., Kumigashira H., Oshima M., Eisaki H., X. Shen Z., Mizokawa T., Fujimori A.. Angle-resolved photoemission spectroscopy of perovskite-type transition-metal oxides and their analyses using tight-binding band structure. Phase Transit., 2006, 79(8): 617
https://doi.org/10.1080/01411590600826672
|
38 |
X. Duan Y., Zhang C., Rusz J., M. Oppeneer P., Durakiewicz T., Sassa Y., Tjernberg O., Mänsson M., H. Berntsen M., Y. Wu F., Z. Zhao Y., J. Song J., Y. Wu Q., Luo Y., D. Bauer E., D. Thompson J., Q. Meng J.. Crystal electric field splitting and f-electron hybridization in heavy-fermion CePt2In7. Phys. Rev. B, 2019, 100(8): 085141
https://doi.org/10.1103/PhysRevB.100.085141
|
39 |
Fujimori S., Fujimori A., Shimada K., Narimura T., Kobayashi K., Namatame H., Taniguchi M., Harima H., Shishido H., Ikeda S., Aoki D., Tokiwa Y., Haga Y., Ōnuki Y.. Direct observation of a quasiparticle band in CeIrIn5: An angle-resolved photoemission spectroscopy study. Phys. Rev. B, 2006, 73(22): 224517
https://doi.org/10.1103/PhysRevB.73.224517
|
40 |
Y. Chen Q., F. Xu D., H. Niu X., Peng R., C. Xu H., H. P. Wen C., Liu X., Shu L., Y. Tan S., C. Lai X., J. Zhang Y., Lee H., N. Strocov V., Bisti F., Dudin P., X. Zhu J., Q. Yuan H., Kirchner S., L. Feng D.. Band dependent interlayer f-electron hybridization in CeRhIn5. Phys. Rev. Lett., 2018, 120(6): 066403
https://doi.org/10.1103/PhysRevLett.120.066403
|
41 |
Q. Meng J., M. Oppeneer P., A. Mydosh J., S. Riseborough P., Gofryk K., J. Joyce J., D. Bauer E., Li Y., Durakiewicz T.. Imaging the three-dimensional Fermi-surface pairing near the hidden-order transition in URu2Si2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett., 2013, 111(12): 127002
https://doi.org/10.1103/PhysRevLett.111.127002
|
42 |
Luo Y., Zhang C., Y. Wu Q., Y. Wu F., J. Song J., Xia W., F. Guo Y., Rusz J., M. Oppeneer P., Durakiewicz T., Z. Zhao Y., Liu H., X. Zhu S., H. Yuan Y., F. Tang X., He J., Y. Tan S., B. Huang Y., Sun Z., Liu Y., Y. Liu H., X. Duan Y., Q. Meng J.. Three-dimensional and temperature-dependent electronic structure of the heavy-fermion compound CePt2In7 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B, 2020, 101(11): 115129
https://doi.org/10.1103/PhysRevB.101.115129
|
43 |
Yao Q., Kaczorowski D., Swatek P., Gnida D., H. P. Wen C., H. Niu X., Peng R., C. Xu H., Dudin P., Kirchner S., Y. Chen Q., W. Shen D., L. Feng D.. Electronic structure and 4f-electron character in Ce2PdIn8 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B, 2019, 99(8): 081107
https://doi.org/10.1103/PhysRevB.99.081107
|
44 |
Wu Y., J. Zhang Y., Du F., Shen B., Zheng H., Fang Y., Smidman M., Cao C., Steglich F., Q. Yuan H., D. Denlinger J., Liu Y.. Anisotropic c−f hybridization in the ferromagnetic quantum critical metal CeRh6Ge4. Phys. Rev. Lett., 2021, 126(21): 216406
https://doi.org/10.1103/PhysRevLett.126.216406
|
45 |
Zhou R., B. Luo X., F. Ding Z., Shu L., Y. Ji X., H. Zhu Z., B. Huang Y., W. Shen D., T. Liu Z., H. Liu Z., Zhang Y., Y. Chen Q.. Electronic structure of LaIrIn5 and f-electron character in its related Ce-115 compounds. Sci. China Phys. Mech. Astron., 2020, 63(11): 117012
https://doi.org/10.1007/s11433-019-1564-6
|
46 |
J. Song J., Luo Y., Zhang C., Y. Wu Q., Durakiewicz T., Sassa Y., Tjernberg O., Månsson M., H. Berntsen M., Z. Zhao Y., Liu H., X. Zhu S., T. Liu Z., Y. Wu F., Y. Liu S., D. Bauer E., Rusz J., M. Oppeneer P., H. Yuan Y., X. Duan Y., Q. Meng J.. The 4f-hybridization strength in CemMnIn3m+2n heavy-fermion compounds studied by angle-resolved photoemission spectroscopy. Chin. Phys. Lett., 2021, 38(10): 107402
https://doi.org/10.1088/0256-307X/38/10/107402
|
47 |
Koitzsch A., V. Borisenko S., Inosov D., Geck J., B. Zabolotnyy V., Shiozawa H., Knupfer M., Fink J., Büchner B., D. Bauer E., L. Sarrao J., Follath R.. Hybridization effects in CeCoIn5 observed by angle-resolved photoemission. Phys. Rev. B, 2008, 77(15): 155128
https://doi.org/10.1103/PhysRevB.77.155128
|
48 |
H. Yuan Y., X. Duan Y., Rusz J., Zhang C., J. Song J., Y. Wu Q., Sassa Y., Tjernberg O., Månsson M., H. Berntsen M., Y. Wu F., Y. Liu S., Liu H., X. Zhu S., T. Liu Z., Z. Zhao Y., H. Tobash P., D. Bauer E., D. Thompson J., M. Oppeneer P., Durakiewicz T., Q. Meng J.. Angle-resolved photoemission spectroscopy view on the nature of Ce 4f electrons in the antiferromagnetic Kondo lattice CePd5Al2. Phys. Rev. B, 2021, 103(12): 125122
https://doi.org/10.1103/PhysRevB.103.125122
|
49 |
Zhang Y., Feng W., Lou X., L. Yu T., G. Zhu X., Y. Tan S., K. Yuan B., Liu Y., Y. Lu H., H. Xie D., Liu Q., Zhang W., B. Luo X., B. Huang Y., Z. Luo L., J. Zhang Z., C. Lai X., Y. Chen Q.. Direct observation of heavy quasiparticles in the Kondo-lattice compound CeIn3. Phys. Rev. B, 2018, 97(4): 045128
https://doi.org/10.1103/PhysRevB.97.045128
|
50 |
F. Yang Y.. Two-fluid model for heavy electron physics. Rep. Prog. Phys., 2016, 79(7): 074501
https://doi.org/10.1088/0034-4885/79/7/074501
|
51 |
apRoberts-Warren N.P. Dioguardi A.C. Shockley A.H. Lin C.Crocker J.Klavins P. Pines D.-F. Yang Y.J. Curro N., Kondo liquid emergence and relocalization in the approach to antiferromagnetic ordering in CePt2In7, Phys. Rev. B 83, 060408(R) (2011)
|
52 |
R. Shirer K., C. Shockley A., P. Dioguardi A., Crocker J., H. Lin C., apRoberts-Warren N., M. Nisson D., Klavins P., C. Cooley J., F. Yang Y., J. Curro N.. Long range order and two-fluid behavior in heavy electron materials. Proc. Natl. Acad. Sci. USA, 2012, 109(45): E3067
https://doi.org/10.1073/pnas.1209609109
|
53 |
Li P.Q. Ye H. Hu Y.Fang Y. G. Xiao Z.Z. Wu Z.Y. Shan Z.P. Singh R.Balakrishnan G.W. Shen D.F. Yang Y.Cao C. C. Plumb N.Smidman M.Shi M.Kroha J.Q. Yuan H. Steglich F.Liu Y., ARPES signature of the competition between magnetic order and Kondo effect in CeCoGe3, Phys. Rev. B 107(20), L201104 (2023)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|