|
|
High-sensitive two-dimensional PbI2 photodetector with ultrashort channel |
Kaiyue He1,2, Jijie Zhu1, Zishun Li2, Zhe Chen2, Hehe Zhang1, Chao Liu1, Xu Zhang1, Shuo Wang1, Peiyi Zhao1, Yu Zhou1, Shizheng Zhang1, Yao Yin1( ), Xiaorui Zheng2( ), Wei Huang1, Lin Wang1( ) |
1. School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China 2. Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou 310030, China |
|
|
Abstract Photodetectors based on two-dimensional (2D) semiconductors have attracted many research interests owing to their excellent optoelectronic characteristics and application potential for highly integrated applications. However, the unique morphology of 2D materials also restricts the further improvement of the device performance, as the carrier transport is very susceptible to intrinsic and extrinsic environment of the materials. Here, we report the highest responsivity (172 A/W) achieved so far for a PbI2-based photodetector at room temperature, which is an order of magnitude higher than previously reported. Thermal scanning probe lithography (t-SPL) was used to pattern electrodes to realize the ultrashort channel (~60 nm) in the devices. The shortening of the channel length greatly reduces the probability of the photo-generated carriers being scattered during the transport process, which increases the photocurrent density and thus the responsivity. Our work shows that the combination of emerging processing technologies and 2D materials is an effective route to shrink device size and improve device performance.
|
Keywords
two-dimensional photodetectors
carrier scattering
ultrashort channel
thermal scanning probe lithography
PbI2 nanosheets
|
Corresponding Author(s):
Yao Yin,Xiaorui Zheng,Lin Wang
|
Issue Date: 21 July 2023
|
|
1 |
Konstantatos G.. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun., 2018, 9(1): 5266
https://doi.org/10.1038/s41467-018-07643-7
|
2 |
Wu W., Wang X., Han X., Yang Z., Gao G., Zhang Y., Hu J., Tan Y., Pan A., Pan C.. Flexible photodetector arrays based on patterned CH3NH3PbI3−xClx perovskite film for real‐time photosensing and imaging. Adv. Mater., 2019, 31(3): 1805913
https://doi.org/10.1002/adma.201805913
|
3 |
Lin H.C. P. Sturmberg B.T. Lin K. Yang Y.Zheng X.K. Chong T.M. de Sterke C.Jia B., A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light, Nat. Photonics 13(4), 270 (2019)
|
4 |
Shkir M.S. Yahia I.Ganesh V.Bitla Y.M. Ashraf I.Kaushik A.AlFaify S., A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications, Sci. Rep. 8(1), 13806 (2018)
|
5 |
Fu Q., Wang X., Liu F., Dong Y., Liu Z., Zheng S., Chaturvedi A., Zhou J., Hu P., Zhu Z., Bo F., Long Y., Liu Z.. Ultrathin Ruddlesden−Popper perovskite heterojunction for sensitive photodetection. Small, 2019, 15(39): 1902890
https://doi.org/10.1002/smll.201902890
|
6 |
Zhang X., Li Z., Yan T., Su L., Fang X.. Phase-modulated multidimensional perovskites for high-sensitivity self-powered UV photodetectors. Small, 2023, 19(9): 2206310
https://doi.org/10.1002/smll.202206310
|
7 |
Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., Kis A.. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 2013, 8(7): 497
https://doi.org/10.1038/nnano.2013.100
|
8 |
Guo W., Dong Z., Xu Y., Liu C., Wei D., Zhang L., Shi X., Guo C., Xu H., Chen G., Wang L., Zhang K., Chen X., Lu W.. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci. (Weinh.), 2020, 7(5): 1902699
https://doi.org/10.1002/advs.201902699
|
9 |
Cai Y., Yang J., Wang F., Li S., Wang Y., Zhan X., Wang F., Cheng R., Wang Z., He J.. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
https://doi.org/10.1007/s11467-022-1241-7
|
10 |
Li S.Zhang Y. Yang W.Liu H.Fang X., 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors, Adv. Mater. 32(7), 1905443 (2020)
|
11 |
Kufer D., Konstantatos G.. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett., 2015, 15(11): 7307
https://doi.org/10.1021/acs.nanolett.5b02559
|
12 |
G. Menabde S., Cho H., Park N.. Interface defect-assisted phonon scattering of hot carriers in graphene. Phys. Rev. B, 2017, 96(7): 075426
https://doi.org/10.1103/PhysRevB.96.075426
|
13 |
Gao J., M. Rao A., Li H., Zhang J., Chen O.. Carrier transport dynamics in high speed black phosphorus photodetectors. ACS Photonics, 2018, 5(4): 1412
https://doi.org/10.1021/acsphotonics.7b01431
|
14 |
Tian Y., Cheng Y., Huang J., Zhang S., Dong H., Wang G., Chen J., Wu J., Yin Z., Zhang X.. Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics. Nano Res., 2022, 15(7): 6628
https://doi.org/10.1007/s12274-022-4308-4
|
15 |
J. Kim S., Park B., H. Noh S., S. Yoon H., Oh J., Yoo S., Kang K., Han B., C. Jun S.. Carrier scattering in quasi-free standing graphene on hexagonal boron nitride. Nanoscale, 2017, 9(41): 15934
https://doi.org/10.1039/C7NR04571A
|
16 |
H. Chen J., Jang C., Adam S., S. Fuhrer M., D. Williams E., Ishigami M.. Charged-impurity scattering in graphene. Nat. Phys., 2008, 4(5): 377
https://doi.org/10.1038/nphys935
|
17 |
Rhodes D., H. Chae S., Ribeiro-Palau R., Hone J.. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater., 2019, 18(6): 541
https://doi.org/10.1038/s41563-019-0366-8
|
18 |
Xie L., Liao M., Wang S., Yu H., Du L., Tang J., Zhao J., Zhang J., Chen P., Lu X., Wang G., Xie G., Yang R., Shi D., Zhang G.. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater., 2017, 29(37): 1702522
https://doi.org/10.1002/adma.201702522
|
19 |
Tian J., Wang Q., Huang X., Tang J., Chu Y., Wang S., Shen C., Zhao Y., Li N., Liu J., Ji Y., Huang B., Peng Y., Yang R., Yang W., Watanabe K., Taniguchi T., Bai X., Shi D., Du L., Zhang G.. Scaling of MoS2 transistors and inverters to sub-10 nm channel length with high performance. Nano Lett., 2023, 23(7): 2764
https://doi.org/10.1021/acs.nanolett.3c00031
|
20 |
Wu R., Tao Q., Li J., Li W., Chen Y., Lu Z., Shu Z., Zhao B., Ma H., Zhang Z., Yang X., Li B., Duan H., Liao L., Liu Y., Duan X., Duan X.. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron., 2022, 5(8): 497
https://doi.org/10.1038/s41928-022-00800-3
|
21 |
Wu F.Ren J. Yang Y.Yan Z.Tian H.Gou G.Wang X. Zhang Z.Yang X.Wu X.L. Ren T., A 10 nm short channel MoS2 transistor without the resolution requirement of photolithography, Adv. Electron. Mater. 7(12), 2100543 (2021)
|
22 |
Wang Y., C. Kim J., J. Wu R., Martinez J., Song X., Yang J., Zhao F., Mkhoyan A., Y. Jeong H., Chhowalla M.. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019, 568(7750): 70
https://doi.org/10.1038/s41586-019-1052-3
|
23 |
Liu Y., Duan X., Huang Y., Duan X.. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev., 2018, 47(16): 6388
https://doi.org/10.1039/C8CS00318A
|
24 |
Zhang G., Zhong J., Chen Q., Yan Y., Chen H., Guo T.. High-performance organic phototransistors with vertical structure design. IEEE Trans. Electron Dev., 2019, 66(4): 1815
https://doi.org/10.1109/TED.2019.2901054
|
25 |
Han G., Cao S., Yang Q., Yang W., Guo T., Chen H.. High-performance all-solution-processed flexible photodetector arrays based on ultrashort channel amorphous oxide semiconductor transistors. ACS Appl. Mater. Interfaces, 2018, 10(47): 40631
https://doi.org/10.1021/acsami.8b14143
|
26 |
Zhang H., Zhang Y., Song X., Yu Y., Cao M., Che Y., Dai H., Yang J., Ding X., Zhang G., Yao J.. Short channel quantum dot vertical and lateral phototransistors. Adv. Opt. Mater., 2017, 5(2): 1600434
https://doi.org/10.1002/adom.201600434
|
27 |
Zan R., M. Ramasse Q., Jalil R., Georgiou T., Bangert U., S. Novoselov K.. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano, 2013, 7(11): 10167
https://doi.org/10.1021/nn4044035
|
28 |
Zheng X., Calo A., Cao T., Liu X., Huang Z., M. Das P., Drndic M., Albisetti E., Lavini F., D. Li T., Narang V., P. King W., W. Harrold J., Vittadello M., Aruta C., Shahrjerdi D., Riedo E.. Spatial defects nanoengineering for bipolar conductivity in MoS2. Nat. Commun., 2020, 11(1): 3463
https://doi.org/10.1038/s41467-020-17241-1
|
29 |
Albisetti E., Petti D., Pancaldi M., Madami M., Tacchi S., Curtis J., P. King W., Papp A., Csaba G., Porod W., Vavassori P., Riedo E., Bertacco R.. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nat. Nanotechnol., 2016, 11(6): 545
https://doi.org/10.1038/nnano.2016.25
|
30 |
Albisetti E., M. Carroll K., Lu X., E. Curtis J., Petti D., Bertacco R., Riedo E.. Thermochemical scanning probe lithography of protein gradients at the nanoscale. Nanotechnology, 2016, 27(31): 315302
https://doi.org/10.1088/0957-4484/27/31/315302
|
31 |
M. Carroll K., J. Giordano A., Wang D., K. Kodali V., Scrimgeour J., P. King W., R. Marder S., Riedo E., E. Curtis J.. Fabricating nanoscale chemical gradients with thermochemical nanolithography. Langmuir, 2013, 29(27): 8675
https://doi.org/10.1021/la400996w
|
32 |
Albisetti E., Petti D., Sala G., Silvani R., Tacchi S., Finizio S., Wintz S., Calò A., Zheng X., Raabe J., Riedo E., Bertacco R.. Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Commun. Phys., 2018, 1(1): 56
https://doi.org/10.1038/s42005-018-0056-x
|
33 |
M. Carroll K., Lu X., Kim S., Gao Y., J. Kim H., Somnath S., Polloni L., Sordan R., P. King W., E. Curtis J., Riedo E.. Parallelization of thermochemical nanolithography. Nanoscale, 2014, 6(3): 1299
https://doi.org/10.1039/C3NR05696A
|
34 |
K. Ryu Cho Y., D. Rawlings C., Wolf H., Spieser M., Bisig S., Reidt S., Sousa M., R. Khanal S., D. B. Jacobs T., W. Knoll A.. Sub-10 nanometer feature size in silicon using thermal scanning probe lithography. ACS Nano, 2017, 11(12): 11890
https://doi.org/10.1021/acsnano.7b06307
|
35 |
Garcia R., W. Knoll A., Riedo E.. Advanced scanning probe lithography. Nat. Nanotechnol., 2014, 9(8): 577
https://doi.org/10.1038/nnano.2014.157
|
36 |
Liu X., Huang Z., Zheng X., Shahrjerdi D., Riedo E.. Nanofabrication of graphene field-effect transistors by thermal scanning probe lithography. APL Mater., 2021, 9(1): 011107
https://doi.org/10.1063/5.0026159
|
37 |
Xiao H., Liang T., Xu M.. Growth of ultraflat PbI2 nanoflakes by solvent evaporation suppression for high-performance UV photodetectors. Small, 2019, 15(33): 1901767
https://doi.org/10.1002/smll.201901767
|
38 |
Qi Z., Yang T., Li D., Li H., Wang X., Zhang X., Li F., Zheng W., Fan P., Zhuang X., Pan A.. High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect. Mater. Horiz., 2019, 6(7): 1474
https://doi.org/10.1039/C9MH00335E
|
39 |
Han M., Sun J., Bian L., Wang Z., Zhang L., Yin Y., Gao Z., Li F., Xin Q., He L., Han N., Song A., X. Yang Z.. Two-step vapor deposition of self-catalyzed large-size PbI2 nanobelts for high-performance photodetectors. J. Mater. Chem. C, 2018, 6(21): 5746
https://doi.org/10.1039/C8TC01180J
|
40 |
Wang R., Li S., Wang P., Xiu J., Wei G., Sun M., Li Z., Liu Y., Zhong M.. PbI2 nanosheets for photodetectors via the facile cooling thermal supersaturation solution method. J. Phys. Chem. C, 2019, 123(14): 9609
https://doi.org/10.1021/acs.jpcc.9b01322
|
41 |
Zhang J., Huang Y., Tan Z., Li T., Zhang Y., Jia K., Lin L., Sun L., Chen X., Li Z., Tan C., Zhang J., Zheng L., Wu Y., Deng B., Chen Z., Liu Z., Peng H.. Flexible photodetectors: Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors. Adv. Mater., 2018, 30(36): 1803194
https://doi.org/10.1002/adma.201870271
|
42 |
Zhang D., Liu Y., He M., Zhang A., Chen S., Tong Q., Huang L., Zhou Z., Zheng W., Chen M., Braun K., J. Meixner A., Wang X., Pan A.. Room temperature near unity spin polarization in 2D van der Waals heterostructures. Nat. Commun., 2020, 11(1): 4442
https://doi.org/10.1038/s41467-020-18307-w
|
43 |
Sun H., Zhao B., Yang D., Wangyang P., Gao X., Zhu X.. Flexible X-ray detector based on sliced lead iodide crystal. Phys. Status Solidi Rapid Res. Lett., 2017, 11(2): 1600397
https://doi.org/10.1002/pssr.201600397
|
44 |
Roth S., R. Willig W.. Lead iodide nuclear particle detectors. Appl. Phys. Lett., 1971, 18(8): 328
https://doi.org/10.1063/1.1653682
|
45 |
Sun Y., Zhou Z., Huang Z., Wu J., Zhou L., Cheng Y., Liu J., Zhu C., Yu M., Yu P., Zhu W., Liu Y., Zhou J., Liu B., Xie H., Cao Y., Li H., Wang X., Liu K., Wang X., Wang J., Wang L., Huang W.. Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. Adv. Mater., 2019, 31(17): 1806562
https://doi.org/10.1002/adma.201806562
|
46 |
Zhou D., Zhao P., Zhang J., Jiang X., Qin S., Zhang X., Jiang R., Deng Y., Jiang H., Zhan G., Luo Y., Ma H., Wang L.. Lithographic multicolor patterning on hybrid perovskites for nano-optoelectronic applications. Small, 2022, 18(48): 2205227
https://doi.org/10.1002/smll.202205227
|
47 |
Long M., Wang P., Fang H., Hu W.. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater., 2019, 29(19): 1803807
https://doi.org/10.1002/adfm.201803807
|
48 |
Xue F., Wang Z., Hou Y., Gu L., Wu R.. Control of magnetic properties of MnBi2Te4 using a van der Waals ferroelectric III2−VI3 film and biaxial strain. Phys. Rev. B, 2020, 101(18): 184426
https://doi.org/10.1103/PhysRevB.101.184426
|
49 |
Zhang J., Song T., Zhang Z., Ding K., Huang F., Sun B.. Layered ultrathin PbI2 single crystals for high sensitivity flexible photodetectors. J. Mater. Chem. C, 2015, 3(17): 4402
https://doi.org/10.1039/C4TC02712D
|
50 |
M. Furchi M., K. Polyushkin D., Pospischil A., Mueller T.. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett., 2014, 14(11): 6165
https://doi.org/10.1021/nl502339q
|
51 |
Zheng W., Zhang Z., Lin R., Xu K., He J., Huang F.. High-crystalline 2D layered PbI2 with ultrasmooth surface: Liquid-phase synthesis and application of high-speed photon detection. Adv. Electron. Mater., 2016, 2(11): 1600291
https://doi.org/10.1002/aelm.201600291
|
52 |
Wang Y., Gan L., Chen J., Yang R., Zhai T.. Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull. (Beijing), 2017, 62(24): 1654
https://doi.org/10.1016/j.scib.2017.11.011
|
53 |
Frisenda R., O. Island J., L. Lado J., Giovanelli E., Gant P., Nagler P., Bange S., M. Lupton J., Schuller C., J. Molina-Mendoza A., Aballe L., Foerster M., Korn T., Angel Nino M., P. de Lara D., M. Perez E., Fernandez-Rossier J., Castellanos-Gomez A.. Characterization of highly crystalline lead iodide nanosheets prepared by room-temperature solution processing. Nanotechnology, 2017, 28(45): 455703
https://doi.org/10.1088/1361-6528/aa8e5c
|
54 |
Wei Q., Shen B., Chen Y., Xu B., Xia Y., Yin J., Liu Z.. Large-sized PbI2 single crystal grown by co-solvent method for visible-light photo-detector application. Mater. Lett., 2017, 193(15): 101
https://doi.org/10.1016/j.matlet.2017.01.049
|
55 |
Lan C., Dong R., Zhou Z., Shu L., Li D., Yip S., C. Ho J.. Large‐scale synthesis of freestanding layer‐structured PbI2 and MAPbI3 nanosheets for high-performance photodetection. Adv. Mater., 2017, 29(39): 1702759
https://doi.org/10.1002/adma.201702759
|
56 |
Yang S., Han J., Zhang J., Kong Y., Liu H.. In situ growth of PbS/PbI2 heterojunction and its photoelectric properties. Nanomaterials (Basel), 2022, 12(4): 681
https://doi.org/10.3390/nano12040681
|
57 |
A. Lemieux P., Vera M., J. Durian D.. Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering. Phys. Rev. E, 1998, 57(4): 4498
https://doi.org/10.1103/PhysRevE.57.4498
|
58 |
Banszerus L., Schmitz M., Engels S., Goldsche M., Watanabe K., Taniguchi T., Beschoten B., Stampfer C.. Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett., 2016, 16(2): 1387
https://doi.org/10.1021/acs.nanolett.5b04840
|
59 |
Luo P., Liu C., Lin J., Duan X., Zhang W., Ma C., Lv Y., Zou X., Liu Y., Schwierz F., Qin W., Liao L., He J., Liu X.. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
https://doi.org/10.1038/s41928-022-00877-w
|
60 |
Jiang J., Xu L., Qiu C., M. Peng L.. Ballistic two-dimensional InSe transistors. Nature, 2023, 616(7957): 470
https://doi.org/10.1038/s41586-023-05819-w
|
61 |
Bardeen J., Shockley W.. Deformation potentials and mobilities in non-polar crystals. Phys. Rev., 1950, 80(1): 72
https://doi.org/10.1103/PhysRev.80.72
|
[1] |
fop-21323-OF-wanglin_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|