Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (6) : 63602    https://doi.org/10.1007/s11467-023-1328-9
TOPICAL REVIEW
Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures
Hao Zhang1,2,3, Mohsin Ijaz1,2,3(), Richard J. Blaikie1,2,3()
1. Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand
2. MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
3. Department of Physics, University of Otago, Dunedin 9016, New Zealand
 Download: PDF(7267 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plasmonic resonators are widely used for the manipulation of light on subwavelength scales through the near-field electromagnetic wave produced by the collective oscillation of free electrons within metallic systems, well known as the surface plasmon (SP). The non-radiative decay of the surface plasmon can excite a plasmonic hot electron. This review article systematically describes the excitation progress and basic properities of SPs and plasmonic hot electrons according to recent publications. The extraction mechanism of plasmonic hot electrons via Schottky conjunction to an adjacent semiconductor is also illustrated. Also, a calculation model of hot electron density is given, where the efficiency of hot-electron excitation, transport and extraction is discussed. We believe that plasmonic hot electrons have a huge potential in the future development of optoelectronic systems and devices.

Keywords surface plasmon      plasmonic hot electrons      plasmonic resonators      electron−electron scattering      Schottky conjunctions      nanophotonics     
Corresponding Author(s): Mohsin Ijaz,Richard J. Blaikie   
Issue Date: 14 July 2023
 Cite this article:   
Hao Zhang,Mohsin Ijaz,Richard J. Blaikie. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures[J]. Front. Phys. , 2023, 18(6): 63602.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1328-9
https://academic.hep.com.cn/fop/EN/Y2023/V18/I6/63602
Fig.1  Schematic of (a) SPPs and (b) LSPRs. (a) The silver nanowire’s length is larger than the wavelength of incident light and width is near the wavelength. (b) Silver nanospheres’ size is much smaller than the wavelength of incident light (red).
Fig.2  Schematic diagram of (a) charge distribution of the SPPs modes on the interface (black solid curves represent strength of electrical field) and (b) decay of electrical field through interface between metal and dielectric.
Fig.3  Dispersion curve (solid curves) of the SPPs. The horizontal coordinate is the in-plane wavevector (parallel to the interface) of light and the vertical coordinate is the angular frequency of the SPPs. Dashed straight lines present the relationship between angular frequency and in-plane wavevector of light in air and dielectric ( ?0 is permittivity of the dielectric). The dashed curve represents the dispersion curve of the mental film without dielectric cladding.
Fig.4  Schematic diagrams of prism coupling of incident light to SPPs with (a) Otto structure and (b) Kretschmann–Raether structure.
Fig.5  Schematic of diffraction coupling to SPPs by grating on surface of the metal film.
Fig.6  Reflection spectrum of metallic grating with a narrow dip corresponding to the excitation of plasmonic modes through grating coupling.
Fig.7  Dispersion of SPPs by diffraction coupling (G=2πa).
Fig.8  The propagation length of the SPPs as a function of the plasmon wavelength.
Fig.9  The Fermi–Dirac distribution at the absolute zero temperature (orange solid line), showing a step at the Fermi level. For T > 0, some electrons below EF can be thermally excited (green dotted curve).
Fig.10  The electron distribution under (a) the absorption of a photon with energy ω, (b) electron−phonon scattering and (c) electron−electron scattering.
Fig.11  Schematic of radiative and non-radiative decay of plasmon.
Fig.12  Energy composition distribution of (a) a photon polariton in dielectric and (b) a plasmon polariton in the metal.
Fig.13  Four mechanics of non-radiative decay of plasmon: (a) direct interband transition; (b) phonon (or impurity)-assisted decay; (c) interelectronic (EE) scattering-assisted decay; (d) Landau damping or surface collision-assisted decay.
Fig.14  Schematic of relaxation process of plasmonic hot electrons inside metallic nanospheres.
Fig.15  Schematic of generation of non-equilibrium hot carriers in the metal. (a) Illuminating a periodic metallic grating. (b) Step-wise excitation and decay of plasmon resonances to generate hot electrons.
Fig.16  Left: Excitation of hot electrons in the metal from occupied energy levels (grey shade) resided below the Fermi level (EF,M) to unoccupied levels beyond EF,M. Right: The band diagram of the Schottky junction between the metal and the n-type semiconductor. Only hot electrons with energy over the schottky barrier φ SB can have access to injection to the semiconductor.
Fig.17  Schematic of hot-electron injection from metal to semiconductor across the interface.
Fig.18  Diagram of photovoltaic cells based on current of hot electrons.
Fig.19  Diagram of a photodetector based on photocurrent of hot electrons.
Fig.20  Charge distribution at the metal/n-semiconductor contact at the completion of the depletion layer.
Fig.21  Energy band diagrams of a contact between the metal and the semiconductor: with ϕ m> χ s (a) before contact and (b) in contact; with ϕ m< χ s (c) before contact and (d) in contact.
Fig.22  Illustration of energy band in Schottky junction under (a) no bias, (b) forward bias and (c) reserve bias Va.
Fig.23  Illumination of interface transport mechanism in forward-biased Schottky conjunction (n-type semiconductor).
1 Törmä P., L. Barnes W.. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys., 2015, 78(1): 013901
https://doi.org/10.1088/0034-4885/78/1/013901
2 K. Zhou Z., Liu J., Bao Y., Wu L., E. Png C., H. Wang X., W. Qiu C.. Quantum plasmonics get applied. Prog. Quantum Electron., 2019, 65: 1
https://doi.org/10.1016/j.pquantelec.2019.04.002
3 A. Schuller J., S. Barnard E., Cai W., C. Jun Y., S. White J., L. Brongersma M.. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 2010, 9(3): 193
https://doi.org/10.1038/nmat2630
4 R. West P., Ishii S., V. Naik G., K. Emani N., M. Shalaev V., Boltasseva A.. Searching for better plasmonic materials. Laser Photonics Rev., 2010, 4(6): 795
https://doi.org/10.1002/lpor.200900055
5 Rycenga M., M. Cobley C., Zeng J., Li W., H. Moran C., Zhang Q., Qin D., Xia Y.. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6): 3669
https://doi.org/10.1021/cr100275d
6 Iqbal T., U. Farooq M., Ijaz M., Afsheen S., Rizwan M., B. Tahir M.. Optimization of 1D silver grating devices for extraordinary optical transmission. Plasmonics, 2019, 14(5): 1099
https://doi.org/10.1007/s11468-018-00898-2
7 Zafar M., Ijaz M., Iqbal T.. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chem. Pap., 2021, 75(6): 2277
https://doi.org/10.1007/s11696-020-01465-y
8 He Y., Laugesen K., Kamp D., A. Sultan S., B. Oddershede L., Jauffred L.. Effects and side effects of plasmonic photothermal therapy in brain tissue. Cancer Nanotechnol., 2019, 10(1): 8
https://doi.org/10.1186/s12645-019-0053-0
9 Lu R., Ni J., Yin S., Ji Y.. Responsive plasmonic nanomaterials for advanced cancer diagnostics. Front. Chem., 2021, 9: 652287
https://doi.org/10.3389/fchem.2021.652287
10 G. Sobral-Filho R., M. Brito-Silva A., Isabelle M., Jirasek A., J. Lum J., G. Brolo A.. Plasmonic labeling of subcellular compartments in cancer cells: Multiplexing with fine-tuned gold and silver nanoshells. Chem. Sci. (Camb.), 2017, 8(4): 3038
https://doi.org/10.1039/C6SC04127B
11 Ezendam S., Herran M., Nan L., Gruber C., Kang Y., Gröbmeyer F., Lin R., Gargiulo J., Sousa-Castillo A., Cortés E.. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett., 2022, 7(2): 778
https://doi.org/10.1021/acsenergylett.1c02241
12 H. Jang Y., J. Jang Y., Kim S., N. Quan L., Chung K., H. Kim D.. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev., 2016, 116(24): 14982
https://doi.org/10.1021/acs.chemrev.6b00302
13 Ijaz M., Shoukat A., Ayub A., Tabassum H., Naseer H., Tanveer R., Islam A., Iqbal T.. Perovskite solar cells: Importance, challenges, and plasmonic enhancement. Int. J. Green Energy, 2020, 17(15): 1022
https://doi.org/10.1080/15435075.2020.1818567
14 Iqbal T., Ijaz M., Javaid M., Rafique M., N. Riaz K., B. Tahir M., Nabi G., Abrar M., Afsheen S.. An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics, 2019, 14(1): 147
https://doi.org/10.1007/s11468-018-0787-2
15 Zhang H., Liu F., J. Blaikie R., Ding B., Qiu M.. Bifacial omnidirectional and band-tunable light absorption in free-standing core-shell resonators. Appl. Phys. Lett., 2022, 120(18): 181110
https://doi.org/10.1063/5.0088233
16 J. Lu Y., L. Shen T., N. Peng K., J. Cheng P., W. Chang S., Y. Lu M., W. Chu C., F. Guo T., A. Atwater H.. Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold. ACS Photonics, 2021, 8(1): 335
https://doi.org/10.1021/acsphotonics.0c01586
17 Gu L., Wen K., Peng Q., Huang W., Wang J.. Surface-plasmon-enhanced perovskite light-emitting diodes. Small, 2020, 16(30): 2001861
https://doi.org/10.1002/smll.202001861
18 A. Huang J., B. Luo L.. Low-dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater., 2018, 6(8): 1701282
https://doi.org/10.1002/adom.201701282
19 M. Shrivastav A.Cvelbar U.Abdulhalim I., A comprehensive review on plasmonic-based biosensors used in viral diagnostics, Commun. Biol. 4(1), 70 (2021)
20 Xavier J., Vincent S., Meder F., Vollmer F.. Advances in optoplasmonic sensors- combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics, 2018, 7(1): 1
https://doi.org/10.1515/nanoph-2017-0064
21 Afsheen S., Iqbal T., Aftab M., Bashir A., Tehseen A., Y. Khan M., Ijaz M.. Modeling of 1D Au plasmonic grating as efficient gas sensor. Mater. Res. Express, 2019, 6(12): 126203
https://doi.org/10.1088/2053-1591/ab553b
22 Afsheen S., Munir M., Isa Khan M., Iqbal T., Abrar M., B. Tahir M., U. Rehman J., N. Riaz K., Ijaz M., Nabi G.. Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology, 2018, 29(38): 385501
https://doi.org/10.1088/1361-6528/aace9a
23 Iqbal T., Noureen S., Afsheen S., Y. Khan M., Ijaz M.. Rectangular and sinusoidal Au-grating as plasmonic sensor: A comparative study. Opt. Mater., 2020, 99: 109530
https://doi.org/10.1016/j.optmat.2019.109530
24 Ijaz M., Aftab M., Afsheen S., Iqbal T.. Novel Au nano-grating for detection of water in various electrolytes. Appl. Nanosci., 2020, 10(11): 4029
https://doi.org/10.1007/s13204-020-01520-w
25 Zhang S., C. Li G., Chen Y., Zhu X., D. Liu S., Y. Lei D., Duan H.. Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano, 2016, 10(12): 11105
https://doi.org/10.1021/acsnano.6b05979
26 S. Verma M., Chandra M.. Second harmonic generation-based nonlinear plasmonic RI-sensing in solution: The pivotal role of the particle size. Phys. Chem. Chem. Phys., 2021, 23(45): 25565
https://doi.org/10.1039/D1CP04546F
27 Alù A., Engheta N.. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A, 2008, 10(9): 093002
https://doi.org/10.1088/1464-4258/10/9/093002
28 Xu H.. Surface-enhanced Raman scattering beyond plasmonics. Front. Phys., 2022, 17(2): 23601
https://doi.org/10.1007/s11467-021-1112-7
29 Lan L., Gao Y., Fan X., Li M., Hao Q., Qiu T.. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys., 2021, 16(4): 43300
https://doi.org/10.1007/s11467-021-1047-z
30 Shi L., Iwan B., Nicolas R., Ripault Q., R. C. Andrade J., Han S., Kim H., Boutu W., Franz D., Heidenblut T., Reinhardt C., Bastiaens B., Nagy T., Babushkin I., Morgner U., W. Kim S., Steinmeyer G., Merdji H., Kovacev M.. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica, 2017, 4(9): 1038
https://doi.org/10.1364/OPTICA.4.001038
31 Shi L., R. C. Andrade J., Tajalli A., Geng J., Yi J., Heidenblut T., B. Segerink F., Babushkin I., Kholodtsova M., Merdji H., Bastiaens B., Morgner U., Kovacev M.. Generating ultrabroadband deep-UV radiation and sub-10 nm gap by hybrid-morphology gold antennas. Nano Lett., 2019, 19(7): 4779
https://doi.org/10.1021/acs.nanolett.9b02100
32 Shi L., R. C. Andrade J., Yi J., Marinskas M., Reinhardt C., Almeida E., Morgner U., Kovacev M.. Nanoscale broadband deep-ultraviolet light source from plasmonic nanoholes. ACS Photonics, 2019, 6(4): 858
https://doi.org/10.1021/acsphotonics.9b00127
33 Hentschel M., Utikal T., Giessen H., Lippitz M.. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett., 2012, 12(7): 3778
https://doi.org/10.1021/nl301686x
34 Geng J., Yan W., Shi L., Qiu M.. Surface plasmons interference nanogratings: Wafer-scale laser direct structuring in seconds. Light Sci. Appl., 2022, 11(1): 189
https://doi.org/10.1038/s41377-022-00883-9
35 Wang L., D. Chen Q., W. Cao X., Buividas R., Wang X., Juodkazis S., B. Sun H.. Plasmonic nano-printing: Large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl., 2017, 6(12): e17112
https://doi.org/10.1038/lsa.2017.112
36 Zou T., Zhao B., Xin W., Wang Y., Wang B., Zheng X., Xie H., Zhang Z., Yang J., Guo C.. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci. Appl., 2020, 9(1): 69
https://doi.org/10.1038/s41377-020-0311-2
37 L. Barnes W.. Surface plasmon-polariton length scales: A route to sub-wavelength optics. J. Opt. A, 2006, 8(4): S87
https://doi.org/10.1088/1464-4258/8/4/S06
38 Ding B., Hrelescu C., Arnold N., Isic G., A. Klar T.. Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals. Nano Lett., 2013, 13(2): 378
https://doi.org/10.1021/nl3035114
39 D. Rakić A., B. Djurišić A., M. Elazar J., L. Majewski M.. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 1998, 37(22): 5271
https://doi.org/10.1364/AO.37.005271
40 I. Markovic M., D. Rakic A.. Determination of the reflection coefficients of laser light of wavelengths λ ∈ (0.22 μm, 200 μm) from the surface of aluminum using the Lorentz−Drude model. Appl. Opt., 1990, 29(24): 3479
https://doi.org/10.1364/AO.29.003479
41 A. Scholl J., L. Koh A., A. Dionne J.. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012, 483(7390): 421
https://doi.org/10.1038/nature10904
42 V. Zayats A., I. Smolyaninov I., A. Maradudin A.. Nano-optics of surface plasmon polaritons. Phys. Rep., 2005, 408(3−4): 131
https://doi.org/10.1016/j.physrep.2004.11.001
43 Iqbal T., Afsheen S.. Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: Role of under- and over-milling. Plasmonics, 2016, 11(5): 1247
https://doi.org/10.1007/s11468-015-0168-z
44 Kasani S.Curtin K.Wu N., A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications, Nanophotonics 8(12), 2065 (2019)
45 Otto A.. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 1968, 216(4): 398
https://doi.org/10.1007/BF01391532
46 Kretschmann E., Raether H.. Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift für Naturforschung A Phys. Sci., 1968, 23: 2135
https://doi.org/10.1515/zna-1968-1247
47 Iqbal T., Ashfaq Z., Afsheen S., Ijaz M., Y. Khan M., Rafique M., Nabi G.. Surface-enhanced Raman scattering (SERS) on 1D nano-gratings. Plasmonics, 2020, 15(4): 1053
https://doi.org/10.1007/s11468-019-01114-5
48 Vempati S., Iqbal T., Afsheen S.. Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J. Appl. Phys., 2015, 118(4): 043103
https://doi.org/10.1063/1.4927269
49 Vecchi G., Giannini V., Gómez Rivas J.. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett., 2009, 102(14): 146807
https://doi.org/10.1103/PhysRevLett.102.146807
50 L. Chang S., Multiple Diffraction of X-Rays in Crystals, Springer Series in Solid-State Sciences (SSSOL, Volume 50), Springer Berlin Heidelberg, 1984
51 C. Kitson S., L. Barnes W., R. Sambles J.. Surface-plasmon energy gaps and photoluminescence. Phys. Rev. B, 1995, 52(15): 11441
https://doi.org/10.1103/PhysRevB.52.11441
52 Iqbal T., Tabassum H., Afsheen S., Ijaz M.. Novel exposed and buried Au plasmonic grating as efficient sensors. Waves Random Complex Media, 2022, 32(4): 1571
https://doi.org/10.1080/17455030.2020.1828665
53 Afsheen S., Ahmad A., Iqbal T., Ijaz M., Bashir A.. Optimizing the sensing efficiency of plasmonic based gas sensor. Plasmonics, 2021, 16(2): 541
https://doi.org/10.1007/s11468-020-01318-0
54 Javaid M., Iqbal T.. Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics, 2016, 11(1): 167
https://doi.org/10.1007/s11468-015-0025-0
55 Wang P., J. Hu D., F. Xiao Y., Pang L.. Suppression of metal grating to surface plasma radiation. Acta Phys. Sin., 2015, 64(8): 087301
https://doi.org/10.7498/aps.64.087301
56 Wang B., Yu P., Wang W., Zhang X., C. Kuo H., Xu H., M. Wang Z.. High‐Q plasmonic resonances: Fundamentals and applications. Adv. Opt. Mater., 2021, 9(7): 2001520
https://doi.org/10.1002/adom.202001520
57 Sun S., T. Chen H., J. Zheng W., Y. Guo G.. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express, 2013, 21(12): 14591
https://doi.org/10.1364/OE.21.014591
58 Raether H., Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, 1988
59 A. Willets K., P. Van Duyne R.. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58(1): 267
https://doi.org/10.1146/annurev.physchem.58.032806.104607
60 Zhang W., Caldarola M., Lu X., Orrit M.. Plasmonic enhancement of two-photon-excited luminescence of single quantum dots by individual gold nanorods. ACS Photonics, 2018, 5(7): 2960
https://doi.org/10.1021/acsphotonics.8b00306
61 Wen J., Wang H., Wang W., Deng Z., Zhuang C., Zhang Y., Liu F., She J., Chen J., Chen H., Deng S., Xu N.. Room-temperature strong light−matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett., 2017, 17(8): 4689
https://doi.org/10.1021/acs.nanolett.7b01344
62 A. Kelf T., Sugawara Y., M. Cole R., J. Baumberg J., E. Abdelsalam M., Cintra S., Mahajan S., E. Russell A., N. Bartlett P.. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B, 2006, 74(24): 245415
https://doi.org/10.1103/PhysRevB.74.245415
63 Belacel C., Habert B., Bigourdan F., Marquier F., P. Hugonin J., Michaelis de Vasconcellos S., Lafosse X., Coolen L., Schwob C., Javaux C., Dubertret B., J. Greffet J., Senellart P., Maitre A.. Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett., 2013, 13(4): 1516
https://doi.org/10.1021/nl3046602
64 Agrawal A., Kriegel I., J. Milliron D.. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C, 2015, 119(11): 6227
https://doi.org/10.1021/acs.jpcc.5b01648
65 G. Kravets V., V. Kabashin A., L. Barnes W., N. Grigorenko A.. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev., 2018, 118(12): 5912
https://doi.org/10.1021/acs.chemrev.8b00243
66 Ijaz M.. Plasmonic hot electrons: Potential candidates for improved photocatalytic hydrogen production. Int. J. Hydrogen Energy, 2023, 48(26): 9609
https://doi.org/10.1016/j.ijhydene.2022.11.251
67 Boettcher I., M. Pawlowski J., Diehl S.. Ultracold atoms and the functional renormalization group. Nucl. Phys. B Proc. Suppl., 2012, 228: 63
https://doi.org/10.1016/j.nuclphysbps.2012.06.004
68 Hertz H.. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann. Phys., 1887, 267(8): 983
https://doi.org/10.1002/andp.18872670827
69 Einstein A., Über einen die Erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt, Ann. Phys. 322(6), 132 (1905)
70 L. Brongersma M., J. Halas N., Nordlander P.. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 2015, 10(1): 25
https://doi.org/10.1038/nnano.2014.311
71 Dubi Y.Sivan Y., “Hot” electrons in metallic nanostructures-non-thermal carriers or heating? Light Sci. Appl. 8(1), 89 (2019)
72 Clavero C.. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 2014, 8(2): 95
https://doi.org/10.1038/nphoton.2013.238
73 Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., Wilson O., Mulvaney P.. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 2002, 88(7): 077402
https://doi.org/10.1103/PhysRevLett.88.077402
74 B. Khurgin J.. Hot carriers generated by plasmons: Where are they generated and where do they go from there. Faraday Discuss., 2019, 214: 35
https://doi.org/10.1039/C8FD00200B
75 B. Khurgin J.. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics, 2020, 9(2): 453
https://doi.org/10.1515/nanoph-2019-0396
76 Sundararaman R., Narang P., S. Jermyn A., Goddard III, A. Atwater H.. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 2014, 5(1): 5788
https://doi.org/10.1038/ncomms6788
77 M. Dujardin M., L. Theye M.. Investigation of the optical properties of Ag by means of thin semi-transparent films. J. Phys. Chem. Solids, 1971, 32(9): 2033
https://doi.org/10.1016/S0022-3697(71)80380-3
78 A. Maznev A., B. Wright O.. Demystifying umklapp vs normal scattering in lattice thermal conductivity. Am. J. Phys., 2014, 82(11): 1062
https://doi.org/10.1119/1.4892612
79 R. Parkins G., E. Lawrence W., W. Christy R., optical conductivity σ(ω Intraband, of Cu T). Ag, and Au: Contribution from electron-electron scattering. Phys. Rev. B, 1981, 23(12): 6408
https://doi.org/10.1103/PhysRevB.23.6408
80 Kreibig U.Vollmer M., Optical Properties of Metal Clusters, Vol. 25, Springer Berlin Heidelberg, 1995
81 Landau L.. On the vibrations of the electronic plasma. Yad. Fiz., 1946, 10: 25
https://doi.org/10.1016/b978-0-08-010586-4.50066-3
82 V. Uskov A., E. Protsenko I., A. Mortensen N., P. O’Reilly E.. Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: A quantum mechanical consideration. Plasmonics, 2014, 9(1): 185
https://doi.org/10.1007/s11468-013-9611-1
83 B. Khurgin J.. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss., 2015, 178: 109
https://doi.org/10.1039/C4FD00193A
84 Khurgin J., Y. Tsai W., P. Tsai D., Sun G.. Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics, 2017, 4(11): 2871
https://doi.org/10.1021/acsphotonics.7b00860
85 Watanabe K., Menzel D., Nilius N., J. Freund H.. Photochemistry on metal nanoparticles. Chem. Rev., 2006, 106(10): 4301
https://doi.org/10.1021/cr050167g
86 S. Mueller N., G. M. Vieira B., Höing D., Schulz F., B. Barros E., Lange H., Reich S.. Direct optical excitation of dark plasmons for hot electron generation. Faraday Discuss., 2019, 214: 159
https://doi.org/10.1039/C8FD00149A
87 Inouye H., Tanaka K., Tanahashi I., Hirao K.. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 1998, 57(18): 11334
https://doi.org/10.1103/PhysRevB.57.11334
88 M. Ziman J., Electrons and phonons: The theory of transport phenomena in solids, Oxford Classic Texts in the Physical Sciences, Clarendon Press, Oxford University Press, 2001
89 B. Khurgin J., Levy U.. Generating hot carriers in plasmonic nanoparticles: When quantization does matter. ACS Photonics, 2020, 7(3): 547
https://doi.org/10.1021/acsphotonics.9b01774
90 P. White T., R. Catchpole K.. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett., 2012, 101(7): 073905
https://doi.org/10.1063/1.4746425
91 Kadlec J.. Theory of internal photoemission in sandwich structures. Phys. Rep., 1976, 26(2): 69
https://doi.org/10.1016/0370-1573(76)90020-X
92 A. Kovacs D., Winter J., Meyer S., Wucher A., Diesing D.. Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys. Rev. B, 2007, 76(23): 235408
https://doi.org/10.1103/PhysRevB.76.235408
93 V. Pepper S.. Optical analysis of photoemission. J. Opt. Soc. Am., 1970, 60(6): 805
https://doi.org/10.1364/JOSA.60.000805
94 Reuter K., Hohenester U., L. de Andres P., J. García-Vidal F., Flores F., Heinz K., Kocevar P.. Electron energy relaxation times from ballistic-electron-emission spectroscopy. Phys. Rev. B, 2000, 61(7): 4522
https://doi.org/10.1103/PhysRevB.61.4522
95 Scales C., Berini P.. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron., 2010, 46(5): 633
https://doi.org/10.1109/JQE.2010.2046720
96 Afsheen S., Iqbal T., Akram S., Bashir A., Tehseen A., Rafique M., Shakil M., Y. Khan M., Ijaz M.. Surface plasmon based 1D-grating device for efficient sensing using noble metals. Opt. Quantum Electron., 2020, 52(2): 64
https://doi.org/10.1007/s11082-019-2176-2
97 Iqbal T., Bashir A., Shakil M., Afsheen S., Tehseen A., Ijaz M., N. Riaz K.. Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics, 2019, 14(2): 493
https://doi.org/10.1007/s11468-018-0827-y
98 Takahashi Y., Tatsuma T.. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett., 2011, 99(18): 182110
https://doi.org/10.1063/1.3659476
99 Qiu C., Zhang H., Tian C., Jin X., Song Q., Xu L., Ijaz M., J. Blaikie R., Xu Q.. Breaking bandgap limitation: Improved photosensitization in plasmonic-based CsPbBr3 photodetectors via hot-electron injection. Appl. Phys. Lett., 2023, 122(24): 243502
https://doi.org/10.1063/5.0152459
100 W. Knight M., Sobhani H., Nordlander P., J. Halas N.. Photodetection with active optical antennas. Science, 2011, 332(6030): 702
https://doi.org/10.1126/science.1203056
101 Di Bartolomeo A.. Graphene schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep., 2016, 606: 1
https://doi.org/10.1016/j.physrep.2015.10.003
102 S. Li S., Semiconductor Physical Electronics, New York, Springer, 2006
103 Huan Y., M. Sun S., J. Gu C., J. Liu W., J. Ding S., Y. Yu H., T. Xia C., W. Zhang D.. Recent advances in β-Ga2O3–metal contacts. Nanoscale Res. Lett., 2018, 13(1): 246
https://doi.org/10.1186/s11671-018-2667-2
104 J. Fonash S., Solar Cell Device Physics, Elsevier, 2010
[1] Sa Yang, Ren-Long Zhou, Yang-Jun Huang. Surface plasmon resonance and field confinement in graphene nanoribbons in a nanocavity[J]. Front. Phys. , 2021, 16(4): 43504-.
[2] Wen-Cheng Yue, Pei-Jun Yao, Li-Xin Xu, Hai Ming. All-dielectric bowtie waveguide with deep subwavelength mode confinement[J]. Front. Phys. , 2018, 13(4): 134207-.
[3] Li-Hua Qian,Li-Zhi Yi,Gui-Sheng Wang,Chao Zhang,Song-Liu Yuan. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays[J]. Front. Phys. , 2016, 11(2): 115204-.
[4] Mai Takase,Satoshi Yasuda,Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy[J]. Front. Phys. , 2016, 11(2): 117803-.
[5] Hong-Yan Liang,Hong Wei,Hong-Xing Xu. Deviating from the nanorod shape: Shape-dependent plasmonic properties of silver nanorice and nanocarrot structures[J]. Front. Phys. , 2016, 11(2): 117301-.
[6] Kai Wang,Haifeng Hu,Shan Lu,Lingju Guo,Tao He. Design of a sector bowtie nano-rectenna for optical power and infrared detection[J]. Front. Phys. , 2015, 10(5): 104101-.
[7] Arash Ahmadivand, Saeed Golmohammadi. Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity[J]. Front. Phys. , 2015, 10(2): 104203-.
[8] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[9] Atsushi Ono, Masakazu Kikawada, Wataru Inami, Yoshimasa Kawata. Surface plasmon coupled fluorescence in deep-ultraviolet excitation by Kretschmann configuration[J]. Front. Phys. , 2014, 9(1): 60-63.
[10] Zhi-Yuan Li. Nanophotonics in China: Overviews and highlights[J]. Front. Phys. , 2012, 7(6): 601-631.
[11] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[12] Aitzol GARCIA-ETXARRI, Javier AIZPURUA, Jon MOLINA-ALDAREGUIA, Rebeca MARCILLA, David MECERREYES, Jose Adolfo POMPOSO, . Chemical sensing based on the plasmonic response of nanoparticle aggregation: Anion sensing in nanoparticles stabilized by amino-functional ionic liquid[J]. Front. Phys. , 2010, 5(3): 330-336.
[13] Pratik CHATURVEDI, Nicholas X. FANG, . Sub-diffraction-limited far-field imaging in infrared[J]. Front. Phys. , 2010, 5(3): 324-329.
[14] San-jun ZHANG(张三军), Lotfi BERGUIGA, Nicolas HUGO, Thibault ROLAND, Francoise ARGOUL, Juan ELEZGARAY, Wen-xue LI(李文雪), He-ping ZENG(曾和平). Advances in surface plasmon resonance-based high throughput biochips[J]. Front. Phys. , 2009, 4(4): 469-480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed