Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 45302    https://doi.org/10.1007/s11467-023-1324-0
RESEARCH ARTICLE
Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators
Huawei Fan1,2, Ya Wang2, Xingang Wang2()
1. School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
2. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
 Download: PDF(7558 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Whereas topological symmetries have been recognized as crucially important to the exploration of synchronization patterns in complex networks of coupled dynamical oscillators, the identification of the symmetries in large-size complex networks remains as a challenge. Additionally, even though the topological symmetries of a complex network are known, it is still not clear how the system dynamics is transited among different synchronization patterns with respect to the coupling strength of the oscillators. We propose here the framework of eigenvector-based analysis to identify the synchronization patterns in the general complex networks and, incorporating the conventional method of eigenvalue-based analysis, investigate the emergence and transition of the cluster synchronization states. We are able to argue and demonstrate that, without a prior knowledge of the network symmetries, the method is able to predict not only all the cluster synchronization states observable in the network, but also the critical couplings where the states become stable and the sequence of these states in the process of synchronization transition. The efficacy and generality of the proposed method are verified by different network models of coupled chaotic oscillators, including artificial networks of perfect symmetries and empirical networks of non-perfect symmetries. The new framework paves a way to the investigation of synchronization patterns in large-size, general complex networks.

Keywords cluster synchronization      complex networks      network symmetry      coupled oscillators     
Corresponding Author(s): Xingang Wang   
Issue Date: 10 August 2023
 Cite this article:   
Huawei Fan,Ya Wang,Xingang Wang. Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators[J]. Front. Phys. , 2023, 18(4): 45302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1324-0
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/45302
Fig.1  CS in small-size networks of perfect symmetries. (a1) The structure of the 6-node network. The network dynamics is described by Eq. (15). (a2) By model simulations, the CS states observed in synchronization transition. δxi=?|xi?x2|?T is the synchronization error between oscillator i and the 2nd oscillator. ε denotes the uniform coupling strength. In the range of ε(1.8,2.7), two synchronization pairs, (2, 6) and (3, 5), are generated. In the range of ε(2.7,4.2), two synchronization clusters, (1, 2, 6) and (3, 4, 5), are formed. Global network synchronization is achieved when ε>εc4.2. (b1) The network structure of the Nepal power grid. The network nodes are partitioned into three non-trivial clusters, C1={1,,5}, C2={9,,13} and C3={6,7,8}, and two trivial clusters, C4={14} and C5={15}. (b2) By numerical simulations, the variation of the synchronization errors of the non-trivial clusters, δxmc=i,jCm?|xi?xj|?T/nm(nm?1) (with m=1,2,3 the cluster index and nm the number of nodes in cluster m), with respect to ε. The 1st, 2nd and 3rd clusters are synchronized at about ε = 0.9, 0.7 and 0.32, respectively.
Fig.2  CS in complex community networks of non-perfect symmetry. (a1) The structure of the community network, which contains N=90 nodes and M=3 communities of equal size. (a2) The elements of the eigenvectors v2, v3 and v4. (b1) The matrix of eigenvector distance, {δei,j}i,j=1,,N, when the mode of λ2 is unstable. (c1) The matrix of eigenvector distance when the modes of λ2 and λ3 are unstable. (d1) The matrix of eigenvector distance when the modes of λ2, λ3 and λ4 are unstable. (b2) The matrix of synchronization error, {δxi,j}i,j=1,,N, for ε=7.6. (c2) The matrix of synchronization error for ε=6. (d2) The matrix of synchronization error for ε=0.5.
Fig.3  (a1) The structure of the community network consisting of N=180 nodes and M=6 communities. (a2) The elements of the eigenvectors v2, v3 and v4. (b1) The matrix of eigenvector distance when the mode of λ2 is unstable. (c1) The matrix of eigenvector distance when the modes of λ2 and λ3 are unstable. (d1) The matrix of eigenvector distance when the modes of λ2, λ3 and λ4 are unstable. (b2?d2) are the matrices of synchronization error, {δxi,j}i,j=1,,N, obtained by numerical simulations for the coupling strengths ε=10 (b2), ε=5.65 (c2) and ε=4 (d2).
Fig.4  CS in the cortico-cortical network of the cat brain. (a1) The network structure. The nodes are divided into four functional divisions: \embassyCV=(1,,16) (visual division), \embassyCA=(17,,23) (auditory division), \embassyCSM=(24,,39) (somatomotor division) and \embassyCFL=(40,,53) (frontolimbic division). (a2) The components of the eigenvectors v2 and v3. (b1) The matrix of eigenvector distance, {δei,j}i,j=1,,N, when the mode of λ2 is unstable. (c1) The matrix of eigenvector distance when the modes of λ2 and λ3 are unstable. (b2) The matrix of synchronization error, {δxi,j}i,j=1,,N, for the coupling strength ε=2.2. (c2) The matrix of synchronization error for ε=1.9.
Fig.5  CS in the cortical network of the human brain. The synchronization patterns predicted by the theory under different coupling strengths are plotted in the first row, and the corresponding results obtained by model simulations are plotted in the second row. (a1, a2) show the results for ε=15, by which only the mode of λ2 is unstable. (b1, b2) are the results for ε=8.5, by which the modes of λ2,3,4 are unstable. (c1, c2) are the results for ε=5.0, by which the modes λ2,,6 are unstable. In each subplot, nodes in the non-synchronizable regions are represented by grey symbols, and nodes in the synchronizable regions are represented by colored symbols. Nodes with the same color (except the grey-colored nodes) form a synchronization cluster. See the context for more details.
1 Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984
2 T. Winfree A., Timing of Biological Clocks, W H Freeman & Co, 1987
3 S. Pikovsky A.G. Rosenblum M.Kurths J., Synchronization: A Universal Concept in Nonlinear Science, Cambridge University Press, Cambridge, 2001
4 Strogatz S., Sync: The Emerging Science of Spontaneous Order, Hyperion, New York, 2003
5 M. Pecora L. , L. Carroll T. . Master stability functions for synchronized coupled systems. Phys. Rev. Lett., 1998, 80(10): 2109
https://doi.org/10.1103/PhysRevLett.80.2109
6 Hu G. , Z. Yang J. , Liu W. . Instability and controllability of linearly coupled oscillators: Eigenvalue analysis. Phys. Rev. E, 1998, 58(4): 4440
https://doi.org/10.1103/PhysRevE.58.4440
7 Huang L. , Chen Q. , C. Lai Y. , M. Pecora L. . Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E, 2009, 80(3): 036204
https://doi.org/10.1103/PhysRevE.80.036204
8 A. Acebrón J. , L. Bonilla L. , J. Pérez Vicente C. , Ritort F. , Spigler R. . The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 2005, 77(1): 137
https://doi.org/10.1103/RevModPhys.77.137
9 Ott E. , M. Antonsen T. . Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 2008, 18(3): 037113
https://doi.org/10.1063/1.2930766
10 Kaneko K., Theory and Application of Coupled Map Lattice, Wiley, Chichester, 1993
11 J. Watts D. , H. Strogatz S. . Collective dynamics of “small-world” networks. Nature, 1998, 393(6684): 440
https://doi.org/10.1038/30918
12 L. Barabási A. , Albert R. . Emergence of scaling in random networks. Science, 1999, 286(5439): 509
https://doi.org/10.1126/science.286.5439.509
13 E. J. Newman M., Networks: An Introduction, Oxford University Press, 2010
14 Boccaletti S. , Latora V. , Moreno Y. , Chavez M. , U. Hwang D. . Complex networks: Structure and dynamics. Phys. Rep., 2006, 424(4−5): 175
https://doi.org/10.1016/j.physrep.2005.10.009
15 Arenas A. , Diaz-Guilera A. , Kurths J. , Moreno Y. , S. Zhou C. . Synchronization in complex networks. Phys. Rep., 2008, 469(3): 93
https://doi.org/10.1016/j.physrep.2008.09.002
16 Wu T. , Zhang X. , Liu Z. . Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys., 2022, 17(3): 31504
https://doi.org/10.1007/s11467-022-1161-6
17 Wang X. , Chen G. . Synchronization in small-world dynamical networks. Int. J. Bifurcat. Chaos, 2002, 12(1): 187
https://doi.org/10.1142/S0218127402004292
18 Barahona M. , M. Pecora L. . Synchronization in small-world systems. Phys. Rev. Lett., 2002, 89(5): 054101
https://doi.org/10.1103/PhysRevLett.89.054101
19 Nishikawa T. , E. Motter A. , C. Lai Y. , C. Hoppensteadt F. . Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize. Phys. Rev. Lett., 2003, 91(1): 014101
https://doi.org/10.1103/PhysRevLett.91.014101
20 Arenas A. , Díaz-Guilera A. , J. Pérez-Vicente C. . Synchronization reveals topological scales in complex networks. Phys. Rev. Lett., 2006, 96(11): 114102
https://doi.org/10.1103/PhysRevLett.96.114102
21 Hansel D. , Mato G. , Meunier C. . Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E, 1993, 48(5): 3470
https://doi.org/10.1103/PhysRevE.48.3470
22 Hasler M. , Maistrenko Yu. , Popovych O. . Simple example of partial synchronization of chaotic systems. Phys. Rev. E, 1998, 58(5): 6843
https://doi.org/10.1103/PhysRevE.58.6843
23 Zhang Y. , Hu G. , A. Cerdeira H. , Chen S. , Braun T. , Yao Y. . Partial synchronization and spontaneous spatial ordering in coupled chaotic systems. Phys. Rev. E, 2001, 63(2): 026211
https://doi.org/10.1103/PhysRevE.63.026211
24 Pikovsky A. , Popovych O. , Maistrenko Yu. . Resolving clusters in chaotic ensembles of globally coupled identical oscillators. Phys. Rev. Lett., 2001, 87(4): 044102
https://doi.org/10.1103/PhysRevLett.87.044102
25 A. Heisler I. , Braun T. , Zhang Y. , Hu G. , A. Cerdeira H. . Experimental investigation of partial synchronization in coupled chaotic oscillators. Chaos, 2003, 13(1): 185
https://doi.org/10.1063/1.1505811
26 R. S. Williams C. , E. Murphy T. , Roy R. , Sorrentino F. , Dahms T. , Schöll E. . Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett., 2013, 110(6): 064104
https://doi.org/10.1103/PhysRevLett.110.064104
27 Zhang J. , Z. Yu Y. , G. Wang X. . Synchronization of coupled metronomes on two layers. Front. Phys., 2017, 12(6): 120508
https://doi.org/10.1007/s11467-017-0675-9
28 M. Norton M. , Tompkins N. , Blanc B. , C. Cambria M. , Held J. , Fraden S. . Dynamics of reaction-diffusion oscillators in star and other networks with cyclic symmetries exhibiting multiple clusters. Phys. Rev. Lett., 2019, 123(14): 148301
https://doi.org/10.1103/PhysRevLett.123.148301
29 Fan H. , W. Kong L. , G. Wang X. , Hastings A. , C. Lai Y. . Synchronization within synchronization: Transients and intermittency in ecological networks. Natl. Sci. Rev., 2021, 8(10): nwaa269
https://doi.org/10.1093/nsr/nwaa269
30 Rodriguez E. , George N. , P. Lachaux J. , Martinerie J. , Renault B. , J. Varela F. . Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 1999, 397(6718): 430
https://doi.org/10.1038/17120
31 Kitsunai S. , Cho W. , Sano C. , Saetia S. , Qin Z. , Koike Y. , Frasca M. , Yoshimura N. , Minati L. . Generation of diverse insect-like gait patterns using networks of coupled Rössler systems. Chaos, 2020, 30(12): 123132
https://doi.org/10.1063/5.0021694
32 F. Heagy J. , M. Pecora L. , L. Carroll T. . Short wavelength bifurcations and size instabilities in coupled oscillator systems. Phys. Rev. Lett., 1995, 774(21): 4185
https://doi.org/10.1103/PhysRevLett.74.4185
33 M. Pecora L. . Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev. E, 1998, 58(1): 347
https://doi.org/10.1103/PhysRevE.58.347
34 Ao B. , G. Zheng Z. . Partial synchronization on complex networks. Europhys. Lett., 2006, 74(2): 229
https://doi.org/10.1209/epl/i2005-10533-0
35 Sorrentino F. , Ott E. . Network synchronization of groups. Phys. Rev. E, 2007, 76(5): 056114
https://doi.org/10.1103/PhysRevE.76.056114
36 Fu C. , Deng Z. , Huang L. , G. Wang X. . Topological control of synchronous patterns in systems of networked chaotic oscillators. Phys. Rev. E, 2013, 87(3): 032909
https://doi.org/10.1103/PhysRevE.87.032909
37 Fu C. , Lin W. , Huang L. , G. Wang X. . Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization. Phys. Rev. E, 2014, 89(5): 052908
https://doi.org/10.1103/PhysRevE.89.052908
38 M. Pecora L. , Sorrentino F. , M. Hagerstrom A. , E. Murphy T. , Roy R. . Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun., 2014, 5(1): 4079
https://doi.org/10.1038/ncomms5079
39 T. Schaub M. , O’Clery N. , N. Billeh Y. , C. Delvenne J. , Lambiotte R. , Barahona M. . Graph partitions and cluster synchronization in networks of oscillators. Chaos, 2016, 26(9): 094821
https://doi.org/10.1063/1.4961065
40 Sorrentino F. , M. Pecora L. , M. Hagerstrom A. , E. Murphy T. , Roy R. . Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci. Adv., 2016, 2(4): e1501737
https://doi.org/10.1126/sciadv.1501737
41 D. Hart J. , Zhang Y. , Roy R. , E. Motter A. . Topological control of synchronization pattern: Trading symmetry for stability. Phys. Rev. Lett., 2019, 122(5): 058301
https://doi.org/10.1103/PhysRevLett.122.058301
42 M. Abrams D. , M. Pecora L. , E. Motter A. . Introduction to focus issue: Patterns of network synchronization. Chaos, 2016, 26(9): 094601
https://doi.org/10.1063/1.4962970
43 Golubitsky M. , Stewart I. . Recent advances in symmetric and network dynamics. Chaos, 2015, 25(9): 097612
https://doi.org/10.1063/1.4918595
44 Lin W. , Fan H. , Wang Y. , Ying H. , G. Wang X. . Controlling synchronous patterns in complex networks. Phys. Rev. E, 2016, 93(4): 042209
https://doi.org/10.1103/PhysRevE.93.042209
45 Lin W. , Li H. , Ying H. , G. Wang X. . Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators. Phys. Rev. E, 2016, 94(6): 062303
https://doi.org/10.1103/PhysRevE.94.062303
46 Nishikawa T. , E. Motter A. . Network-complement transitions, symmetries, and cluster synchronization. Chaos, 2016, 26(9): 094818
https://doi.org/10.1063/1.4960617
47 Cho Y. , Nishikawa T. , E. Motter A. . Stable chimeras and independently synchronizable clusters. Phys. Rev. Lett., 2017, 119(8): 084101
https://doi.org/10.1103/PhysRevLett.119.084101
48 Cao B. , F. Wang Y. , Wang L. , Z. Yu Y. , G. Wang X. . Cluster synchronization in complex network of coupled chaotic circuits: An experimental study. Front. Phys., 2018, 13(5): 130505
https://doi.org/10.1007/s11467-018-0775-1
49 F. Wang Y. , Wang L. , Fan H. , G. Wang X. . Cluster synchronization in networked nonidentical chaotic oscillators. Chaos, 2019, 29(9): 093118
https://doi.org/10.1063/1.5097242
50 Wang L. , Guo Y. , Wang Y. , Fan H. , G. Wang X. . Pinning control of cluster synchronization in regular networks. Phys. Rev. Res., 2020, 2(2): 023084
https://doi.org/10.1103/PhysRevResearch.2.023084
51 Long Y. , Zhai Z. , Tang M. , Liu Y. , C. Lai Y. . Structural position vectors and symmetries in complex networks. Chaos, 2022, 32(9): 093132
https://doi.org/10.1063/5.0107583
52 M. Cardoso D. , Delorme C. , Rama P. . Laplacian eigenvectors and eigenvalues and almost equitable partitions. Eur. J. Combin., 2007, 28(3): 665
https://doi.org/10.1016/j.ejc.2005.03.006
53 A. D. Aguiar M. , P. S. Dias A. , Golubitsky M. , C. A. Leite M. . Bifurcations from regular quotient networks: A first insight. Physica D, 2009, 238(2): 137
https://doi.org/10.1016/j.physd.2008.10.006
54 O’Clery N. , Yuan Y. , B. Stan G. , Barahona M. . Observability and coarse graining of consensus dynamics through the external equitable partition. Phys. Rev. E, 2013, 88(4): 042805
https://doi.org/10.1103/PhysRevE.88.042805
55 Irving D. , Sorrentino F. . Synchronization of dynamical hypernetworks: Dimensionality reduction through simultaneous block-diagonalization of matrices. Phys. Rev. E, 2012, 86(5): 056102
https://doi.org/10.1103/PhysRevE.86.056102
56 Zhang Y. , E. Motter A. . Symmetry-independent stability analysis of synchronization patterns. SIAM Rev., 2020, 86: 056102
57 Zhang Y. , E. Motter A. . Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Commun. Phys., 2021, 4(1): 195
https://doi.org/10.1038/s42005-021-00695-0
58 Panahi S. , Amaya N. , Klickstein I. , Novello G. , Sorrentino F. . Failure of the simultaneous block diagonalization technique applied to complete and cluster synchronization of random networks. Phys. Rev. E, 2022, 105(1): 014313
https://doi.org/10.1103/PhysRevE.105.014313
59 Golubitsky M.Stewart I.G. Schaeffer D., Singularities and Groups in Bifurcation Theory, Springer-Verlag, 1985
60 Zhou C. , Zemanová L. , Zamora G. , C. Hilgetag C. , Kurths J. . Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett., 2006, 97(23): 238103
https://doi.org/10.1103/PhysRevLett.97.238103
61 Zhou C. , Zemanová L. , Zamora-López G. , C. Hilgetag C. , Kurths J. . Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys., 2007, 9(6): 178
https://doi.org/10.1088/1367-2630/9/6/178
62 Wang R. , Lin P. , Liu M. , Wu Y. , Zhou T. , Zhou C. . Hierarchical connectome modes and critical state jointly maximize human brain functional diversity. Phys. Rev. Lett., 2019, 123(3): 038301
https://doi.org/10.1103/PhysRevLett.123.038301
63 Huo S. , Tian C. , Zheng M. , Guan S. , Zhou C. , Liu Z. . Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. Natl. Sci. Rev., 2020, 8(1): nwaa125
https://doi.org/10.1093/nsr/nwaa125
64 E. J. Newman M. . Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 2006, 103(23): 8577
https://doi.org/10.1073/pnas.0601602103
65 Huang L. , Park K. , C. Lai Y. , Yang L. , Yang K. . Abnormal synchronization in complex clustered networks. Phys. Rev. Lett., 2006, 97(16): 164101
https://doi.org/10.1103/PhysRevLett.97.164101
66 G. Wang X. , Huang L. , C. Lai Y. , H. Lai C. . Optimization of synchronization in gradient clustered networks. Phys. Rev. E, 2007, 76(5): 056113
https://doi.org/10.1103/PhysRevE.76.056113
67 N. Lorenz E. . Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20(2): 130
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
68 L. Hindmarsh J. , M. Rose R. . A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B, 1984, 221(1222): 87
https://doi.org/10.1098/rspb.1984.0024
69 E. Motter A. , S. Zhou C. , Kurths J. . Enhancing complex-network synchronization. Europhys. Lett., 2005, 69(3): 334
https://doi.org/10.1209/epl/i2004-10365-4
70 G. Wang X. , C. Lai Y. , H. Lai C. . Enhancing synchronization based on complex gradient networks. Phys. Rev. E, 2007, 75(5): 056205
https://doi.org/10.1103/PhysRevE.75.056205
71 W. Scannell J. , A. P. C. Burns G. , C. Hilgetag C. , A. O’Neil M. , P. Young M. . The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex, 1999, 9(3): 277
https://doi.org/10.1093/cercor/9.3.277
72 Hagmann P. , Cammoun L. , Gigandet X. , Meuli R. , J. Honey C. , J. Wedeen V. , Sporns O. . Mapping the structural core of human cerebral cortex. PLoS Biol., 2008, 6(7): e157
https://doi.org/10.1371/journal.pbio.0060159
73 J. Honey C. , Sporns O. , Cammoun L. , Gigandet X. , P. Thiran J. , Meuli R. , Hagmann P. . Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA, 2009, 106(6): 2035
https://doi.org/10.1073/pnas.0811168106
74 Fu C. , Zhang H. , Zhan M. , Wang X. . Synchronous patterns in complex systems. Phys. Rev. E, 2012, 85(6): 066208
https://doi.org/10.1103/PhysRevE.85.066208
75 Poel W. , Zakharova A. , Schöll E. . Partial synchronization and partial amplitude death in mesoscale network motifs. Phys. Rev. E, 2015, 91(2): 022915
https://doi.org/10.1103/PhysRevE.91.022915
76 Khanra P. , Ghosh S. , Alfaro-Bittner K. , Kundu P. , Boccaletti S. , Hens C. , Pal P. . Identifying symmetries and predicting cluster synchronization in complex networks. Chaos Solitons Fractals, 2022, 155: 111703
https://doi.org/10.1016/j.chaos.2021.111703
77 B. Denton F. , J. Parke S. , Tao T. , Zhang X. . Eigenvectors from eigenvalues: A survey of a basic identity in linear algebra. Bull. Am. Math. Soc., 2022, 59(1): 31
https://doi.org/10.1090/bull/1722
78 Wang Y. , Zhang D. , Wang L. , Li Q. , Cao H. , G. Wang X. . Cluster synchronization induced by manifold deformation. Chaos, 2022, 32(9): 093139
https://doi.org/10.1063/5.0107866
79 Ma J. . Biophysical neurons, energy, and synapse controllability: A review. J. Zhejiang Univ. – Sci. A, 2023, 24: 109
https://doi.org/10.1631/jzus.A2200469
[1] Jia-Meng Zhang, Xue Li, Yong Zou, Shu-Guang Guan. Novel transition and Bellerophon state in coupled Stuart–Landau oscillators[J]. Front. Phys. , 2019, 14(3): 33603-.
[2] Heng Guo, Jia-Yang Zhang, Yong Zou, Shu-Guang Guan. Cross and joint ordinal partition transition networks for multivariate time series analysis[J]. Front. Phys. , 2018, 13(5): 130508-.
[3] Li-Min Ying, Jie Zhou, Ming Tang, Shu-Guang Guan, Yong Zou. Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs[J]. Front. Phys. , 2018, 13(1): 130201-.
[4] Jing Zhang,Yi-Zhen Yu,Xin-Gang Wang. Synchronization of coupled metronomes on two layers[J]. Front. Phys. , 2017, 12(6): 120508-.
[5] Yi-Min Ding, Jun Meng, Jing-Fang Fan, Fang-Fu Ye, Xiao-Song Chen. Statistical properties of random clique networks[J]. Front. Phys. , 2017, 12(5): 128909-.
[6] Wei ZOU (邹为), Xin-gang WANG (王新刚), Qi ZHAO (赵琪), Meng ZHAN (占明). Oscillation death in coupled oscillators[J]. Front. Phys. , 2009, 4(1): 97-110.
[7] YANG Kong-qing, YANG Lei, GONG Bai-hua, LIN Zhong-cai, HE Hong-sheng, HUANG Liang. Geographical networks: geographical effects on network properties[J]. Front. Phys. , 2008, 3(1): 105-111.
[8] ZHAO Ming, ZHOU Tao, CHEN Guan-rong, WANG Bing-hong. Enhancing the network synchronizability[J]. Front. Phys. , 2007, 2(4): 460-468.
[9] LIU Cui-mei, LI Jun-wei. Small- world and the growing properties of the Chinese railway network[J]. Front. Phys. , 2007, 2(3): 364-367.
[10] ZHENG Zhi-gang, FENG Xiao-qin, AO Bin, Michael C. Cross. Synchronization on coupled dynamical networks[J]. Front. Phys. , 2006, 1(4): 458-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed