|
|
Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions |
Xiulian Fan1, Ruifeng Xin1, Li Li2,3, Bo Zhang4, Cheng Li1, Xilong Zhou1, Huanzhi Chen1, Hongyan Zhang4, Fangping OuYang1,4,5, Yu Zhou1,5( ) |
1. School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China 2. Jincheng Research Institute of Opto-mechatronics Industry, Jincheng 048000, China 3. Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems, Jincheng 048000, China 4. School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China 5. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Two-dimensional transition metal dichalcogenides (TMDs) exhibit promising application prospects in the domains of electronic devices, optoelectronic devices and spintronic devices due to their distinctive energy band structures and spin−orbit coupling properties. Cr-based chalcogenides with narrow or even zero bandgap, covering from semiconductors to metallic materials, have considerable potential for wide-band photodetection and two-dimensional magnetism. Currently, the preparation of 2D CrXn (X = S, Se, Te) nanosheets primarily relies on chemical vapor deposition (CVD) and molecule beam epitaxy (MBE), which enable the production of high-quality large-area materials. This review article focuses on recent progress of 2D Cr-based chalcogenides, including unique crystal structure of the CrXn system, phase-controlled synthesis, and heterojunction construction. Furthermore, a detailed introduction of room-temperature ferromagnetism and electrical/optoelectronic properties of 2D CrXn is presented. Ultimately, this paper summarizes the challenges associated with utilizing 2D Cr-based chalcogenides in preparation strategies, optoelectronics devices, and spintronic devices while providing further insights.
|
Keywords
physical properties
two-dimensional materials
Cr-based chalcogenide
controlled synthesis
heterojunction
eletronic and optoelectronic devices
|
Corresponding Author(s):
Yu Zhou
|
Just Accepted Date: 28 August 2023
Issue Date: 07 October 2023
|
|
1 |
S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
|
2 |
Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., Kis A.. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 2013, 8(7): 497
https://doi.org/10.1038/nnano.2013.100
|
3 |
A. Balandin A.. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater., 2011, 10(8): 569
https://doi.org/10.1038/nmat3064
|
4 |
W. Iqbal M., Z. Iqbal M., F. Khan M., A. Shehzad M., Seo Y., H. Park J., Hwang C., Eom J.. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep., 2015, 5(1): 10699
https://doi.org/10.1038/srep10699
|
5 |
Wang N., Song Y., Wang L., Liu K., Yang Y.. Investigating the electrical properties of monolayer and bilayer h-BNs via atomic force microscopy. Adv. Mater. Interfaces, 2021, 8(16): 2100447
https://doi.org/10.1002/admi.202100447
|
6 |
Wang X., Chen Q., Shen C., Dai J., Zhu C., Zhang J., Wang Z., Song Q., Wang L., Li H., Wang Q., Liu Z., Luo Z., Huang X., Huang W.. Spatially controlled preparation of layered metallic-semiconducting metal chalcogenide heterostructures. ACS Nano, 2021, 15(7): 12171
https://doi.org/10.1021/acsnano.1c03688
|
7 |
Zhao Z., Zhang W., Zhang Y., Hao H., Zhang S., Tong L., Peng B., Liu N.. Tuning bandstructure of folded MoS2 through fluid dynamics. Nano Res., 2022, 15(3): 2734
https://doi.org/10.1007/s12274-021-3768-2
|
8 |
Cui F., Feng Q., Hong J., Wang R., Bai Y., Li X., Liu D., Zhou Y., Liang X., He X., Zhang Z., Liu S., Lei Z., Liu Z., Zhai T., Xu H.. Synthesis of large-size 1T′ ReS2xSe2(1−x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater., 2017, 29(46): 1705015
https://doi.org/10.1002/adma.201705015
|
9 |
Zhou Y., Jang H., M. Woods J., Xie Y., Kumaravadivel P., A. Pan G., Liu J., Liu Y., G. Cahill D., J. Cha J.. Direct synthesis of large-scale WTe2 Thin films with low Thermal conductivity. Adv. Funct. Mater., 2017, 27(8): 1605928
https://doi.org/10.1002/adfm.201605928
|
10 |
H. Liu C., C. Chang Y., B. Norris T., Zhong Z.. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol., 2014, 9(4): 273
https://doi.org/10.1038/nnano.2014.31
|
11 |
Li D., Chen M., Sun Z., Yu P., Liu Z., M. Ajayan P., Zhang Z.. Two-dimensional non-volatile programmable p‒n junctions. Nat. Nanotechnol., 2017, 12(9): 901
https://doi.org/10.1038/nnano.2017.104
|
12 |
Kim Y.Lee S.G. Song J.Y. Ko K.J. Woo W. W. Lee S.Park M.Lee H.Lee Z.Choi H. H. Kim W.Park J.Kim H.Kim H., 2D transition metal dichalcogenide heterostructures for p-and n-Type photovoltaic self-powered gas sensor, Adv. Funct. Mater. 30(43), 2003360 (2020)
|
13 |
Wang B., Luo H., Wang X., Wang E., Sun Y., C. Tsai Y., Dong J., Liu P., Li H., Xu Y., Tongay S., Jiang K., Fan S., Liu K.. Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Res., 2020, 13(8): 2035
https://doi.org/10.1007/s12274-020-2872-z
|
14 |
Sebastian A., Pendurthi R., H. Choudhury T., M. Redwing J., Das S.. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun., 2021, 12(1): 693
https://doi.org/10.1038/s41467-020-20732-w
|
15 |
Li K., Du C., Gao H., Yin T., Zheng L., Leng J., Wang W.. Ultrafast and polarization-sensitive ReS2/ReSe2 heterostructure photodetectors with ambipolar photoresponse. ACS Appl. Mater. Interfaces, 2022, 14(29): 33589
https://doi.org/10.1021/acsami.2c09674
|
16 |
Wu D.Xu M. Zeng L.Shi Z.Tian Y.J. Li X.X. Shan C. Jie J., In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio, ACS Nano 16(4), 5545 (2022)
|
17 |
Li N., Wen Y., Cheng R., Yin L., Wang F., Li J., A. Shifa T., Feng L., Wang Z., He J.. Strongly coupled van der Waals heterostructures for high-performance infrared phototransistor. Appl. Phys. Lett., 2019, 114(10): 103501
https://doi.org/10.1063/1.5083685
|
18 |
She Y., Wu Z., You S., Du Q., Chu X., Niu L., Ding C., Zhang K., Zhang L., Huang S.. Multiple-dimensionally controllable nucleation sites of two-dimensional WS2/Bi2Se3 heterojunctions based on vapor growth. ACS Appl. Mater. Interfaces, 2021, 13(13): 15518
https://doi.org/10.1021/acsami.1c00377
|
19 |
Chen J., Guo R., Wang X., Zhu C., Cao G., You L., Duan R., Zhu C., S. Hadke S., Cao X., Salim T., J. S. Buenconsejo P., Xu M., Zhao X., Zhou J., Deng Y., Zeng Q., H. Wong L., Chen J., Liu F., Liu Z.. Solid-ionic memory in a van der Waals heterostructure. ACS Nano, 2022, 16(1): 221
https://doi.org/10.1021/acsnano.1c05841
|
20 |
Wu F., Tian H., Shen Y., Hou Z., Ren J., Gou G., Sun Y., Yang Y., L. Ren T.. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603(7900): 259
https://doi.org/10.1038/s41586-021-04323-3
|
21 |
Li T., Guo W., Ma L., Li W., Yu Z., Han Z., Gao S., Liu L., Fan D., Wang Z., Yang Y., Lin W., Luo Z., Chen X., Dai N., Tu X., Pan D., Yao Y., Wang P., Nie Y., Wang J., Shi Y., Wang X.. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol., 2021, 16(11): 1201
https://doi.org/10.1038/s41565-021-00963-8
|
22 |
C. Shen P., Su C., Lin Y., S. Chou A., C. Cheng C., H. Park J., H. Chiu M., Y. Lu A., L. Tang H., M. Tavakoli M., Pitner G., Ji X., Cai Z., Mao N., Wang J., Tung V., Li J., Bokor J., Zettl A., I. Wu C., Palacios T., J. Li L., Kong J.. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593(7858): 211
https://doi.org/10.1038/s41586-021-03472-9
|
23 |
Zheng H., Huang C., Lin F., Fan J., Liu H., Zhang L., Ma C., Wang C., Zhu Y., Yang H.. Two-dimensional van der Waals ferromagnetic thin film CrTe2 with high Curie temperature and metallic conductivity. Appl. Phys. Lett., 2023, 122(2): 023103
https://doi.org/10.1063/5.0130479
|
24 |
Qiu L., Wang Z., S. Ni X., X. Yao D., Hou Y.. Electrically tunable Gilbert damping in van der Waals heterostructures of two-dimensional ferromagnetic metals and ferroelectrics. Appl. Phys. Lett., 2023, 122(10): 102402
https://doi.org/10.1063/5.0145401
|
25 |
Zhang X., Liu W., Niu W., Lu Q., Wang W., Sarikhani A., Wu X., Zhu C., Sun J., Vaninger M., F. Miceli P., Li J., J. Singh D., S. Hor Y., Zhao Y., Liu C., He L., Zhang R., Bian G., Yu D., Xu Y.. Self-intercalation tunable interlayer exchange coupling in a synthetic van der Waals antiferromagnet. Adv. Funct. Mater., 2022, 32(32): 2202977
https://doi.org/10.1002/adfm.202202977
|
26 |
Xiao G., Z. Xiao W., Chen Q., Wang L., Novel two-dimensional ferromagnetic materials CrX2 (X = O. Se) with high Curie temperature. J. Mater. Chem. C, 2022, 10(46): 17665
https://doi.org/10.1039/D2TC03711D
|
27 |
He Z., Peng R., Feng X., Xu X., Dai Y., Huang B., Ma Y.. Two-dimensional valleytronic semiconductor with spontaneous spin and valley polarization in single-layer Cr2Se3. Phys. Rev. B, 2021, 104(7): 075105
https://doi.org/10.1103/PhysRevB.104.075105
|
28 |
Chen F., Wang Y., Su W., Ding S., Fu L.. Position-selective growth of 2D WS2-based vertical heterostructures via a one-step CVD approach. J. Phys. Chem. C, 2019, 123(50): 30519
https://doi.org/10.1021/acs.jpcc.9b08059
|
29 |
Guan X., Yu X., Periyanagounder D., R. Benzigar M., K. Huang J., H. Lin C., Kim J., Singh S., Hu L., Liu G., Li D., H. He J., Yan F., J. Wang Q., Wu T.. Recent progress in short- to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater., 2021, 9(4): 2001708
https://doi.org/10.1002/adom.202001708
|
30 |
G. Shin H., S. Yoon H., S. Kim J., Kim M., Y. Lim J., Yu S., H. Park J., Yi Y., Kim T., C. Jun S., Im S.. Vertical and in-plane current devices using NbS2/n-MoS2 van der Waals Schottky junction and graphene contact. Nano Lett., 2018, 18(3): 1937
https://doi.org/10.1021/acs.nanolett.7b05338
|
31 |
Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
|
32 |
Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
|
33 |
Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., Zhang Y.. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
https://doi.org/10.1038/s41586-018-0626-9
|
34 |
Bonilla M., Kolekar S., Ma Y., C. Diaz H., Kalappattil V., Das R., Eggers T., R. Gutierrez H., H. Phan M., Batzill M.. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol., 2018, 13(4): 289
https://doi.org/10.1038/s41565-018-0063-9
|
35 |
Kang L., Ye C., Zhao X., Zhou X., Hu J., Li Q., Liu D., M. Das C., Yang J., Hu D., Chen J., Cao X., Zhang Y., Xu M., Di J., Tian D., Song P., Kutty G., Zeng Q., Fu Q., Deng Y., Zhou J., Ariando A., Miao F., Hong G., Huang Y., J. Pennycook S., T. Yong K., Ji W., Renshaw Wang X., Liu Z.. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun., 2020, 11(1): 3729
https://doi.org/10.1038/s41467-020-17253-x
|
36 |
Fei Z., Huang B., Malinowski P., Wang W., Song T., Sanchez J., Yao W., Xiao D., Zhu X., F. May A., Wu W., H. Cobden D., H. Chu J., Xu X.. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater., 2018, 17(9): 778
https://doi.org/10.1038/s41563-018-0149-7
|
37 |
Zhang C., Liu C., Zhang J., Yuan Y., Wen Y., Li Y., Zheng D., Zhang Q., Hou Z., Yin G., Liu K., Peng Y., X. Zhang X.. Room-temperature magnetic skyrmions and large topological Hall effect in chromium telluride engineered by self-intercalation. Adv. Mater., 2023, 35(1): 2205967
https://doi.org/10.1002/adma.202205967
|
38 |
Yang X., Zhou X., Feng W., Yao Y.. Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T-CrTe2. Phys. Rev. B, 2021, 103(2): 024436
https://doi.org/10.1103/PhysRevB.103.024436
|
39 |
Jellinek F.. The structures of the chromium sulphides. Acta Crystallogr., 1957, 10(10): 620
https://doi.org/10.1107/S0365110X57002200
|
40 |
Maignan A., Bréard Y., Guilmeau E., Gascoin F.. Transport, thermoelectric, and magnetic properties of a dense Cr2S3 ceramic. J. Appl. Phys., 2012, 112(1): 013716
https://doi.org/10.1063/1.4736417
|
41 |
H. Xie W., Q. Xu Y., G. Liu B., G. Pettifor D.. Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys. Rev. Lett., 2003, 91(3): 037204
https://doi.org/10.1103/PhysRevLett.91.037204
|
42 |
Anisha M., Singh M., Kumar R., Srivastava S., Tankeshwar K.. Tuning of Thermoelectric performance of CrSe2 material using dimension engineering. J. Phys. Chem. Solids, 2023, 172: 111083
https://doi.org/10.1016/j.jpcs.2022.111083
|
43 |
G. Sreenivasan M., F. Bi J., L. Teo K., Liew T.. Systematic investigation of structural and magnetic properties in molecular beam epitaxial growth of metastable zinc-blende CrTe toward half-metallicity. J. Appl. Phys., 2008, 103(4): 043908
https://doi.org/10.1063/1.2885108
|
44 |
L. Coughlin A., Xie D., Zhan X., Yao Y., Deng L., Hewa-Walpitage H., Bontke T., W. Chu C., Li Y., Wang J., A. Fertig H., Zhang S.. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett., 2021, 21(22): 9517
https://doi.org/10.1021/acs.nanolett.1c02940
|
45 |
Sharma Y., Srivastava P., Ghoshray A., Bandyopadhyay B., Mazumdar C.. Electronic structure and magnetic properties of rhombohedral Cr2S3. AIP Conf. Proc., 2011, 1347(123): 123
https://doi.org/10.1063/1.3601801
|
46 |
J. Zhang S., M. Yan J., Tang F., Wu J., Q. Dong W., W. Zhang D., S. Luo F., Chen L., Fang Y., Zhang T., Chai Y., Zhao W., Wang X., K. Zheng R.. Colossal magnetoresistance in Ti lightly doped Cr2Se3 single crystals with a layered structure. ACS Appl. Mater. Interfaces, 2021, 13(49): 58949
https://doi.org/10.1021/acsami.1c18848
|
47 |
B. Chen S., Y. Zeng Z., R. Chen X., X. Yao X.. Strain-induced electronic structures, mechanical anisotropy, and piezoelectricity of transition-metal dichalcogenide monolayer CrS2. J. Appl. Phys., 2020, 128(12): 125111
https://doi.org/10.1063/5.0022429
|
48 |
Ebrahimi S., Yarmand B.. Optimized optical band gap energy and Urbach tail of Cr2S3 thin films by Sn incorporation for optoelectronic applications. Physica B, 2020, 593: 412292
https://doi.org/10.1016/j.physb.2020.412292
|
49 |
Zhang T., Su X., Yan Y., Liu W., Hu T., Zhang C., Zhang Z., Tang X.. Enhanced thermoelectric properties of codoped Cr2Se3: The distinct roles of transition metals and S. ACS Appl. Mater. Interfaces, 2018, 10(26): 22389
https://doi.org/10.1021/acsami.8b05080
|
50 |
L. Coughlin A., Xie D., Yao Y., Zhan X., Chen Q., Hewa-Walpitage H., Zhang X., Guo H., Zhou H., Lou J., Wang J., S. Li Y., A. Fertig H., Zhang S.. Near degeneracy of magnetic phases in two-dimensional chromium telluride with enhanced perpendicular magnetic anisotropy. ACS Nano, 2020, 14(11): 15256
https://doi.org/10.1021/acsnano.0c05534
|
51 |
Niu K., Qiu G., Wang C., Li D., Niu Y., Li S., Kang L., Cai Y., Han M., Lin J.. Self-intercalated magnetic heterostructures in 2D chromium telluride. Adv. Funct. Mater., 2023, 33(2): 2208528
https://doi.org/10.1002/adfm.202208528
|
52 |
Huang W., Gan L., Yang H., Zhou N., Wang R., Wu W., Li H., Ma Y., Zeng H., Zhai T.. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater., 2017, 27(36): 1702448
https://doi.org/10.1002/adfm.201702448
|
53 |
Chu J., Zhang Y., Wen Y., Qiao R., Wu C., He P., Yin L., Cheng R., Wang F., Wang Z., Xiong J., Li Y., He J.. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett., 2019, 19(3): 2154
https://doi.org/10.1021/acs.nanolett.9b00386
|
54 |
Yao B., Liu W., Zhou X., Yang J., Huang X., Fu Z., Yuan G., Nie Y., Dai Y., Xu J., Gao L.. Growth of wafer-scale chromium sulphide and selenide semiconductor films. J. Phys.: Condens. Matter, 2023, 35(33): 335302
https://doi.org/10.1088/1361-648X/acd509
|
55 |
Jin Z., Ji Z., Zhong Y., Jin Y., Hu X., Zhang X., Zhu L., Huang X., Li T., Cai X., Zhou L.. Controlled synthesis of a two-dimensional non-van der Waals ferromagnet toward a magnetic Moire superlattice. ACS Nano, 2022, 16(5): 7572
https://doi.org/10.1021/acsnano.1c11018
|
56 |
D. Mermin N., Wagner H.. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
https://doi.org/10.1103/PhysRevLett.17.1133
|
57 |
Gebredingle Y., Joe M., Lee C., First-principles calculations of the spin-dependent electronic structure, strain tunability in 2D non-van der Waals chromium chalcogenides Cr2X3 (X = S. Te): Implications for spintronics applications. ACS Appl. Nano Mater., 2022, 5(8): 10383
https://doi.org/10.1021/acsanm.2c01713
|
58 |
Groß H., Groeneveld D., Poschmann M., Schürmann U., D. König J., Bensch W., Wöllenstein J., Kienle L.. About the impact of defect phases on the thermoelectric properties of Cr3S4–xSex. Adv. Eng. Mater., 2023, 25(9): 2201505
https://doi.org/10.1002/adem.202201505
|
59 |
Kang N., Wan W., Ge Y., Liu Y.. Diverse magnetism in stable and metastable structures of CrTe. Front. Phys., 2021, 16(6): 63506
https://doi.org/10.1007/s11467-021-1088-3
|
60 |
Guo Y.Kang L.Yu S.Yang J.Qi X. Zhang Z.Liu Z., CVD growth of large-scale and highly crystalline 2D chromium telluride nanoflakes, ChemNanoMat 7(3), 323 (2021)
|
61 |
Zhang Y., Chu J., Yin L., A. Shifa T., Cheng Z., Cheng R., Wang F., Wen Y., Zhan X., Wang Z., He J.. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater., 2019, 31(19): 1900056
https://doi.org/10.1002/adma.201900056
|
62 |
R. Habib M., Wang S., Wang W., Xiao H., M. Obaidulla S., Gayen A., Khan Y., Chen H., Xu M.. Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale, 2019, 11(42): 20123
https://doi.org/10.1039/C9NR04449C
|
63 |
Li P., Xu C., Luo W.. Layer-independent ferromagnetic insulators in a new structural phase of Cr2S3. Phys. Rev. Mater., 2022, 6(5): 054006
https://doi.org/10.1103/PhysRevMaterials.6.054006
|
64 |
K. Rajendran Nair G., Abdelaziem A., Zhao X., Wang X., Hu D., Wu Y., Xun C., Le Goualher F., Zhu C., L. P. Yin P., Valsaraj V., Salim T., Ke L., Liu Z.. Chemical vapor deposition of phase-pure 2D 1T-CrS2. Phys. Status Solidi Rapid Res. Lett., 2022, 16(4): 2100495
https://doi.org/10.1002/pssr.202100495
|
65 |
Zhou S., Wang R., Han J., Wang D., Li H., Gan L., Zhai T.. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: Space-confined chemical vapor deposition synthesis and raman scattering investigation. Adv. Funct. Mater., 2019, 29(3): 1805880
https://doi.org/10.1002/adfm.201805880
|
66 |
A. Shifa T., Mazzaro R., Morandi V., Vomiero A.. Controllable synthesis of 2D nonlayered Cr2S3 nanosheets and their electrocatalytic activity toward oxygen evolution reaction. Front. Chem. Eng., 2021, 3: 703812
https://doi.org/10.3389/fceng.2021.703812
|
67 |
G. Moinuddin M., Srinivasan S., K. Sharma S.. Probing ferrimagnetic semiconductor with enhanced negative magnetoresistance: 2D chromium sulfide. Adv. Electron. Mater., 2021, 7(9): 2001116
https://doi.org/10.1002/aelm.202001116
|
68 |
Kobayashi S., Katayama N., Manjo T., Ueda H., Michioka C., Sugiyama J., Sassa Y., K. Forslund O., Mansson M., Yoshimura K., Sawa H.. Linear trimer formation with antiferromagnetic ordering in 1T-CrSe2 originating from Peierls-like instabilities and interlayer Se‒Se interactions. Inorg. Chem., 2019, 58(21): 14304
https://doi.org/10.1021/acs.inorgchem.9b00186
|
69 |
Zhu X., Wong L., Fan X., Zhao J., Zhou Y., Ouyang F.. Role of the spatial distribution of gas flow for tuning the vertical/planar growth of nonlayered two-dimensional nanoplates. Cryst. Growth Des., 2022, 22(1): 763
https://doi.org/10.1021/acs.cgd.1c01261
|
70 |
Zhang D., Yi C., Ge C., Shu W., Li B., Duan X., Pan A., Wang X.. Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures. Chin. Phys. B, 2021, 30(9): 097601
https://doi.org/10.1088/1674-1056/ac0cd9
|
71 |
Bai S., Tang S., Wu M., Luo D., Zhang J., Wan D., Li X.. Chromium ditelluride monolayer: A novel promising 2H phase thermoelectric material with direct bandgap and ultralow lattice thermal conductivity. J. Alloys Compd., 2023, 930: 167485
https://doi.org/10.1016/j.jallcom.2022.167485
|
72 |
Wang Y., Kajihara S., Matsuoka H., K. Saika B., Yamagami K., Takeda Y., Wadati H., Ishizaka K., Iwasa Y., Nakano M.. Layer-number-independent two-dimensional ferromagnetism in Cr3Te4. Nano Lett., 2022, 22(24): 9964
https://doi.org/10.1021/acs.nanolett.2c03532
|
73 |
Purbawati A., Sarkar S., Pairis S., Kostka M., Hadj-Azzem A., Dufeu D., Singh P., Bourgault D., Nuñez-Regueiro M., Vogel J., Renard J., Marty L., Fabre F., Finco A., Jacques V., Ren L., Tiwari V., Robert C., Marie X., Bendiab N., Rougemaille N., Coraux J.. Stability of the in-plane room temperature van der waals ferromagnet chromium ditelluride and its conversion to chromium-interleaved CrTe2 compounds. ACS Appl. Electron. Mater., 2023, 5(2): 764
https://doi.org/10.1021/acsaelm.2c01256
|
74 |
Wen Y., Liu Z., Zhang Y., Xia C., Zhai B., Zhang X., Zhai G., Shen C., He P., Cheng R., Yin L., Yao Y., Getaye Sendeku M., Wang Z., Ye X., Liu C., Jiang C., Shan C., Long Y., He J.. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20(5): 3130
https://doi.org/10.1021/acs.nanolett.9b05128
|
75 |
Li B., Deng X., Shu W., Cheng X., Qian Q., Wan Z., Zhao B., Shen X., Wu R., Shi S., Zhang H., Zhang Z., Yang X., Zhang J., Zhong M., Xia Q., Li J., Liu Y., Liao L., Ye Y., Dai L., Peng Y., Li B., Duan X.. Air-stable ultrathin Cr3Te4 nanosheets with thickness-dependent magnetic biskyrmions. Mater. Today, 2022, 57: 66
https://doi.org/10.1016/j.mattod.2022.04.011
|
76 |
W. Lu Z., B. Qiu S., Q. Xie W., B. Yang X., J. Zhao Y.. Theoretical study of strain induced magnetic transition of single-layer CrTe3. J. Appl. Phys., 2020, 127(3): 033903
https://doi.org/10.1063/1.5126246
|
77 |
Liu H., Fan J., Zheng H., Wang J., Ma C., Wang H., Zhang L., Wang C., Zhu Y., Yang H.. Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film. Front. Phys., 2023, 18(1): 13302
https://doi.org/10.1007/s11467-022-1210-1
|
78 |
Wang W., Fan J., Liu H., Zheng H., Ma C., Zhang L., Sun Y., Wang C., Zhu Y., Yang H.. Fabrication and magnetic-electronic properties of van der Waals Cr4Te5 ferromagnetic films. CrystEngComm, 2022, 24(3): 674
https://doi.org/10.1039/D1CE01200B
|
79 |
Liu J., Ding B., Liang J., Li X., Yao Y., Wang W.. Magnetic skyrmionic bubbles at room temperature and sign reversal of the topological Hall effect in a layered ferromagnet Cr0.87Te. ACS Nano, 2022, 16(9): 13911
https://doi.org/10.1021/acsnano.2c02928
|
80 |
Huang M., Gao L., Zhang Y., Lei X., Hu G., Xiang J., Zeng H., Fu X., Zhang Z., Chai G., Peng Y., Lu Y., Du H., Chen G., Zang J., Xiang B.. Possible topological Hall effect above room temperature in layered Cr1.2Te2 ferromagnet. Nano Lett., 2021, 21(10): 4280
https://doi.org/10.1021/acs.nanolett.1c00493
|
81 |
Yan J., Luo X., Lin G., Chen F., Gao J., Sun Y., Hu L., Tong P., Song W., Sheng Z., Lu W., Zhu X., Sun Y.. Anomalous Hall effect of the quasi-two-dimensional weak itinerant ferromagnet Cr4.14Te8. Europhys. Lett., 2019, 124(6): 67005
https://doi.org/10.1209/0295-5075/124/67005
|
82 |
Wang J., Xu X., Cheng T., Gu L., Qiao R., Liang Z., Ding D., Hong H., Zheng P., Zhang Z., Zhang Z., Zhang S., Cui G., Chang C., Huang C., Qi J., Liang J., Liu C., Zuo Y., Xue G., Fang X., Tian J., Wu M., Guo Y., Yao Z., Jiao Q., Liu L., Gao P., Li Q., Yang R., Zhang G., Tang Z., Yu D., Wang E., Lu J., Zhao Y., Wu S., Ding F., Liu K.. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol., 2022, 17(1): 33
https://doi.org/10.1038/s41565-021-01004-0
|
83 |
Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., Chhowalla M.. Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11(12): 5111
https://doi.org/10.1021/nl201874w
|
84 |
Zheng J., Zhang H., Dong S., Liu Y., Tai Nai C., Suk Shin H., Young Jeong H., Liu B., Ping Loh K.. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun., 2014, 5(1): 2995
https://doi.org/10.1038/ncomms3995
|
85 |
N. L. Coleman J., Lotya M., O’Neill A., D. Bergin S., J. King P., Khan U., Young K., Gaucher A., De S., J. Smith R., V. Shvets I., K. Arora S., Stanton G., Y. Kim H., Lee K., T. Kim G., S. Duesberg G., Hallam T., J. Boland J., J. Wang J., F. Donegan J., C. Grunlan J., Moriarty G., Shmeliov A., J. Nicholls R., M. Perkins J., M. Grieveson E., Theuwissen K., W. McComb D., D. Nellist P., Nicolosi V.. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011, 331(6017): 568
https://doi.org/10.1126/science.1194975
|
86 |
Huang M., Wang S., Wang Z., Liu P., Xiang J., Feng C., Wang X., Zhang Z., Wen Z., Xu H., Yu G., Lu Y., Zhao W., A. Yang S., Hou D., Xiang B.. Colossal anomalous Hall effect in ferromagnetic van der Waals CrTe2. ACS Nano, 2021, 15(6): 9759
https://doi.org/10.1021/acsnano.1c00488
|
87 |
Sun X., Li W., Wang X., Sui Q., Zhang T., Wang Z., Liu L., Li D., Feng S., Zhong S., Wang H., Bouchiat V., Nunez Regueiro M., Rougemaille N., Coraux J., Purbawati A., Hadj-Azzem A., Wang Z., Dong B., Wu X., Yang T., Yu G., Wang B., Han Z., Han X., Zhang Z.. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res., 2020, 13(12): 3358
https://doi.org/10.1007/s12274-020-3021-4
|
88 |
Huang M., Ma Z., Wang S., Li S., Li M., Xiang J., Liu P., Hu G., Zhang Z., Sun Z., Lu Y., Sheng Z., Chen G., Chueh Y.-L., A. Yang S., Xiang B.. Significant perpendicular magnetic anisotropy in room-temperature layered ferromagnet of Cr-intercalated CrTe2. 2D Mater., 2021, 8(3): 031003
https://doi.org/10.1088/2053-1583/abfaae
|
89 |
Hussain W., Badshah A., A. Hussain R., A. Aleem Imtiaz-ud-Din, Bahadur M., Iqbal A., U. Farooq S., Ali M.. Photocatalytic applications of Cr2S3 synthesized from single and multi-source precursors. Mater. Chem. Phys., 2017, 194: 345
https://doi.org/10.1016/j.matchemphys.2017.04.001
|
90 |
Ramaraj S., Mani S., M. Chen S., Palanisamy S., Velusamy V., M. Hall J., W. Chen T., W. Tseng T.. Hydrothermal synthesis of Cr2Se3 hexagons for sensitive and low-level detection of 4-nitrophenol in water. Sci. Rep., 2018, 8(1): 4839
https://doi.org/10.1038/s41598-018-23243-3
|
91 |
Zhang X., Lu Q., Liu W., Niu W., Sun J., Cook J., Vaninger M., F. Miceli P., J. Singh D., W. Lian S., R. Chang T., He X., Du J., He L., Zhang R., Bian G., Xu Y.. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun., 2021, 12(1): 2492
https://doi.org/10.1038/s41467-021-22777-x
|
92 |
Liu M., L. Huang Y., Gou J., Liang Q., Chua R., Arramel S., Duan S., Zhang L., L. Cai L., Yu X., Zhong D., Zhang W., T. S. Wee A.. Diverse structures and magnetic properties in nonlayered monolayer chromium selenide. J. Phys. Chem. Lett., 2021, 12(32): 7752
https://doi.org/10.1021/acs.jpclett.1c01493
|
93 |
Koma A., Van der Waals epitaxy for highly lattice mismatched systems, J. Cryst. Growth 201‒202, 236 (1999)
|
94 |
Chen C., Chen X., Wu C., Wang X., Ping Y., Wei X., Zhou X., Lu J., Zhu L., Zhou J., Zhai T., Han J., Xu H.. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater., 2022, 34(2): 2107512
https://doi.org/10.1002/adma.202107512
|
95 |
Tang Q., Liu C., Zhang B., Jie W.. Synthesis of sub-micro-flakes CrSe2 on glass and (110) Si substrates by solvothermal method. J. Solid State Chem., 2018, 262: 53
https://doi.org/10.1016/j.jssc.2018.02.020
|
96 |
A. Kariper I.. Synthesis and characterization of CrSe thin film produced via chemical bath deposition. Opt. Rev., 2017, 24(2): 139
https://doi.org/10.1007/s10043-017-0307-1
|
97 |
M. Tezel F.A. Kariper İ., A new process to synthesize CrSe thin films with nanosize by CBD method, Mater. Res. Express 6(3), 036412 (2018)
|
98 |
Liu S., Yuan X., Zou Y., Sheng Y., Huang C., Zhang E., Ling J., Liu Y., Wang W., Zhang C., Zou J., Wang K., Xiu F.. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl., 2017, 1(1): 30
https://doi.org/10.1038/s41699-017-0033-3
|
99 |
M. Poh S., Zhao X., J. R. Tan S., Fu D., Fei W., Chu L., Jiadong D., Zhou W., J. Pennycook S., H. Castro Neto A., P. Loh K.. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano, 2018, 12(8): 7562
https://doi.org/10.1021/acsnano.8b04037
|
100 |
Roy A., Guchhait S., Dey R., Pramanik T., C. Hsieh C., Rai A., K. Banerjee S.. Perpendicular magnetic anisotropy and spin glass-like behavior in molecular beam epitaxy grown chromium telluride thin films. ACS Nano, 2015, 9(4): 3772
https://doi.org/10.1021/nn5065716
|
101 |
Wang C., Zhang B., You B., K. Lok S., K. Chan S., X. Zhang X., K. L. Wong G., K. Sou I.. Molecular-beam-epitaxy-grown CrSe/Fe bilayer on GaAs(100) substrate. J. Appl. Phys., 2007, 102(8): 083901
https://doi.org/10.1063/1.2795625
|
102 |
Li H., Wang L., Chen J., Yu T., Zhou L., Qiu Y., He H., Ye F., K. Sou I., Wang G.. Molecular beam epitaxy grown Cr2Te3 thin films with tunable Curie temperatures for spintronic devices. ACS Appl. Nano Mater., 2019, 2(11): 6809
https://doi.org/10.1021/acsanm.9b01179
|
103 |
Zuo Y., Liu C., Ding L., Qiao R., Tian J., Liu C., Wang Q., Xue G., You Y., Guo Q., Wang J., Fu Y., Liu K., Zhou X., Hong H., Wu M., Lu X., Yang R., Zhang G., Yu D., Wang E., Bai X., Ding F., Liu K.. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun., 2022, 13(1): 1007
https://doi.org/10.1038/s41467-022-28628-7
|
104 |
Yang P., Zhang S., Pan S., Tang B., Liang Y., Zhao X., Zhang Z., Shi J., Huan Y., Shi Y., J. Pennycook S., Ren Z., Zhang G., Chen Q., Zou X., Liu Z., Zhang Y.. Epitaxial growth ofcentimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano, 2020, 14(4): 5036
https://doi.org/10.1021/acsnano.0c01478
|
105 |
Cui F., Zhao X., Tang B., Zhu L., Huan Y., Chen Q., Liu Z., Zhang Y.. Epitaxial growth of step-like Cr2S3 lateral homojunctions towards versatile conduction polarities and enhanced transistor performances. Small, 2021, 18(4): 2105744
https://doi.org/10.1002/smll.202105744
|
106 |
Cui F., Zhao X., Xu J., Tang B., Shang Q., Shi J., Huan Y., Liao J., Chen Q., Hou Y., Zhang Q., J. Pennycook S., Zhang Y.. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater., 2020, 32(4): 1905896
https://doi.org/10.1002/adma.201905896
|
107 |
Zhang X., Wang B., Guo Y., Zhang Y., Chen Y., Wang J., High Curie temperature, intrinsic ferromagnetic half-metallicity in two-dimensional Cr3X4 (X = S. Te) nanosheets. Nanoscale Horiz., 2019, 4(4): 859
https://doi.org/10.1039/C9NH00038K
|
108 |
Ma C., R. Beckett J., R. Rossman G.. Cr5S6, a new mineral from the Murchison meteorite. Am. Mineral., 2011, 96(11−12): 1905
https://doi.org/10.2138/am.2011.3858
|
109 |
Li B., Wan Z., Wang C., Chen P., Huang B., Cheng X., Qian Q., Li J., Zhang Z., Sun G., Zhao B., Ma H., Wu R., Wei Z., Liu Y., Liao L., Ye Y., Huang Y., Xu X., Duan X., Ji W., Duan X.. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
https://doi.org/10.1038/s41563-021-00927-2
|
110 |
Wu Q., Liu R., Qiu Z., Li D., Li J., Wang X., Ding G., Cr3X4 (X = Se. Te) monolayers as a new platform to realize robust spin filters, spin diodes and spin valves. Phys. Chem. Chem. Phys., 2022, 24(40): 24873
https://doi.org/10.1039/D2CP03615K
|
111 |
Zhao D., Zhang L., A. Malik I., Liao M., Cui W., Cai X., Zheng C., Li L., Hu X., Zhang D., Zhang J., Chen X., Jiang W., Xue Q.. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Res., 2018, 11(6): 3116
https://doi.org/10.1007/s12274-017-1913-8
|
112 |
Wang M., Kang L., Su J., Zhang L., Dai H., Cheng H., Han X., Zhai T., Liu Z., Han J.. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale, 2020, 12(31): 16427
https://doi.org/10.1039/D0NR04108D
|
113 |
Meng L., Zhou Z., Xu M., Yang S., Si K., Liu L., Wang X., Jiang H., Li B., Qin P., Zhang P., Wang J., Liu Z., Tang P., Ye Y., Zhou W., Bao L., J. Gao H., Gong Y.. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun., 2021, 12(1): 809
https://doi.org/10.1038/s41467-021-21072-z
|
114 |
J. Xian J., Wang C., H. Nie J., Li R., Han M., Lin J., H. Zhang W., Y. Liu Z., M. Zhang Z., P. Miao M., Yi Y., Wu S., Chen X., Han J., Xia Z., Ji W., S. Fu Y.. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2. Nat. Commun., 2022, 13(1): 257
https://doi.org/10.1038/s41467-021-27834-z
|
115 |
Chua R., Zhou J., Yu X., Yu W., Gou J., Zhu R., Zhang L., Liu M., B. H. Breese M., Chen W., P. Loh K., P. Feng Y., Yang M., L. Huang Y., T. S. Wee A.. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater., 2021, 33(42): 2103360
https://doi.org/10.1002/adma.202103360
|
116 |
Li R., H. Nie J., J. Xian J., W. Zhou J., Lu Y., P. Miao M., H. Zhang W., S. Fu Y.. Planar heterojunction of ultrathin CrTe3 and CrTe2 van der Waals magnet. ACS Nano, 2022, 16(3): 4348
https://doi.org/10.1021/acsnano.1c10555
|
117 |
L. Liu C., T. Tseng Y., W. Huang C., Y. Lo H., Y. Hou A., H. Wang C., Yasuhara A., W. Wu W.. Atomic imaging and thermally induced dynamic structural evolution of two-dimensional Cr2S3. Nano Lett., 2022, 22(19): 7944
https://doi.org/10.1021/acs.nanolett.2c02974
|
118 |
Zhou W., Chen M., Yuan C., Huang H., Zhang J., Wu Y., Zheng X., Shen J., Wang G., Wang S., Shen B.. Antiferromagnetic phase induced by nitrogen doping in 2D Cr2S3. Materials (Basel), 2022, 15(5): 1716
https://doi.org/10.3390/ma15051716
|
119 |
Yang H., Wu A., Yi H., Cao W., Yao J., Yang G., C. Zou Y.. Atomic scale insights into the epitaxial growth mechanism of 2D Cr3Te4 on mica. Nanoscale Adv., 2023, 5(3): 693
https://doi.org/10.1039/D2NA00835A
|
120 |
Guo Y., Zhao L., Zheng D.. Theoretical investigation on the electronic structure of new InSe/CrS2 van der Waals heterostructure. J. Mater. Res., 2022, 37(13): 2157
https://doi.org/10.1557/s43578-022-00548-8
|
121 |
Zhao S.Zhang X.Cao J., Mechanistic study of CrS2/BP as a direct Z-scheme heterojunction for photocatalyst of splitting water under biaxial strain, Catl. Lett., doi: 10.1007/s10562-022-04224-8 (2022)
|
122 |
Jiang C., Yang Z., Xiong W., Wang F.. Effect of strain engineering on magnetism-induced valley splitting in WSe2 based on the WSe2/CrSe2 heterojunction. Appl. Phys. Lett., 2021, 119(16): 162101
https://doi.org/10.1063/5.0065762
|
123 |
Ou Y., Yanez W., Xiao R., Stanley M., Ghosh S., Zheng B., Jiang W., S. Huang Y., Pillsbury T., Richardella A., Liu C., Low T., H. Crespi V., A. Mkhoyan K., Samarth N.. ZrTe2/CrTe2: An epitaxial van der Waals platform for spintronics. Nat. Commun., 2022, 13(1): 2972
https://doi.org/10.1038/s41467-022-30738-1
|
124 |
Zhang X., C. Ambhire S., Lu Q., Niu W., Cook J., S. Jiang J., Hong D., Alahmed L., He L., Zhang R., Xu Y., S. Zhang S., Li P., Bian G.. Giant topological Hall effect in van der Waals heterostructures of CrTe2/Bi2Te3. ACS Nano, 2021, 15(10): 15710
https://doi.org/10.1021/acsnano.1c05519
|
125 |
Yao J., Wang H., Yuan B., Hu Z., Wu C., Zhao A.. Ultrathin van der Waals antiferromagnet CrTe3 for fabrication of in-plane CrTe3/CrTe2 monolayer magnetic heterostructures. Adv. Mater., 2022, 34(23): 2200236
https://doi.org/10.1002/adma.202200236
|
126 |
Chen J., Wang L., Zhang M., Zhou L., Zhang R., Jin L., Wang X., Qin H., Qiu Y., Mei J., Ye F., Xi B., He H., Li B., Wang G.. Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator heterostructures. Nano Lett., 2019, 19(9): 6144
https://doi.org/10.1021/acs.nanolett.9b02191
|
127 |
Matsuno J., Ogawa N., Yasuda K., Kagawa F., Koshibae W., Nagaosa N., Tokura Y., Kawasaki M.. Interface-driven topological Hall effect in SrRuO3‒SrIrO3 bilayer. Sci. Adv., 2016, 2(7): e1600304
https://doi.org/10.1126/sciadv.1600304
|
128 |
Soumyanarayanan A., Raju M., L. Gonzalez Oyarce A., K. C. Tan A., Y. Im M., P. Petrović A., Ho P., H. Khoo K., Tran M., K. Gan C., Ernult F., Panagopoulos C.. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater., 2017, 16(9): 898
https://doi.org/10.1038/nmat4934
|
129 |
Zhang Z., Shang J., Jiang C., Rasmita A., Gao W., Yu T.. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett., 2019, 19(5): 3138
https://doi.org/10.1021/acs.nanolett.9b00553
|
130 |
Wu L., Zhou L., Zhou X., Wang C., Ji W.. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers. Phys. Rev. B, 2022, 106(8): L081401
https://doi.org/10.1103/PhysRevB.106.L081401
|
131 |
H. Jeon J., R. Na H., Kim H., Lee S., Song S., Kim J., Park S., Kim J., Noh H., Kim G., K. Jerng S., H. Chun S.. Emergent topological Hall effect from exchange coupling in ferromagnetic Cr2Te3/noncoplanar antiferromagnetic Cr2Se3 bilayers. ACS Nano, 2022, 16(6): 8974
https://doi.org/10.1021/acsnano.2c00025
|
132 |
Fujisawa Y., Pardo-Almanza M., Garland J., Yamagami K., Zhu X., Chen X., Araki K., Takeda T., Kobayashi M., Takeda Y., H. Hsu C., C. Chuang F., Laskowski R., H. Khoo K., Soumyanarayanan A., Okada Y.. Tailoring magnetism in self-intercalated Cr1+δTe2 epitaxial films. Phys. Rev. Mater., 2020, 4(11): 114001
https://doi.org/10.1103/PhysRevMaterials.4.114001
|
133 |
Yu F., Yin Y., Liu G., Tian Q., Meng Q., Zhao W., Wang K., Wang C., Yang S., Wu D., Wan X., Zhang Y.. Thickness-dependent structural phase transition and self-intercalation of two-dimensional ferromagnetic chromium telluride thin films. Appl. Phys. Lett., 2022, 120(26): 261602
https://doi.org/10.1063/5.0096612
|
134 |
Zhong J., Wang M., Liu T., Zhao Y., Xu X., Zhou S., Han J., Gan L., Zhai T.. Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Res., 2022, 15(2): 1254
https://doi.org/10.1007/s12274-021-3633-3
|
135 |
Chi H., Ou Y., B. Eldred T., Gao W., Kwon S., Murray J., Dreyer M., E. Butera R., C. Foucher A., Ambaye H., Keum J., T. Greenberg A., Liu Y., R. Neupane M., J. de Coster G., A. Vail O., J. Taylor P., A. Folkes P., Rong C., Yin G., K. Lake R., M. Ross F., Lauter V., Heiman D., S. Moodera J.. Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride. Nat. Commun., 2023, 14(1): 3222
https://doi.org/10.1038/s41467-023-38995-4
|
136 |
Q. Li Q., Li S., Wu D., K. Ding Z., H. Cao X., Huang L., Pan H., Li B., Q. Chen K., D. Duan X.. Magnetic properties manipulation of CrTe2 bilayer through strain and self-intercalation. Appl. Phys. Lett., 2021, 119(16): 162402
https://doi.org/10.1063/5.0068018
|
137 |
Zhu X., Liu H., Liu L., Ren L., Li W., Fang L., Chen X., Xie L., Jing Y., Chen J., Liu S., Ouyang F., Zhou Y., Xiong X.. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets. Chem. Mater., 2021, 33(10): 3851
https://doi.org/10.1021/acs.chemmater.1c01222
|
138 |
Sun S., Liang J., Liu R., Shen W., Wu H., Tian M., Cao L., Yang Y., Huang Z., Lin W., Du J., Ni Z., Xu Y., Chen Q., Zhai Y.. Anisotropic magnetoresistance in room temperature ferromagnetic single crystal CrTe flake. J. Alloys Compd., 2022, 890: 161818
https://doi.org/10.1016/j.jallcom.2021.161818
|
139 |
S. Luo F., S. Ying J., W. Chen T., Tang F., W. Zhang D., Q. Dong W., Zhang Y., S. Li S., Fang Y., K. Zheng R.. Anomalous Hall effect and anisotropic magnetoresistance of molecular beam epitaxy grown Cr2Te3 thin films. J. Cryst. Growth, 2022, 582: 126541
https://doi.org/10.1016/j.jcrysgro.2022.126541
|
140 |
A. Denev S., T. A. Lummen T., Barnes E., Kumar A., Gopalan V.. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc., 2011, 94(9): 2699
https://doi.org/10.1111/j.1551-2916.2011.04740.x
|
141 |
Zhang R., Ruan W., Yu J., Gao L., Berger H., Forró L., Watanabe K., Taniguchi T., Ranjbar A., V. Belosludov R., D. Kühne T., S. Bahramy M., Xi X.. Second-harmonic generation in atomically thin 1T-TiSe2 and its possible origin from charge density wave transitions. Phys. Rev. B, 2022, 105(8): 085409
https://doi.org/10.1103/PhysRevB.105.085409
|
142 |
Xie L., Wang J., Li J., Li C., Zhang Y., Zhu B., Guo Y., Wang Z., Zhang K.. An atomically thin air-stable narrow-gap semiconductor Cr2S3 for broadband photodetection with high responsivity. Adv. Electron. Mater., 2021, 7(7): 2000962
https://doi.org/10.1002/aelm.202000962
|
143 |
Zhou X., Liu C., Song L., Zhang H., Huang Z., He C., Li B., Lin X., Zhang Z., Shi S., Shen D., Song R., Li J., Liu X., Zou X., Huang L., Liao L., Duan X., Li B.. Promoting the optoelectronic and ferromagnetic properties of Cr2S3 nanosheets via Se doping. Sci. China Phys. Mech., 2022, 65(7): 276811
https://doi.org/10.1007/s11433-022-1914-2
|
144 |
Fan X., Zou L., Chu W., Wang L., Zhou Y.. Synthesis of high resistive two-dimensional nonlayered Cr2S3 nanoflakes with stable phosphorus dopants by chemical vapor deposition. Appl. Phys. Lett., 2023, 122(22): 222101
https://doi.org/10.1063/5.0151795
|
145 |
Cheng M., Yang J., Li X., Li H., Du R., Shi J., He J.. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
|
146 |
Zeng H., Wen Y., Yin L., Cheng R., Wang H., Liu C., He J.. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(3): 53603
https://doi.org/10.1007/s11467-023-1286-2
|
147 |
Zeng S., Li F., Tan C., Yang L., Wang Z.. Defect repairing in two-dimensional transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53604
https://doi.org/10.1007/s11467-023-1290-6
|
148 |
Yang R., Fan J., Sun M.. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
https://doi.org/10.1007/s11467-022-1176-z
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|