|
|
Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures |
Hao Zhang1,2,3, Mohsin Ijaz1,2,3( ), Richard J. Blaikie1,2,3( ) |
1. Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand 2. MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand 3. Department of Physics, University of Otago, Dunedin 9016, New Zealand |
|
|
Abstract Plasmonic resonators are widely used for the manipulation of light on subwavelength scales through the near-field electromagnetic wave produced by the collective oscillation of free electrons within metallic systems, well known as the surface plasmon (SP). The non-radiative decay of the surface plasmon can excite a plasmonic hot electron. This review article systematically describes the excitation progress and basic properities of SPs and plasmonic hot electrons according to recent publications. The extraction mechanism of plasmonic hot electrons via Schottky conjunction to an adjacent semiconductor is also illustrated. Also, a calculation model of hot electron density is given, where the efficiency of hot-electron excitation, transport and extraction is discussed. We believe that plasmonic hot electrons have a huge potential in the future development of optoelectronic systems and devices.
|
Keywords
surface plasmon
plasmonic hot electrons
plasmonic resonators
electron−electron scattering
Schottky conjunctions
nanophotonics
|
Corresponding Author(s):
Mohsin Ijaz,Richard J. Blaikie
|
Issue Date: 14 July 2023
|
|
1 |
Törmä P., L. Barnes W.. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys., 2015, 78(1): 013901
https://doi.org/10.1088/0034-4885/78/1/013901
|
2 |
K. Zhou Z., Liu J., Bao Y., Wu L., E. Png C., H. Wang X., W. Qiu C.. Quantum plasmonics get applied. Prog. Quantum Electron., 2019, 65: 1
https://doi.org/10.1016/j.pquantelec.2019.04.002
|
3 |
A. Schuller J., S. Barnard E., Cai W., C. Jun Y., S. White J., L. Brongersma M.. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 2010, 9(3): 193
https://doi.org/10.1038/nmat2630
|
4 |
R. West P., Ishii S., V. Naik G., K. Emani N., M. Shalaev V., Boltasseva A.. Searching for better plasmonic materials. Laser Photonics Rev., 2010, 4(6): 795
https://doi.org/10.1002/lpor.200900055
|
5 |
Rycenga M., M. Cobley C., Zeng J., Li W., H. Moran C., Zhang Q., Qin D., Xia Y.. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6): 3669
https://doi.org/10.1021/cr100275d
|
6 |
Iqbal T., U. Farooq M., Ijaz M., Afsheen S., Rizwan M., B. Tahir M.. Optimization of 1D silver grating devices for extraordinary optical transmission. Plasmonics, 2019, 14(5): 1099
https://doi.org/10.1007/s11468-018-00898-2
|
7 |
Zafar M., Ijaz M., Iqbal T.. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chem. Pap., 2021, 75(6): 2277
https://doi.org/10.1007/s11696-020-01465-y
|
8 |
He Y., Laugesen K., Kamp D., A. Sultan S., B. Oddershede L., Jauffred L.. Effects and side effects of plasmonic photothermal therapy in brain tissue. Cancer Nanotechnol., 2019, 10(1): 8
https://doi.org/10.1186/s12645-019-0053-0
|
9 |
Lu R., Ni J., Yin S., Ji Y.. Responsive plasmonic nanomaterials for advanced cancer diagnostics. Front. Chem., 2021, 9: 652287
https://doi.org/10.3389/fchem.2021.652287
|
10 |
G. Sobral-Filho R., M. Brito-Silva A., Isabelle M., Jirasek A., J. Lum J., G. Brolo A.. Plasmonic labeling of subcellular compartments in cancer cells: Multiplexing with fine-tuned gold and silver nanoshells. Chem. Sci. (Camb.), 2017, 8(4): 3038
https://doi.org/10.1039/C6SC04127B
|
11 |
Ezendam S., Herran M., Nan L., Gruber C., Kang Y., Gröbmeyer F., Lin R., Gargiulo J., Sousa-Castillo A., Cortés E.. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett., 2022, 7(2): 778
https://doi.org/10.1021/acsenergylett.1c02241
|
12 |
H. Jang Y., J. Jang Y., Kim S., N. Quan L., Chung K., H. Kim D.. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev., 2016, 116(24): 14982
https://doi.org/10.1021/acs.chemrev.6b00302
|
13 |
Ijaz M., Shoukat A., Ayub A., Tabassum H., Naseer H., Tanveer R., Islam A., Iqbal T.. Perovskite solar cells: Importance, challenges, and plasmonic enhancement. Int. J. Green Energy, 2020, 17(15): 1022
https://doi.org/10.1080/15435075.2020.1818567
|
14 |
Iqbal T., Ijaz M., Javaid M., Rafique M., N. Riaz K., B. Tahir M., Nabi G., Abrar M., Afsheen S.. An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics, 2019, 14(1): 147
https://doi.org/10.1007/s11468-018-0787-2
|
15 |
Zhang H., Liu F., J. Blaikie R., Ding B., Qiu M.. Bifacial omnidirectional and band-tunable light absorption in free-standing core-shell resonators. Appl. Phys. Lett., 2022, 120(18): 181110
https://doi.org/10.1063/5.0088233
|
16 |
J. Lu Y., L. Shen T., N. Peng K., J. Cheng P., W. Chang S., Y. Lu M., W. Chu C., F. Guo T., A. Atwater H.. Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold. ACS Photonics, 2021, 8(1): 335
https://doi.org/10.1021/acsphotonics.0c01586
|
17 |
Gu L., Wen K., Peng Q., Huang W., Wang J.. Surface-plasmon-enhanced perovskite light-emitting diodes. Small, 2020, 16(30): 2001861
https://doi.org/10.1002/smll.202001861
|
18 |
A. Huang J., B. Luo L.. Low-dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater., 2018, 6(8): 1701282
https://doi.org/10.1002/adom.201701282
|
19 |
M. Shrivastav A.Cvelbar U.Abdulhalim I., A comprehensive review on plasmonic-based biosensors used in viral diagnostics, Commun. Biol. 4(1), 70 (2021)
|
20 |
Xavier J., Vincent S., Meder F., Vollmer F.. Advances in optoplasmonic sensors- combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics, 2018, 7(1): 1
https://doi.org/10.1515/nanoph-2017-0064
|
21 |
Afsheen S., Iqbal T., Aftab M., Bashir A., Tehseen A., Y. Khan M., Ijaz M.. Modeling of 1D Au plasmonic grating as efficient gas sensor. Mater. Res. Express, 2019, 6(12): 126203
https://doi.org/10.1088/2053-1591/ab553b
|
22 |
Afsheen S., Munir M., Isa Khan M., Iqbal T., Abrar M., B. Tahir M., U. Rehman J., N. Riaz K., Ijaz M., Nabi G.. Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology, 2018, 29(38): 385501
https://doi.org/10.1088/1361-6528/aace9a
|
23 |
Iqbal T., Noureen S., Afsheen S., Y. Khan M., Ijaz M.. Rectangular and sinusoidal Au-grating as plasmonic sensor: A comparative study. Opt. Mater., 2020, 99: 109530
https://doi.org/10.1016/j.optmat.2019.109530
|
24 |
Ijaz M., Aftab M., Afsheen S., Iqbal T.. Novel Au nano-grating for detection of water in various electrolytes. Appl. Nanosci., 2020, 10(11): 4029
https://doi.org/10.1007/s13204-020-01520-w
|
25 |
Zhang S., C. Li G., Chen Y., Zhu X., D. Liu S., Y. Lei D., Duan H.. Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano, 2016, 10(12): 11105
https://doi.org/10.1021/acsnano.6b05979
|
26 |
S. Verma M., Chandra M.. Second harmonic generation-based nonlinear plasmonic RI-sensing in solution: The pivotal role of the particle size. Phys. Chem. Chem. Phys., 2021, 23(45): 25565
https://doi.org/10.1039/D1CP04546F
|
27 |
Alù A., Engheta N.. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A, 2008, 10(9): 093002
https://doi.org/10.1088/1464-4258/10/9/093002
|
28 |
Xu H.. Surface-enhanced Raman scattering beyond plasmonics. Front. Phys., 2022, 17(2): 23601
https://doi.org/10.1007/s11467-021-1112-7
|
29 |
Lan L., Gao Y., Fan X., Li M., Hao Q., Qiu T.. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys., 2021, 16(4): 43300
https://doi.org/10.1007/s11467-021-1047-z
|
30 |
Shi L., Iwan B., Nicolas R., Ripault Q., R. C. Andrade J., Han S., Kim H., Boutu W., Franz D., Heidenblut T., Reinhardt C., Bastiaens B., Nagy T., Babushkin I., Morgner U., W. Kim S., Steinmeyer G., Merdji H., Kovacev M.. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica, 2017, 4(9): 1038
https://doi.org/10.1364/OPTICA.4.001038
|
31 |
Shi L., R. C. Andrade J., Tajalli A., Geng J., Yi J., Heidenblut T., B. Segerink F., Babushkin I., Kholodtsova M., Merdji H., Bastiaens B., Morgner U., Kovacev M.. Generating ultrabroadband deep-UV radiation and sub-10 nm gap by hybrid-morphology gold antennas. Nano Lett., 2019, 19(7): 4779
https://doi.org/10.1021/acs.nanolett.9b02100
|
32 |
Shi L., R. C. Andrade J., Yi J., Marinskas M., Reinhardt C., Almeida E., Morgner U., Kovacev M.. Nanoscale broadband deep-ultraviolet light source from plasmonic nanoholes. ACS Photonics, 2019, 6(4): 858
https://doi.org/10.1021/acsphotonics.9b00127
|
33 |
Hentschel M., Utikal T., Giessen H., Lippitz M.. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett., 2012, 12(7): 3778
https://doi.org/10.1021/nl301686x
|
34 |
Geng J., Yan W., Shi L., Qiu M.. Surface plasmons interference nanogratings: Wafer-scale laser direct structuring in seconds. Light Sci. Appl., 2022, 11(1): 189
https://doi.org/10.1038/s41377-022-00883-9
|
35 |
Wang L., D. Chen Q., W. Cao X., Buividas R., Wang X., Juodkazis S., B. Sun H.. Plasmonic nano-printing: Large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl., 2017, 6(12): e17112
https://doi.org/10.1038/lsa.2017.112
|
36 |
Zou T., Zhao B., Xin W., Wang Y., Wang B., Zheng X., Xie H., Zhang Z., Yang J., Guo C.. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci. Appl., 2020, 9(1): 69
https://doi.org/10.1038/s41377-020-0311-2
|
37 |
L. Barnes W.. Surface plasmon-polariton length scales: A route to sub-wavelength optics. J. Opt. A, 2006, 8(4): S87
https://doi.org/10.1088/1464-4258/8/4/S06
|
38 |
Ding B., Hrelescu C., Arnold N., Isic G., A. Klar T.. Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals. Nano Lett., 2013, 13(2): 378
https://doi.org/10.1021/nl3035114
|
39 |
D. Rakić A., B. Djurišić A., M. Elazar J., L. Majewski M.. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 1998, 37(22): 5271
https://doi.org/10.1364/AO.37.005271
|
40 |
I. Markovic M., D. Rakic A.. Determination of the reflection coefficients of laser light of wavelengths λ ∈ (0.22 μm, 200 μm) from the surface of aluminum using the Lorentz−Drude model. Appl. Opt., 1990, 29(24): 3479
https://doi.org/10.1364/AO.29.003479
|
41 |
A. Scholl J., L. Koh A., A. Dionne J.. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012, 483(7390): 421
https://doi.org/10.1038/nature10904
|
42 |
V. Zayats A., I. Smolyaninov I., A. Maradudin A.. Nano-optics of surface plasmon polaritons. Phys. Rep., 2005, 408(3−4): 131
https://doi.org/10.1016/j.physrep.2004.11.001
|
43 |
Iqbal T., Afsheen S.. Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: Role of under- and over-milling. Plasmonics, 2016, 11(5): 1247
https://doi.org/10.1007/s11468-015-0168-z
|
44 |
Kasani S.Curtin K.Wu N., A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications, Nanophotonics 8(12), 2065 (2019)
|
45 |
Otto A.. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 1968, 216(4): 398
https://doi.org/10.1007/BF01391532
|
46 |
Kretschmann E., Raether H.. Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift für Naturforschung A Phys. Sci., 1968, 23: 2135
https://doi.org/10.1515/zna-1968-1247
|
47 |
Iqbal T., Ashfaq Z., Afsheen S., Ijaz M., Y. Khan M., Rafique M., Nabi G.. Surface-enhanced Raman scattering (SERS) on 1D nano-gratings. Plasmonics, 2020, 15(4): 1053
https://doi.org/10.1007/s11468-019-01114-5
|
48 |
Vempati S., Iqbal T., Afsheen S.. Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J. Appl. Phys., 2015, 118(4): 043103
https://doi.org/10.1063/1.4927269
|
49 |
Vecchi G., Giannini V., Gómez Rivas J.. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett., 2009, 102(14): 146807
https://doi.org/10.1103/PhysRevLett.102.146807
|
50 |
L. Chang S., Multiple Diffraction of X-Rays in Crystals, Springer Series in Solid-State Sciences (SSSOL, Volume 50), Springer Berlin Heidelberg, 1984
|
51 |
C. Kitson S., L. Barnes W., R. Sambles J.. Surface-plasmon energy gaps and photoluminescence. Phys. Rev. B, 1995, 52(15): 11441
https://doi.org/10.1103/PhysRevB.52.11441
|
52 |
Iqbal T., Tabassum H., Afsheen S., Ijaz M.. Novel exposed and buried Au plasmonic grating as efficient sensors. Waves Random Complex Media, 2022, 32(4): 1571
https://doi.org/10.1080/17455030.2020.1828665
|
53 |
Afsheen S., Ahmad A., Iqbal T., Ijaz M., Bashir A.. Optimizing the sensing efficiency of plasmonic based gas sensor. Plasmonics, 2021, 16(2): 541
https://doi.org/10.1007/s11468-020-01318-0
|
54 |
Javaid M., Iqbal T.. Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics, 2016, 11(1): 167
https://doi.org/10.1007/s11468-015-0025-0
|
55 |
Wang P., J. Hu D., F. Xiao Y., Pang L.. Suppression of metal grating to surface plasma radiation. Acta Phys. Sin., 2015, 64(8): 087301
https://doi.org/10.7498/aps.64.087301
|
56 |
Wang B., Yu P., Wang W., Zhang X., C. Kuo H., Xu H., M. Wang Z.. High‐Q plasmonic resonances: Fundamentals and applications. Adv. Opt. Mater., 2021, 9(7): 2001520
https://doi.org/10.1002/adom.202001520
|
57 |
Sun S., T. Chen H., J. Zheng W., Y. Guo G.. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express, 2013, 21(12): 14591
https://doi.org/10.1364/OE.21.014591
|
58 |
Raether H., Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, 1988
|
59 |
A. Willets K., P. Van Duyne R.. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58(1): 267
https://doi.org/10.1146/annurev.physchem.58.032806.104607
|
60 |
Zhang W., Caldarola M., Lu X., Orrit M.. Plasmonic enhancement of two-photon-excited luminescence of single quantum dots by individual gold nanorods. ACS Photonics, 2018, 5(7): 2960
https://doi.org/10.1021/acsphotonics.8b00306
|
61 |
Wen J., Wang H., Wang W., Deng Z., Zhuang C., Zhang Y., Liu F., She J., Chen J., Chen H., Deng S., Xu N.. Room-temperature strong light−matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett., 2017, 17(8): 4689
https://doi.org/10.1021/acs.nanolett.7b01344
|
62 |
A. Kelf T., Sugawara Y., M. Cole R., J. Baumberg J., E. Abdelsalam M., Cintra S., Mahajan S., E. Russell A., N. Bartlett P.. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B, 2006, 74(24): 245415
https://doi.org/10.1103/PhysRevB.74.245415
|
63 |
Belacel C., Habert B., Bigourdan F., Marquier F., P. Hugonin J., Michaelis de Vasconcellos S., Lafosse X., Coolen L., Schwob C., Javaux C., Dubertret B., J. Greffet J., Senellart P., Maitre A.. Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett., 2013, 13(4): 1516
https://doi.org/10.1021/nl3046602
|
64 |
Agrawal A., Kriegel I., J. Milliron D.. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C, 2015, 119(11): 6227
https://doi.org/10.1021/acs.jpcc.5b01648
|
65 |
G. Kravets V., V. Kabashin A., L. Barnes W., N. Grigorenko A.. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev., 2018, 118(12): 5912
https://doi.org/10.1021/acs.chemrev.8b00243
|
66 |
Ijaz M.. Plasmonic hot electrons: Potential candidates for improved photocatalytic hydrogen production. Int. J. Hydrogen Energy, 2023, 48(26): 9609
https://doi.org/10.1016/j.ijhydene.2022.11.251
|
67 |
Boettcher I., M. Pawlowski J., Diehl S.. Ultracold atoms and the functional renormalization group. Nucl. Phys. B Proc. Suppl., 2012, 228: 63
https://doi.org/10.1016/j.nuclphysbps.2012.06.004
|
68 |
Hertz H.. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann. Phys., 1887, 267(8): 983
https://doi.org/10.1002/andp.18872670827
|
69 |
Einstein A., Über einen die Erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt, Ann. Phys. 322(6), 132 (1905)
|
70 |
L. Brongersma M., J. Halas N., Nordlander P.. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 2015, 10(1): 25
https://doi.org/10.1038/nnano.2014.311
|
71 |
Dubi Y.Sivan Y., “Hot” electrons in metallic nanostructures-non-thermal carriers or heating? Light Sci. Appl. 8(1), 89 (2019)
|
72 |
Clavero C.. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 2014, 8(2): 95
https://doi.org/10.1038/nphoton.2013.238
|
73 |
Sönnichsen C., Franzl T., Wilk T., von Plessen G., Feldmann J., Wilson O., Mulvaney P.. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 2002, 88(7): 077402
https://doi.org/10.1103/PhysRevLett.88.077402
|
74 |
B. Khurgin J.. Hot carriers generated by plasmons: Where are they generated and where do they go from there. Faraday Discuss., 2019, 214: 35
https://doi.org/10.1039/C8FD00200B
|
75 |
B. Khurgin J.. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics, 2020, 9(2): 453
https://doi.org/10.1515/nanoph-2019-0396
|
76 |
Sundararaman R., Narang P., S. Jermyn A., Goddard III, A. Atwater H.. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 2014, 5(1): 5788
https://doi.org/10.1038/ncomms6788
|
77 |
M. Dujardin M., L. Theye M.. Investigation of the optical properties of Ag by means of thin semi-transparent films. J. Phys. Chem. Solids, 1971, 32(9): 2033
https://doi.org/10.1016/S0022-3697(71)80380-3
|
78 |
A. Maznev A., B. Wright O.. Demystifying umklapp vs normal scattering in lattice thermal conductivity. Am. J. Phys., 2014, 82(11): 1062
https://doi.org/10.1119/1.4892612
|
79 |
R. Parkins G., E. Lawrence W., W. Christy R., optical conductivity σ(ω Intraband, of Cu T). Ag, and Au: Contribution from electron-electron scattering. Phys. Rev. B, 1981, 23(12): 6408
https://doi.org/10.1103/PhysRevB.23.6408
|
80 |
Kreibig U.Vollmer M., Optical Properties of Metal Clusters, Vol. 25, Springer Berlin Heidelberg, 1995
|
81 |
Landau L.. On the vibrations of the electronic plasma. Yad. Fiz., 1946, 10: 25
https://doi.org/10.1016/b978-0-08-010586-4.50066-3
|
82 |
V. Uskov A., E. Protsenko I., A. Mortensen N., P. O’Reilly E.. Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: A quantum mechanical consideration. Plasmonics, 2014, 9(1): 185
https://doi.org/10.1007/s11468-013-9611-1
|
83 |
B. Khurgin J.. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss., 2015, 178: 109
https://doi.org/10.1039/C4FD00193A
|
84 |
Khurgin J., Y. Tsai W., P. Tsai D., Sun G.. Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics, 2017, 4(11): 2871
https://doi.org/10.1021/acsphotonics.7b00860
|
85 |
Watanabe K., Menzel D., Nilius N., J. Freund H.. Photochemistry on metal nanoparticles. Chem. Rev., 2006, 106(10): 4301
https://doi.org/10.1021/cr050167g
|
86 |
S. Mueller N., G. M. Vieira B., Höing D., Schulz F., B. Barros E., Lange H., Reich S.. Direct optical excitation of dark plasmons for hot electron generation. Faraday Discuss., 2019, 214: 159
https://doi.org/10.1039/C8FD00149A
|
87 |
Inouye H., Tanaka K., Tanahashi I., Hirao K.. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 1998, 57(18): 11334
https://doi.org/10.1103/PhysRevB.57.11334
|
88 |
M. Ziman J., Electrons and phonons: The theory of transport phenomena in solids, Oxford Classic Texts in the Physical Sciences, Clarendon Press, Oxford University Press, 2001
|
89 |
B. Khurgin J., Levy U.. Generating hot carriers in plasmonic nanoparticles: When quantization does matter. ACS Photonics, 2020, 7(3): 547
https://doi.org/10.1021/acsphotonics.9b01774
|
90 |
P. White T., R. Catchpole K.. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett., 2012, 101(7): 073905
https://doi.org/10.1063/1.4746425
|
91 |
Kadlec J.. Theory of internal photoemission in sandwich structures. Phys. Rep., 1976, 26(2): 69
https://doi.org/10.1016/0370-1573(76)90020-X
|
92 |
A. Kovacs D., Winter J., Meyer S., Wucher A., Diesing D.. Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys. Rev. B, 2007, 76(23): 235408
https://doi.org/10.1103/PhysRevB.76.235408
|
93 |
V. Pepper S.. Optical analysis of photoemission. J. Opt. Soc. Am., 1970, 60(6): 805
https://doi.org/10.1364/JOSA.60.000805
|
94 |
Reuter K., Hohenester U., L. de Andres P., J. García-Vidal F., Flores F., Heinz K., Kocevar P.. Electron energy relaxation times from ballistic-electron-emission spectroscopy. Phys. Rev. B, 2000, 61(7): 4522
https://doi.org/10.1103/PhysRevB.61.4522
|
95 |
Scales C., Berini P.. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron., 2010, 46(5): 633
https://doi.org/10.1109/JQE.2010.2046720
|
96 |
Afsheen S., Iqbal T., Akram S., Bashir A., Tehseen A., Rafique M., Shakil M., Y. Khan M., Ijaz M.. Surface plasmon based 1D-grating device for efficient sensing using noble metals. Opt. Quantum Electron., 2020, 52(2): 64
https://doi.org/10.1007/s11082-019-2176-2
|
97 |
Iqbal T., Bashir A., Shakil M., Afsheen S., Tehseen A., Ijaz M., N. Riaz K.. Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics, 2019, 14(2): 493
https://doi.org/10.1007/s11468-018-0827-y
|
98 |
Takahashi Y., Tatsuma T.. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett., 2011, 99(18): 182110
https://doi.org/10.1063/1.3659476
|
99 |
Qiu C., Zhang H., Tian C., Jin X., Song Q., Xu L., Ijaz M., J. Blaikie R., Xu Q.. Breaking bandgap limitation: Improved photosensitization in plasmonic-based CsPbBr3 photodetectors via hot-electron injection. Appl. Phys. Lett., 2023, 122(24): 243502
https://doi.org/10.1063/5.0152459
|
100 |
W. Knight M., Sobhani H., Nordlander P., J. Halas N.. Photodetection with active optical antennas. Science, 2011, 332(6030): 702
https://doi.org/10.1126/science.1203056
|
101 |
Di Bartolomeo A.. Graphene schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep., 2016, 606: 1
https://doi.org/10.1016/j.physrep.2015.10.003
|
102 |
S. Li S., Semiconductor Physical Electronics, New York, Springer, 2006
|
103 |
Huan Y., M. Sun S., J. Gu C., J. Liu W., J. Ding S., Y. Yu H., T. Xia C., W. Zhang D.. Recent advances in β-Ga2O3–metal contacts. Nanoscale Res. Lett., 2018, 13(1): 246
https://doi.org/10.1186/s11671-018-2667-2
|
104 |
J. Fonash S., Solar Cell Device Physics, Elsevier, 2010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|