|
|
|
Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators |
Huawei Fan1,2, Ya Wang2, Xingang Wang2( ) |
1. School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China 2. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China |
|
|
|
|
Abstract Whereas topological symmetries have been recognized as crucially important to the exploration of synchronization patterns in complex networks of coupled dynamical oscillators, the identification of the symmetries in large-size complex networks remains as a challenge. Additionally, even though the topological symmetries of a complex network are known, it is still not clear how the system dynamics is transited among different synchronization patterns with respect to the coupling strength of the oscillators. We propose here the framework of eigenvector-based analysis to identify the synchronization patterns in the general complex networks and, incorporating the conventional method of eigenvalue-based analysis, investigate the emergence and transition of the cluster synchronization states. We are able to argue and demonstrate that, without a prior knowledge of the network symmetries, the method is able to predict not only all the cluster synchronization states observable in the network, but also the critical couplings where the states become stable and the sequence of these states in the process of synchronization transition. The efficacy and generality of the proposed method are verified by different network models of coupled chaotic oscillators, including artificial networks of perfect symmetries and empirical networks of non-perfect symmetries. The new framework paves a way to the investigation of synchronization patterns in large-size, general complex networks.
|
| Keywords
cluster synchronization
complex networks
network symmetry
coupled oscillators
|
|
Corresponding Author(s):
Xingang Wang
|
|
Issue Date: 10 August 2023
|
|
| 1 |
Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984
|
| 2 |
T. Winfree A., Timing of Biological Clocks, W H Freeman & Co, 1987
|
| 3 |
S. Pikovsky A.G. Rosenblum M.Kurths J., Synchronization: A Universal Concept in Nonlinear Science, Cambridge University Press, Cambridge, 2001
|
| 4 |
Strogatz S., Sync: The Emerging Science of Spontaneous Order, Hyperion, New York, 2003
|
| 5 |
M. Pecora L. , L. Carroll T. . Master stability functions for synchronized coupled systems. Phys. Rev. Lett., 1998, 80(10): 2109
https://doi.org/10.1103/PhysRevLett.80.2109
|
| 6 |
Hu G. , Z. Yang J. , Liu W. . Instability and controllability of linearly coupled oscillators: Eigenvalue analysis. Phys. Rev. E, 1998, 58(4): 4440
https://doi.org/10.1103/PhysRevE.58.4440
|
| 7 |
Huang L. , Chen Q. , C. Lai Y. , M. Pecora L. . Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E, 2009, 80(3): 036204
https://doi.org/10.1103/PhysRevE.80.036204
|
| 8 |
A. Acebrón J. , L. Bonilla L. , J. Pérez Vicente C. , Ritort F. , Spigler R. . The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 2005, 77(1): 137
https://doi.org/10.1103/RevModPhys.77.137
|
| 9 |
Ott E. , M. Antonsen T. . Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 2008, 18(3): 037113
https://doi.org/10.1063/1.2930766
|
| 10 |
Kaneko K., Theory and Application of Coupled Map Lattice, Wiley, Chichester, 1993
|
| 11 |
J. Watts D. , H. Strogatz S. . Collective dynamics of “small-world” networks. Nature, 1998, 393(6684): 440
https://doi.org/10.1038/30918
|
| 12 |
L. Barabási A. , Albert R. . Emergence of scaling in random networks. Science, 1999, 286(5439): 509
https://doi.org/10.1126/science.286.5439.509
|
| 13 |
E. J. Newman M., Networks: An Introduction, Oxford University Press, 2010
|
| 14 |
Boccaletti S. , Latora V. , Moreno Y. , Chavez M. , U. Hwang D. . Complex networks: Structure and dynamics. Phys. Rep., 2006, 424(4−5): 175
https://doi.org/10.1016/j.physrep.2005.10.009
|
| 15 |
Arenas A. , Diaz-Guilera A. , Kurths J. , Moreno Y. , S. Zhou C. . Synchronization in complex networks. Phys. Rep., 2008, 469(3): 93
https://doi.org/10.1016/j.physrep.2008.09.002
|
| 16 |
Wu T. , Zhang X. , Liu Z. . Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys., 2022, 17(3): 31504
https://doi.org/10.1007/s11467-022-1161-6
|
| 17 |
Wang X. , Chen G. . Synchronization in small-world dynamical networks. Int. J. Bifurcat. Chaos, 2002, 12(1): 187
https://doi.org/10.1142/S0218127402004292
|
| 18 |
Barahona M. , M. Pecora L. . Synchronization in small-world systems. Phys. Rev. Lett., 2002, 89(5): 054101
https://doi.org/10.1103/PhysRevLett.89.054101
|
| 19 |
Nishikawa T. , E. Motter A. , C. Lai Y. , C. Hoppensteadt F. . Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize. Phys. Rev. Lett., 2003, 91(1): 014101
https://doi.org/10.1103/PhysRevLett.91.014101
|
| 20 |
Arenas A. , Díaz-Guilera A. , J. Pérez-Vicente C. . Synchronization reveals topological scales in complex networks. Phys. Rev. Lett., 2006, 96(11): 114102
https://doi.org/10.1103/PhysRevLett.96.114102
|
| 21 |
Hansel D. , Mato G. , Meunier C. . Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E, 1993, 48(5): 3470
https://doi.org/10.1103/PhysRevE.48.3470
|
| 22 |
Hasler M. , Maistrenko Yu. , Popovych O. . Simple example of partial synchronization of chaotic systems. Phys. Rev. E, 1998, 58(5): 6843
https://doi.org/10.1103/PhysRevE.58.6843
|
| 23 |
Zhang Y. , Hu G. , A. Cerdeira H. , Chen S. , Braun T. , Yao Y. . Partial synchronization and spontaneous spatial ordering in coupled chaotic systems. Phys. Rev. E, 2001, 63(2): 026211
https://doi.org/10.1103/PhysRevE.63.026211
|
| 24 |
Pikovsky A. , Popovych O. , Maistrenko Yu. . Resolving clusters in chaotic ensembles of globally coupled identical oscillators. Phys. Rev. Lett., 2001, 87(4): 044102
https://doi.org/10.1103/PhysRevLett.87.044102
|
| 25 |
A. Heisler I. , Braun T. , Zhang Y. , Hu G. , A. Cerdeira H. . Experimental investigation of partial synchronization in coupled chaotic oscillators. Chaos, 2003, 13(1): 185
https://doi.org/10.1063/1.1505811
|
| 26 |
R. S. Williams C. , E. Murphy T. , Roy R. , Sorrentino F. , Dahms T. , Schöll E. . Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett., 2013, 110(6): 064104
https://doi.org/10.1103/PhysRevLett.110.064104
|
| 27 |
Zhang J. , Z. Yu Y. , G. Wang X. . Synchronization of coupled metronomes on two layers. Front. Phys., 2017, 12(6): 120508
https://doi.org/10.1007/s11467-017-0675-9
|
| 28 |
M. Norton M. , Tompkins N. , Blanc B. , C. Cambria M. , Held J. , Fraden S. . Dynamics of reaction-diffusion oscillators in star and other networks with cyclic symmetries exhibiting multiple clusters. Phys. Rev. Lett., 2019, 123(14): 148301
https://doi.org/10.1103/PhysRevLett.123.148301
|
| 29 |
Fan H. , W. Kong L. , G. Wang X. , Hastings A. , C. Lai Y. . Synchronization within synchronization: Transients and intermittency in ecological networks. Natl. Sci. Rev., 2021, 8(10): nwaa269
https://doi.org/10.1093/nsr/nwaa269
|
| 30 |
Rodriguez E. , George N. , P. Lachaux J. , Martinerie J. , Renault B. , J. Varela F. . Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 1999, 397(6718): 430
https://doi.org/10.1038/17120
|
| 31 |
Kitsunai S. , Cho W. , Sano C. , Saetia S. , Qin Z. , Koike Y. , Frasca M. , Yoshimura N. , Minati L. . Generation of diverse insect-like gait patterns using networks of coupled Rössler systems. Chaos, 2020, 30(12): 123132
https://doi.org/10.1063/5.0021694
|
| 32 |
F. Heagy J. , M. Pecora L. , L. Carroll T. . Short wavelength bifurcations and size instabilities in coupled oscillator systems. Phys. Rev. Lett., 1995, 774(21): 4185
https://doi.org/10.1103/PhysRevLett.74.4185
|
| 33 |
M. Pecora L. . Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev. E, 1998, 58(1): 347
https://doi.org/10.1103/PhysRevE.58.347
|
| 34 |
Ao B. , G. Zheng Z. . Partial synchronization on complex networks. Europhys. Lett., 2006, 74(2): 229
https://doi.org/10.1209/epl/i2005-10533-0
|
| 35 |
Sorrentino F. , Ott E. . Network synchronization of groups. Phys. Rev. E, 2007, 76(5): 056114
https://doi.org/10.1103/PhysRevE.76.056114
|
| 36 |
Fu C. , Deng Z. , Huang L. , G. Wang X. . Topological control of synchronous patterns in systems of networked chaotic oscillators. Phys. Rev. E, 2013, 87(3): 032909
https://doi.org/10.1103/PhysRevE.87.032909
|
| 37 |
Fu C. , Lin W. , Huang L. , G. Wang X. . Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization. Phys. Rev. E, 2014, 89(5): 052908
https://doi.org/10.1103/PhysRevE.89.052908
|
| 38 |
M. Pecora L. , Sorrentino F. , M. Hagerstrom A. , E. Murphy T. , Roy R. . Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun., 2014, 5(1): 4079
https://doi.org/10.1038/ncomms5079
|
| 39 |
T. Schaub M. , O’Clery N. , N. Billeh Y. , C. Delvenne J. , Lambiotte R. , Barahona M. . Graph partitions and cluster synchronization in networks of oscillators. Chaos, 2016, 26(9): 094821
https://doi.org/10.1063/1.4961065
|
| 40 |
Sorrentino F. , M. Pecora L. , M. Hagerstrom A. , E. Murphy T. , Roy R. . Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci. Adv., 2016, 2(4): e1501737
https://doi.org/10.1126/sciadv.1501737
|
| 41 |
D. Hart J. , Zhang Y. , Roy R. , E. Motter A. . Topological control of synchronization pattern: Trading symmetry for stability. Phys. Rev. Lett., 2019, 122(5): 058301
https://doi.org/10.1103/PhysRevLett.122.058301
|
| 42 |
M. Abrams D. , M. Pecora L. , E. Motter A. . Introduction to focus issue: Patterns of network synchronization. Chaos, 2016, 26(9): 094601
https://doi.org/10.1063/1.4962970
|
| 43 |
Golubitsky M. , Stewart I. . Recent advances in symmetric and network dynamics. Chaos, 2015, 25(9): 097612
https://doi.org/10.1063/1.4918595
|
| 44 |
Lin W. , Fan H. , Wang Y. , Ying H. , G. Wang X. . Controlling synchronous patterns in complex networks. Phys. Rev. E, 2016, 93(4): 042209
https://doi.org/10.1103/PhysRevE.93.042209
|
| 45 |
Lin W. , Li H. , Ying H. , G. Wang X. . Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators. Phys. Rev. E, 2016, 94(6): 062303
https://doi.org/10.1103/PhysRevE.94.062303
|
| 46 |
Nishikawa T. , E. Motter A. . Network-complement transitions, symmetries, and cluster synchronization. Chaos, 2016, 26(9): 094818
https://doi.org/10.1063/1.4960617
|
| 47 |
Cho Y. , Nishikawa T. , E. Motter A. . Stable chimeras and independently synchronizable clusters. Phys. Rev. Lett., 2017, 119(8): 084101
https://doi.org/10.1103/PhysRevLett.119.084101
|
| 48 |
Cao B. , F. Wang Y. , Wang L. , Z. Yu Y. , G. Wang X. . Cluster synchronization in complex network of coupled chaotic circuits: An experimental study. Front. Phys., 2018, 13(5): 130505
https://doi.org/10.1007/s11467-018-0775-1
|
| 49 |
F. Wang Y. , Wang L. , Fan H. , G. Wang X. . Cluster synchronization in networked nonidentical chaotic oscillators. Chaos, 2019, 29(9): 093118
https://doi.org/10.1063/1.5097242
|
| 50 |
Wang L. , Guo Y. , Wang Y. , Fan H. , G. Wang X. . Pinning control of cluster synchronization in regular networks. Phys. Rev. Res., 2020, 2(2): 023084
https://doi.org/10.1103/PhysRevResearch.2.023084
|
| 51 |
Long Y. , Zhai Z. , Tang M. , Liu Y. , C. Lai Y. . Structural position vectors and symmetries in complex networks. Chaos, 2022, 32(9): 093132
https://doi.org/10.1063/5.0107583
|
| 52 |
M. Cardoso D. , Delorme C. , Rama P. . Laplacian eigenvectors and eigenvalues and almost equitable partitions. Eur. J. Combin., 2007, 28(3): 665
https://doi.org/10.1016/j.ejc.2005.03.006
|
| 53 |
A. D. Aguiar M. , P. S. Dias A. , Golubitsky M. , C. A. Leite M. . Bifurcations from regular quotient networks: A first insight. Physica D, 2009, 238(2): 137
https://doi.org/10.1016/j.physd.2008.10.006
|
| 54 |
O’Clery N. , Yuan Y. , B. Stan G. , Barahona M. . Observability and coarse graining of consensus dynamics through the external equitable partition. Phys. Rev. E, 2013, 88(4): 042805
https://doi.org/10.1103/PhysRevE.88.042805
|
| 55 |
Irving D. , Sorrentino F. . Synchronization of dynamical hypernetworks: Dimensionality reduction through simultaneous block-diagonalization of matrices. Phys. Rev. E, 2012, 86(5): 056102
https://doi.org/10.1103/PhysRevE.86.056102
|
| 56 |
Zhang Y. , E. Motter A. . Symmetry-independent stability analysis of synchronization patterns. SIAM Rev., 2020, 86: 056102
|
| 57 |
Zhang Y. , E. Motter A. . Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Commun. Phys., 2021, 4(1): 195
https://doi.org/10.1038/s42005-021-00695-0
|
| 58 |
Panahi S. , Amaya N. , Klickstein I. , Novello G. , Sorrentino F. . Failure of the simultaneous block diagonalization technique applied to complete and cluster synchronization of random networks. Phys. Rev. E, 2022, 105(1): 014313
https://doi.org/10.1103/PhysRevE.105.014313
|
| 59 |
Golubitsky M.Stewart I.G. Schaeffer D., Singularities and Groups in Bifurcation Theory, Springer-Verlag, 1985
|
| 60 |
Zhou C. , Zemanová L. , Zamora G. , C. Hilgetag C. , Kurths J. . Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett., 2006, 97(23): 238103
https://doi.org/10.1103/PhysRevLett.97.238103
|
| 61 |
Zhou C. , Zemanová L. , Zamora-López G. , C. Hilgetag C. , Kurths J. . Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys., 2007, 9(6): 178
https://doi.org/10.1088/1367-2630/9/6/178
|
| 62 |
Wang R. , Lin P. , Liu M. , Wu Y. , Zhou T. , Zhou C. . Hierarchical connectome modes and critical state jointly maximize human brain functional diversity. Phys. Rev. Lett., 2019, 123(3): 038301
https://doi.org/10.1103/PhysRevLett.123.038301
|
| 63 |
Huo S. , Tian C. , Zheng M. , Guan S. , Zhou C. , Liu Z. . Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. Natl. Sci. Rev., 2020, 8(1): nwaa125
https://doi.org/10.1093/nsr/nwaa125
|
| 64 |
E. J. Newman M. . Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 2006, 103(23): 8577
https://doi.org/10.1073/pnas.0601602103
|
| 65 |
Huang L. , Park K. , C. Lai Y. , Yang L. , Yang K. . Abnormal synchronization in complex clustered networks. Phys. Rev. Lett., 2006, 97(16): 164101
https://doi.org/10.1103/PhysRevLett.97.164101
|
| 66 |
G. Wang X. , Huang L. , C. Lai Y. , H. Lai C. . Optimization of synchronization in gradient clustered networks. Phys. Rev. E, 2007, 76(5): 056113
https://doi.org/10.1103/PhysRevE.76.056113
|
| 67 |
N. Lorenz E. . Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20(2): 130
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
| 68 |
L. Hindmarsh J. , M. Rose R. . A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B, 1984, 221(1222): 87
https://doi.org/10.1098/rspb.1984.0024
|
| 69 |
E. Motter A. , S. Zhou C. , Kurths J. . Enhancing complex-network synchronization. Europhys. Lett., 2005, 69(3): 334
https://doi.org/10.1209/epl/i2004-10365-4
|
| 70 |
G. Wang X. , C. Lai Y. , H. Lai C. . Enhancing synchronization based on complex gradient networks. Phys. Rev. E, 2007, 75(5): 056205
https://doi.org/10.1103/PhysRevE.75.056205
|
| 71 |
W. Scannell J. , A. P. C. Burns G. , C. Hilgetag C. , A. O’Neil M. , P. Young M. . The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex, 1999, 9(3): 277
https://doi.org/10.1093/cercor/9.3.277
|
| 72 |
Hagmann P. , Cammoun L. , Gigandet X. , Meuli R. , J. Honey C. , J. Wedeen V. , Sporns O. . Mapping the structural core of human cerebral cortex. PLoS Biol., 2008, 6(7): e157
https://doi.org/10.1371/journal.pbio.0060159
|
| 73 |
J. Honey C. , Sporns O. , Cammoun L. , Gigandet X. , P. Thiran J. , Meuli R. , Hagmann P. . Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA, 2009, 106(6): 2035
https://doi.org/10.1073/pnas.0811168106
|
| 74 |
Fu C. , Zhang H. , Zhan M. , Wang X. . Synchronous patterns in complex systems. Phys. Rev. E, 2012, 85(6): 066208
https://doi.org/10.1103/PhysRevE.85.066208
|
| 75 |
Poel W. , Zakharova A. , Schöll E. . Partial synchronization and partial amplitude death in mesoscale network motifs. Phys. Rev. E, 2015, 91(2): 022915
https://doi.org/10.1103/PhysRevE.91.022915
|
| 76 |
Khanra P. , Ghosh S. , Alfaro-Bittner K. , Kundu P. , Boccaletti S. , Hens C. , Pal P. . Identifying symmetries and predicting cluster synchronization in complex networks. Chaos Solitons Fractals, 2022, 155: 111703
https://doi.org/10.1016/j.chaos.2021.111703
|
| 77 |
B. Denton F. , J. Parke S. , Tao T. , Zhang X. . Eigenvectors from eigenvalues: A survey of a basic identity in linear algebra. Bull. Am. Math. Soc., 2022, 59(1): 31
https://doi.org/10.1090/bull/1722
|
| 78 |
Wang Y. , Zhang D. , Wang L. , Li Q. , Cao H. , G. Wang X. . Cluster synchronization induced by manifold deformation. Chaos, 2022, 32(9): 093139
https://doi.org/10.1063/5.0107866
|
| 79 |
Ma J. . Biophysical neurons, energy, and synapse controllability: A review. J. Zhejiang Univ. – Sci. A, 2023, 24: 109
https://doi.org/10.1631/jzus.A2200469
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|