Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 23401    https://doi.org/10.1007/s11467-023-1342-y
TOPICAL REVIEW
Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions
Xiulian Fan1, Ruifeng Xin1, Li Li2,3, Bo Zhang4, Cheng Li1, Xilong Zhou1, Huanzhi Chen1, Hongyan Zhang4, Fangping OuYang1,4,5, Yu Zhou1,5()
1. School of Physics and Electronics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China
2. Jincheng Research Institute of Opto-mechatronics Industry, Jincheng 048000, China
3. Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems, Jincheng 048000, China
4. School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
5. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
 Download: PDF(12228 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional transition metal dichalcogenides (TMDs) exhibit promising application prospects in the domains of electronic devices, optoelectronic devices and spintronic devices due to their distinctive energy band structures and spin−orbit coupling properties. Cr-based chalcogenides with narrow or even zero bandgap, covering from semiconductors to metallic materials, have considerable potential for wide-band photodetection and two-dimensional magnetism. Currently, the preparation of 2D CrXn (X = S, Se, Te) nanosheets primarily relies on chemical vapor deposition (CVD) and molecule beam epitaxy (MBE), which enable the production of high-quality large-area materials. This review article focuses on recent progress of 2D Cr-based chalcogenides, including unique crystal structure of the CrXn system, phase-controlled synthesis, and heterojunction construction. Furthermore, a detailed introduction of room-temperature ferromagnetism and electrical/optoelectronic properties of 2D CrXn is presented. Ultimately, this paper summarizes the challenges associated with utilizing 2D Cr-based chalcogenides in preparation strategies, optoelectronics devices, and spintronic devices while providing further insights.

Keywords physical properties      two-dimensional materials      Cr-based chalcogenide      controlled synthesis      heterojunction      eletronic and optoelectronic devices     
Corresponding Author(s): Yu Zhou   
Just Accepted Date: 28 August 2023   Issue Date: 07 October 2023
 Cite this article:   
Xiulian Fan,Ruifeng Xin,Li Li, et al. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions[J]. Front. Phys. , 2024, 19(2): 23401.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1342-y
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/23401
Fig.1  A comprehensive review on the structure, synthesis, and emerging physical properties of two-dimensional Cr-based chalcogenides.
Fig.2  Structure and magnetic properties of 2D magnetic materials. (a) Crystal structure and MOKE measurement of CrI3 single layer [31]. (b) Optical morphology and temperature-dependent Kerr rotation of bilayer Cr2Ge2Te6 [32]. (c) Atomic structure and layer-dependent variation of ferromagnetic phase diagram of monolayer Fe3GeTe2 [33]. (d) The electronic band structures of Cr2S3, Cr2Se3 and Cr2Te3 [57].
Fig.3  Typical CrXn crystal structure for different atomic ratios. (a) Calculation of the theoretically predicted atomic structures of different space groups of CrTe: Cmca, P63/mmc, R3¯m and Fm3¯m [59]. (b) Top and side views of the atomic structure of CrS2 in the 2H, 1T and 1T' phase [62]. (c) Atomic structures of air-stable α-Cr2S3, β-Cr2S3 and theoretically predicted metastable phase γ-Cr2S3 [63]. (d) Crystal structure of Cr1+xTe2 formed by different Cr atom intercalation filling rates [51].
Fig.4  Crystal structure of the non-stoichiometric ratio Cr1+xTe2. (a) Top and side views of the crystal structures of CrTe [79]. (b) Schematic diagram of Cr intercalated CrTe2 structure and side view of Cr1.53Te2 [37]. (c) Crystal structure of Cr1.2Te2 composed of Cr intercalated CrTe2 van der Waals gap [80]. (d) Side view of the intercalated atomic structure of Cr4.14Te8 [81].
Fig.5  The main preparation methods of Cr-based sulfur nanomaterials. (a) OM and AFM images of a few atomic layers of Cr1.2Te2 and CrTe2 prepared by liquid-phase exfoliation method [73, 80]. (b) SEM image of Cr2S3 nanorods prepared by solution method [89]. (c) SEM image of hydrothermally synthesized h-Cr2Se3 nanosheets [90]. (d) Schematic diagram and STM topography image of CrTe2 films synthesized on graphene by MBE (top) [91]; atomic-resolution STM images of 1T-CrSe2 and 1T'-CrSe2 and STM image of Cr2Se3 grown by MBE (bottom) [92]. (e) Schematic diagram of interface connection of dangling bond (top), van der Waals gap (middle) and quasi van der Waals gap (bottom) [93]. (f) Schematic diagram of improved CVD synthesis of 2D Cr5Te8 crystals and OM images of the grown Cr5Te8 nanosheets at different temperatures (left) [94]; schematic illustration of 2D Cr2S3 crystals by confined-space CVD, accompanied by OM and AFM images of Cr2S3 nanoflakes (right) [65].
CrXn (X=S/Se/Te) Structure Space group Synthesis Refs.
S CrS2 P63/mmc, P3m¯1 CVD [62]
Cr2S3 R3¯, P3¯1c CVD [106]
Cr3S4 P3¯m1 [107]
Cr5S6 P3¯1c [108]
Se CrSe P63/mmc CVD, MBE, CBD [61, 97, 101]
CrSe2 P3¯m1, R3¯m Solvothermal, CVD, MBE [92, 95, 109]
Cr2Se3 R3¯, P3¯m1 CVD, Hydrothermal [69, 90]
Cr3Se4 P3¯m1 [110]
Te CrTe Cmca, P63/mmc, R3¯m, Fm3¯m MBE, CVD [111, 112]
CrTe2 P3¯m1, P3m1 CVT, CVD, MBE [87, 113, 114]
Cr2Te3 P3¯1c MBE, CVD [74, 100]
Cr3Te4 C2/m MBE, CVD [75, 115]
Cr5Te8 P3¯m1 CVD, CVT [25, 55]
CrTe3 P2/m MBE [116]
Tab.1  Structures and synthesis of 2D Cr-based chalcogenides compounds.
Fig.6  Schematic illustration and characterization of the synthesis of 2D Cr-based chalcogenides in different phases based on chemical vapor deposition. (a) ADF-STEM and SAED images of Cr2S3 at 25, 400, and 600 °C, respectively (left); schematic representation of the atomic movement process of Cr in Cr2S3 during the phase transition (right) [117]. (b) PECVD synthetic process for N-doping in Cr2S3 nanosheets, and the OM images of P-Cr2S3 and N-Cr2S3 synthesized on SiO2/Si substrates [118]. (c) Schematic illustration of CVD synthesis of Cr2Se3 (top left) and XRD spectra of two-dimensional Cr2Se3 nanosheets (top right); OM images of the synthesized Cr2Se3 nanosheets at different temperatures (bottom) [70]. (d) SEM image of Cr3Te4 nanoflakes and corresponding EDS mapping images with Cr and Te (left); the cross-sectional ADF-STEM image of Cr3Te4 nanoflakes and corresponding atomic structures (right) [119]. (e) A CVD synthesis route of 1T-CrTe2 and atomic-resolution STEM-HADDF images of top-view and cross-section [113].
Fig.7  Heterojunction properties of 2D Cr-based sulfides. (a) Energy band distribution of the relative vacuum energy levels of monolayer CrS2 and InSe and DFT calculation of the electronic energy band structure and density of states of CrS2/InSe heterojunction [120]. (b) Energy band structure and PDOS of CrS2/BP heterojunction, where blue and pink lines are CrS2 and BP, respectively [121]. (c) Projected energy band structures of W atoms in WSe2/CrSe2 heterojunctions with no strain, 10% biaxial strain and 10% uniaxial strain [122]. (d) Low-resolution TEM image of the CrSe2/WSe2 heterojunction and EDS elemental mapping of Cr, Se, and W, and the SAED pattern of this heterojunction [109]. (e) Cross-sectional HADDF-STEM images of ZrTe2/CrTe2 heterojunction and SOT-assisted magnetization switching schematic of ZrTe2/CrTe2 heterojunction device [123]. (f) Schematic diagram of the CrTe2/Bi2Te3 bilayer heterojunction structure with a van der Waals gap [124]. (g) The dI/dV conductance mapping at the CrTe2/CrTe3 metal-semiconductor lateral heterojunction interface and the STM image of this monolayer lateral heterojunction [125].
Fig.8  Magnetic properties of Cr-based sulfides. (a) Layer-dependent properties of the Curie temperature (TC) of CrSe2 and anomalous Hall resistance (RAHE) variation of seven layers of CrSe2 at given temperatures [109]. (b) Magnetic moments (μB), magnetization (χ) and specific heat (CV) of monolayers of Cr3Se4 and Cr3Te4 as a function of temperature, simulated using the Monte Carlo method based on the 2D Heisenberg model [107]. (c) Magnetic temperature curves of CrTe2 films with different thicknesses in field-cooling mode (left) and vertical magnetization curves of 7 ML CrTe2 sample at different temperatures (right) [91]. (d) Schematic diagram of electrical transport measurements of Cr5Te8 devices under magnetic field and magnetic field-temperature phase diagram of Cr5Te8 [25]. (e) Hysteresis curves of Cr2Te3 and Cr2Te3/Cr2Se3 heterojunctions at 10 K and their temperature dependent magnetization intensity after field cooling and zero field cooling [131].
Fig.9  Novel magnetic properties of 2D Cr-based materials. (a) RMCD sweeps of Cr2Te3 nanosheets under +0.37% tensile strain (15.4 nm) and −0.37%compressive strain (13.6 nm) at different temperatures [134]. (b) Temperature-dependent characteristics of the out-of-plane phase of magnetization at different frequencies (f = 10, 50, 100 and 500 Hz) [137]. (c) Magnetoresistance (MR) properties of Cr2Te3 at parallel (θ = 90°) and perpendicular (θ = 0°) magnetic fields and variation of MR with magnetic field direction at 2 K [100]. (d) Illustration of the measured magnetoresistance of CrTe under an out-of-plane magnetic field and the temperature-dependent characteristics of the resistance at different θ under a 4 T magnetic field [138]. (e) Schematic and optical diagrams of a few-layer CrTe2 device, and schematic diagrams of anisotropic magnetoresistance measurements [87].
Fig.10  (a) Schematic of SHG measurement of Cr5Te8 nanosheets. (b) SHG intensity dependence characteristics with laser power. (c) Angle polarization SHG of Cr5Te8 nanosheets [94]. (d) Angle-polarized SHG of monolayer Cr2S3 [53]. (e) Schematic diagram and OM image of Cr2S3 electrical device. (f) Transfer characteristic curves (IdsVg) of Cr2S3 nanosheets with different thicknesses (Vds = 1 V, thickness of Cr2S3 nanosheets are 2.6, 3.6, 4.8, 6 and 7.6 nm, respectively) [106]. (g) Schematic diagram of Cr2S3 homojunction transistor [105]. (h) Device schematic of Cr2S3 photodetector. (i) Detectivity dependence of Cr2S3 photodetector with effective laser power at different laser wavelengths (520, 808 and 1650 nm). (j) Time-resolved photocurrent of Cr2S3 photodetector at Vds = 1 V, a 520 nm laser and 3.28 nW laser power [142]. (k) Conductivity (black) and on/off ratio (red) of Cr2S3 transistors with Se doping concentration, respectively. (l) Time-resolved photoresponse of a Se doped Cr2S3 transistor at Vds = 1 V and 3.28 nW laser power [143].
1 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
2 Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., Kis A.. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 2013, 8(7): 497
https://doi.org/10.1038/nnano.2013.100
3 A. Balandin A.. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater., 2011, 10(8): 569
https://doi.org/10.1038/nmat3064
4 W. Iqbal M., Z. Iqbal M., F. Khan M., A. Shehzad M., Seo Y., H. Park J., Hwang C., Eom J.. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep., 2015, 5(1): 10699
https://doi.org/10.1038/srep10699
5 Wang N., Song Y., Wang L., Liu K., Yang Y.. Investigating the electrical properties of monolayer and bilayer h-BNs via atomic force microscopy. Adv. Mater. Interfaces, 2021, 8(16): 2100447
https://doi.org/10.1002/admi.202100447
6 Wang X., Chen Q., Shen C., Dai J., Zhu C., Zhang J., Wang Z., Song Q., Wang L., Li H., Wang Q., Liu Z., Luo Z., Huang X., Huang W.. Spatially controlled preparation of layered metallic-semiconducting metal chalcogenide heterostructures. ACS Nano, 2021, 15(7): 12171
https://doi.org/10.1021/acsnano.1c03688
7 Zhao Z., Zhang W., Zhang Y., Hao H., Zhang S., Tong L., Peng B., Liu N.. Tuning bandstructure of folded MoS2 through fluid dynamics. Nano Res., 2022, 15(3): 2734
https://doi.org/10.1007/s12274-021-3768-2
8 Cui F., Feng Q., Hong J., Wang R., Bai Y., Li X., Liu D., Zhou Y., Liang X., He X., Zhang Z., Liu S., Lei Z., Liu Z., Zhai T., Xu H.. Synthesis of large-size 1T′ ReS2xSe2(1−x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater., 2017, 29(46): 1705015
https://doi.org/10.1002/adma.201705015
9 Zhou Y., Jang H., M. Woods J., Xie Y., Kumaravadivel P., A. Pan G., Liu J., Liu Y., G. Cahill D., J. Cha J.. Direct synthesis of large-scale WTe2 Thin films with low Thermal conductivity. Adv. Funct. Mater., 2017, 27(8): 1605928
https://doi.org/10.1002/adfm.201605928
10 H. Liu C., C. Chang Y., B. Norris T., Zhong Z.. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol., 2014, 9(4): 273
https://doi.org/10.1038/nnano.2014.31
11 Li D., Chen M., Sun Z., Yu P., Liu Z., M. Ajayan P., Zhang Z.. Two-dimensional non-volatile programmable p‒n junctions. Nat. Nanotechnol., 2017, 12(9): 901
https://doi.org/10.1038/nnano.2017.104
12 Kim Y.Lee S.G. Song J.Y. Ko K.J. Woo W. W. Lee S.Park M.Lee H.Lee Z.Choi H. H. Kim W.Park J.Kim H.Kim H., 2D transition metal dichalcogenide heterostructures for p-and n-Type photovoltaic self-powered gas sensor, Adv. Funct. Mater. 30(43), 2003360 (2020)
13 Wang B., Luo H., Wang X., Wang E., Sun Y., C. Tsai Y., Dong J., Liu P., Li H., Xu Y., Tongay S., Jiang K., Fan S., Liu K.. Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Res., 2020, 13(8): 2035
https://doi.org/10.1007/s12274-020-2872-z
14 Sebastian A., Pendurthi R., H. Choudhury T., M. Redwing J., Das S.. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun., 2021, 12(1): 693
https://doi.org/10.1038/s41467-020-20732-w
15 Li K., Du C., Gao H., Yin T., Zheng L., Leng J., Wang W.. Ultrafast and polarization-sensitive ReS2/ReSe2 heterostructure photodetectors with ambipolar photoresponse. ACS Appl. Mater. Interfaces, 2022, 14(29): 33589
https://doi.org/10.1021/acsami.2c09674
16 Wu D.Xu M. Zeng L.Shi Z.Tian Y.J. Li X.X. Shan C. Jie J., In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio, ACS Nano 16(4), 5545 (2022)
17 Li N., Wen Y., Cheng R., Yin L., Wang F., Li J., A. Shifa T., Feng L., Wang Z., He J.. Strongly coupled van der Waals heterostructures for high-performance infrared phototransistor. Appl. Phys. Lett., 2019, 114(10): 103501
https://doi.org/10.1063/1.5083685
18 She Y., Wu Z., You S., Du Q., Chu X., Niu L., Ding C., Zhang K., Zhang L., Huang S.. Multiple-dimensionally controllable nucleation sites of two-dimensional WS2/Bi2Se3 heterojunctions based on vapor growth. ACS Appl. Mater. Interfaces, 2021, 13(13): 15518
https://doi.org/10.1021/acsami.1c00377
19 Chen J., Guo R., Wang X., Zhu C., Cao G., You L., Duan R., Zhu C., S. Hadke S., Cao X., Salim T., J. S. Buenconsejo P., Xu M., Zhao X., Zhou J., Deng Y., Zeng Q., H. Wong L., Chen J., Liu F., Liu Z.. Solid-ionic memory in a van der Waals heterostructure. ACS Nano, 2022, 16(1): 221
https://doi.org/10.1021/acsnano.1c05841
20 Wu F., Tian H., Shen Y., Hou Z., Ren J., Gou G., Sun Y., Yang Y., L. Ren T.. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603(7900): 259
https://doi.org/10.1038/s41586-021-04323-3
21 Li T., Guo W., Ma L., Li W., Yu Z., Han Z., Gao S., Liu L., Fan D., Wang Z., Yang Y., Lin W., Luo Z., Chen X., Dai N., Tu X., Pan D., Yao Y., Wang P., Nie Y., Wang J., Shi Y., Wang X.. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol., 2021, 16(11): 1201
https://doi.org/10.1038/s41565-021-00963-8
22 C. Shen P., Su C., Lin Y., S. Chou A., C. Cheng C., H. Park J., H. Chiu M., Y. Lu A., L. Tang H., M. Tavakoli M., Pitner G., Ji X., Cai Z., Mao N., Wang J., Tung V., Li J., Bokor J., Zettl A., I. Wu C., Palacios T., J. Li L., Kong J.. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593(7858): 211
https://doi.org/10.1038/s41586-021-03472-9
23 Zheng H., Huang C., Lin F., Fan J., Liu H., Zhang L., Ma C., Wang C., Zhu Y., Yang H.. Two-dimensional van der Waals ferromagnetic thin film CrTe2 with high Curie temperature and metallic conductivity. Appl. Phys. Lett., 2023, 122(2): 023103
https://doi.org/10.1063/5.0130479
24 Qiu L., Wang Z., S. Ni X., X. Yao D., Hou Y.. Electrically tunable Gilbert damping in van der Waals heterostructures of two-dimensional ferromagnetic metals and ferroelectrics. Appl. Phys. Lett., 2023, 122(10): 102402
https://doi.org/10.1063/5.0145401
25 Zhang X., Liu W., Niu W., Lu Q., Wang W., Sarikhani A., Wu X., Zhu C., Sun J., Vaninger M., F. Miceli P., Li J., J. Singh D., S. Hor Y., Zhao Y., Liu C., He L., Zhang R., Bian G., Yu D., Xu Y.. Self-intercalation tunable interlayer exchange coupling in a synthetic van der Waals antiferromagnet. Adv. Funct. Mater., 2022, 32(32): 2202977
https://doi.org/10.1002/adfm.202202977
26 Xiao G., Z. Xiao W., Chen Q., Wang L., Novel two-dimensional ferromagnetic materials CrX2 (X = O. Se) with high Curie temperature. J. Mater. Chem. C, 2022, 10(46): 17665
https://doi.org/10.1039/D2TC03711D
27 He Z., Peng R., Feng X., Xu X., Dai Y., Huang B., Ma Y.. Two-dimensional valleytronic semiconductor with spontaneous spin and valley polarization in single-layer Cr2Se3. Phys. Rev. B, 2021, 104(7): 075105
https://doi.org/10.1103/PhysRevB.104.075105
28 Chen F., Wang Y., Su W., Ding S., Fu L.. Position-selective growth of 2D WS2-based vertical heterostructures via a one-step CVD approach. J. Phys. Chem. C, 2019, 123(50): 30519
https://doi.org/10.1021/acs.jpcc.9b08059
29 Guan X., Yu X., Periyanagounder D., R. Benzigar M., K. Huang J., H. Lin C., Kim J., Singh S., Hu L., Liu G., Li D., H. He J., Yan F., J. Wang Q., Wu T.. Recent progress in short- to long-wave infrared photodetection using 2D materials and heterostructures. Adv. Opt. Mater., 2021, 9(4): 2001708
https://doi.org/10.1002/adom.202001708
30 G. Shin H., S. Yoon H., S. Kim J., Kim M., Y. Lim J., Yu S., H. Park J., Yi Y., Kim T., C. Jun S., Im S.. Vertical and in-plane current devices using NbS2/n-MoS2 van der Waals Schottky junction and graphene contact. Nano Lett., 2018, 18(3): 1937
https://doi.org/10.1021/acs.nanolett.7b05338
31 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
32 Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
33 Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., Zhang Y.. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
https://doi.org/10.1038/s41586-018-0626-9
34 Bonilla M., Kolekar S., Ma Y., C. Diaz H., Kalappattil V., Das R., Eggers T., R. Gutierrez H., H. Phan M., Batzill M.. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol., 2018, 13(4): 289
https://doi.org/10.1038/s41565-018-0063-9
35 Kang L., Ye C., Zhao X., Zhou X., Hu J., Li Q., Liu D., M. Das C., Yang J., Hu D., Chen J., Cao X., Zhang Y., Xu M., Di J., Tian D., Song P., Kutty G., Zeng Q., Fu Q., Deng Y., Zhou J., Ariando A., Miao F., Hong G., Huang Y., J. Pennycook S., T. Yong K., Ji W., Renshaw Wang X., Liu Z.. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun., 2020, 11(1): 3729
https://doi.org/10.1038/s41467-020-17253-x
36 Fei Z., Huang B., Malinowski P., Wang W., Song T., Sanchez J., Yao W., Xiao D., Zhu X., F. May A., Wu W., H. Cobden D., H. Chu J., Xu X.. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater., 2018, 17(9): 778
https://doi.org/10.1038/s41563-018-0149-7
37 Zhang C., Liu C., Zhang J., Yuan Y., Wen Y., Li Y., Zheng D., Zhang Q., Hou Z., Yin G., Liu K., Peng Y., X. Zhang X.. Room-temperature magnetic skyrmions and large topological Hall effect in chromium telluride engineered by self-intercalation. Adv. Mater., 2023, 35(1): 2205967
https://doi.org/10.1002/adma.202205967
38 Yang X., Zhou X., Feng W., Yao Y.. Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T-CrTe2. Phys. Rev. B, 2021, 103(2): 024436
https://doi.org/10.1103/PhysRevB.103.024436
39 Jellinek F.. The structures of the chromium sulphides. Acta Crystallogr., 1957, 10(10): 620
https://doi.org/10.1107/S0365110X57002200
40 Maignan A., Bréard Y., Guilmeau E., Gascoin F.. Transport, thermoelectric, and magnetic properties of a dense Cr2S3 ceramic. J. Appl. Phys., 2012, 112(1): 013716
https://doi.org/10.1063/1.4736417
41 H. Xie W., Q. Xu Y., G. Liu B., G. Pettifor D.. Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys. Rev. Lett., 2003, 91(3): 037204
https://doi.org/10.1103/PhysRevLett.91.037204
42 Anisha M., Singh M., Kumar R., Srivastava S., Tankeshwar K.. Tuning of Thermoelectric performance of CrSe2 material using dimension engineering. J. Phys. Chem. Solids, 2023, 172: 111083
https://doi.org/10.1016/j.jpcs.2022.111083
43 G. Sreenivasan M., F. Bi J., L. Teo K., Liew T.. Systematic investigation of structural and magnetic properties in molecular beam epitaxial growth of metastable zinc-blende CrTe toward half-metallicity. J. Appl. Phys., 2008, 103(4): 043908
https://doi.org/10.1063/1.2885108
44 L. Coughlin A., Xie D., Zhan X., Yao Y., Deng L., Hewa-Walpitage H., Bontke T., W. Chu C., Li Y., Wang J., A. Fertig H., Zhang S.. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett., 2021, 21(22): 9517
https://doi.org/10.1021/acs.nanolett.1c02940
45 Sharma Y., Srivastava P., Ghoshray A., Bandyopadhyay B., Mazumdar C.. Electronic structure and magnetic properties of rhombohedral Cr2S3. AIP Conf. Proc., 2011, 1347(123): 123
https://doi.org/10.1063/1.3601801
46 J. Zhang S., M. Yan J., Tang F., Wu J., Q. Dong W., W. Zhang D., S. Luo F., Chen L., Fang Y., Zhang T., Chai Y., Zhao W., Wang X., K. Zheng R.. Colossal magnetoresistance in Ti lightly doped Cr2Se3 single crystals with a layered structure. ACS Appl. Mater. Interfaces, 2021, 13(49): 58949
https://doi.org/10.1021/acsami.1c18848
47 B. Chen S., Y. Zeng Z., R. Chen X., X. Yao X.. Strain-induced electronic structures, mechanical anisotropy, and piezoelectricity of transition-metal dichalcogenide monolayer CrS2. J. Appl. Phys., 2020, 128(12): 125111
https://doi.org/10.1063/5.0022429
48 Ebrahimi S., Yarmand B.. Optimized optical band gap energy and Urbach tail of Cr2S3 thin films by Sn incorporation for optoelectronic applications. Physica B, 2020, 593: 412292
https://doi.org/10.1016/j.physb.2020.412292
49 Zhang T., Su X., Yan Y., Liu W., Hu T., Zhang C., Zhang Z., Tang X.. Enhanced thermoelectric properties of codoped Cr2Se3: The distinct roles of transition metals and S. ACS Appl. Mater. Interfaces, 2018, 10(26): 22389
https://doi.org/10.1021/acsami.8b05080
50 L. Coughlin A., Xie D., Yao Y., Zhan X., Chen Q., Hewa-Walpitage H., Zhang X., Guo H., Zhou H., Lou J., Wang J., S. Li Y., A. Fertig H., Zhang S.. Near degeneracy of magnetic phases in two-dimensional chromium telluride with enhanced perpendicular magnetic anisotropy. ACS Nano, 2020, 14(11): 15256
https://doi.org/10.1021/acsnano.0c05534
51 Niu K., Qiu G., Wang C., Li D., Niu Y., Li S., Kang L., Cai Y., Han M., Lin J.. Self-intercalated magnetic heterostructures in 2D chromium telluride. Adv. Funct. Mater., 2023, 33(2): 2208528
https://doi.org/10.1002/adfm.202208528
52 Huang W., Gan L., Yang H., Zhou N., Wang R., Wu W., Li H., Ma Y., Zeng H., Zhai T.. Controlled synthesis of ultrathin 2D β-In2S3 with broadband photoresponse by chemical vapor deposition. Adv. Funct. Mater., 2017, 27(36): 1702448
https://doi.org/10.1002/adfm.201702448
53 Chu J., Zhang Y., Wen Y., Qiao R., Wu C., He P., Yin L., Cheng R., Wang F., Wang Z., Xiong J., Li Y., He J.. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett., 2019, 19(3): 2154
https://doi.org/10.1021/acs.nanolett.9b00386
54 Yao B., Liu W., Zhou X., Yang J., Huang X., Fu Z., Yuan G., Nie Y., Dai Y., Xu J., Gao L.. Growth of wafer-scale chromium sulphide and selenide semiconductor films. J. Phys.: Condens. Matter, 2023, 35(33): 335302
https://doi.org/10.1088/1361-648X/acd509
55 Jin Z., Ji Z., Zhong Y., Jin Y., Hu X., Zhang X., Zhu L., Huang X., Li T., Cai X., Zhou L.. Controlled synthesis of a two-dimensional non-van der Waals ferromagnet toward a magnetic Moire superlattice. ACS Nano, 2022, 16(5): 7572
https://doi.org/10.1021/acsnano.1c11018
56 D. Mermin N., Wagner H.. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
https://doi.org/10.1103/PhysRevLett.17.1133
57 Gebredingle Y., Joe M., Lee C., First-principles calculations of the spin-dependent electronic structure, strain tunability in 2D non-van der Waals chromium chalcogenides Cr2X3 (X = S. Te): Implications for spintronics applications. ACS Appl. Nano Mater., 2022, 5(8): 10383
https://doi.org/10.1021/acsanm.2c01713
58 Groß H., Groeneveld D., Poschmann M., Schürmann U., D. König J., Bensch W., Wöllenstein J., Kienle L.. About the impact of defect phases on the thermoelectric properties of Cr3S4–xSex. Adv. Eng. Mater., 2023, 25(9): 2201505
https://doi.org/10.1002/adem.202201505
59 Kang N., Wan W., Ge Y., Liu Y.. Diverse magnetism in stable and metastable structures of CrTe. Front. Phys., 2021, 16(6): 63506
https://doi.org/10.1007/s11467-021-1088-3
60 Guo Y.Kang L.Yu S.Yang J.Qi X. Zhang Z.Liu Z., CVD growth of large-scale and highly crystalline 2D chromium telluride nanoflakes, ChemNanoMat 7(3), 323 (2021)
61 Zhang Y., Chu J., Yin L., A. Shifa T., Cheng Z., Cheng R., Wang F., Wen Y., Zhan X., Wang Z., He J.. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater., 2019, 31(19): 1900056
https://doi.org/10.1002/adma.201900056
62 R. Habib M., Wang S., Wang W., Xiao H., M. Obaidulla S., Gayen A., Khan Y., Chen H., Xu M.. Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale, 2019, 11(42): 20123
https://doi.org/10.1039/C9NR04449C
63 Li P., Xu C., Luo W.. Layer-independent ferromagnetic insulators in a new structural phase of Cr2S3. Phys. Rev. Mater., 2022, 6(5): 054006
https://doi.org/10.1103/PhysRevMaterials.6.054006
64 K. Rajendran Nair G., Abdelaziem A., Zhao X., Wang X., Hu D., Wu Y., Xun C., Le Goualher F., Zhu C., L. P. Yin P., Valsaraj V., Salim T., Ke L., Liu Z.. Chemical vapor deposition of phase-pure 2D 1T-CrS2. Phys. Status Solidi Rapid Res. Lett., 2022, 16(4): 2100495
https://doi.org/10.1002/pssr.202100495
65 Zhou S., Wang R., Han J., Wang D., Li H., Gan L., Zhai T.. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: Space-confined chemical vapor deposition synthesis and raman scattering investigation. Adv. Funct. Mater., 2019, 29(3): 1805880
https://doi.org/10.1002/adfm.201805880
66 A. Shifa T., Mazzaro R., Morandi V., Vomiero A.. Controllable synthesis of 2D nonlayered Cr2S3 nanosheets and their electrocatalytic activity toward oxygen evolution reaction. Front. Chem. Eng., 2021, 3: 703812
https://doi.org/10.3389/fceng.2021.703812
67 G. Moinuddin M., Srinivasan S., K. Sharma S.. Probing ferrimagnetic semiconductor with enhanced negative magnetoresistance: 2D chromium sulfide. Adv. Electron. Mater., 2021, 7(9): 2001116
https://doi.org/10.1002/aelm.202001116
68 Kobayashi S., Katayama N., Manjo T., Ueda H., Michioka C., Sugiyama J., Sassa Y., K. Forslund O., Mansson M., Yoshimura K., Sawa H.. Linear trimer formation with antiferromagnetic ordering in 1T-CrSe2 originating from Peierls-like instabilities and interlayer Se‒Se interactions. Inorg. Chem., 2019, 58(21): 14304
https://doi.org/10.1021/acs.inorgchem.9b00186
69 Zhu X., Wong L., Fan X., Zhao J., Zhou Y., Ouyang F.. Role of the spatial distribution of gas flow for tuning the vertical/planar growth of nonlayered two-dimensional nanoplates. Cryst. Growth Des., 2022, 22(1): 763
https://doi.org/10.1021/acs.cgd.1c01261
70 Zhang D., Yi C., Ge C., Shu W., Li B., Duan X., Pan A., Wang X.. Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures. Chin. Phys. B, 2021, 30(9): 097601
https://doi.org/10.1088/1674-1056/ac0cd9
71 Bai S., Tang S., Wu M., Luo D., Zhang J., Wan D., Li X.. Chromium ditelluride monolayer: A novel promising 2H phase thermoelectric material with direct bandgap and ultralow lattice thermal conductivity. J. Alloys Compd., 2023, 930: 167485
https://doi.org/10.1016/j.jallcom.2022.167485
72 Wang Y., Kajihara S., Matsuoka H., K. Saika B., Yamagami K., Takeda Y., Wadati H., Ishizaka K., Iwasa Y., Nakano M.. Layer-number-independent two-dimensional ferromagnetism in Cr3Te4. Nano Lett., 2022, 22(24): 9964
https://doi.org/10.1021/acs.nanolett.2c03532
73 Purbawati A., Sarkar S., Pairis S., Kostka M., Hadj-Azzem A., Dufeu D., Singh P., Bourgault D., Nuñez-Regueiro M., Vogel J., Renard J., Marty L., Fabre F., Finco A., Jacques V., Ren L., Tiwari V., Robert C., Marie X., Bendiab N., Rougemaille N., Coraux J.. Stability of the in-plane room temperature van der waals ferromagnet chromium ditelluride and its conversion to chromium-interleaved CrTe2 compounds. ACS Appl. Electron. Mater., 2023, 5(2): 764
https://doi.org/10.1021/acsaelm.2c01256
74 Wen Y., Liu Z., Zhang Y., Xia C., Zhai B., Zhang X., Zhai G., Shen C., He P., Cheng R., Yin L., Yao Y., Getaye Sendeku M., Wang Z., Ye X., Liu C., Jiang C., Shan C., Long Y., He J.. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20(5): 3130
https://doi.org/10.1021/acs.nanolett.9b05128
75 Li B., Deng X., Shu W., Cheng X., Qian Q., Wan Z., Zhao B., Shen X., Wu R., Shi S., Zhang H., Zhang Z., Yang X., Zhang J., Zhong M., Xia Q., Li J., Liu Y., Liao L., Ye Y., Dai L., Peng Y., Li B., Duan X.. Air-stable ultrathin Cr3Te4 nanosheets with thickness-dependent magnetic biskyrmions. Mater. Today, 2022, 57: 66
https://doi.org/10.1016/j.mattod.2022.04.011
76 W. Lu Z., B. Qiu S., Q. Xie W., B. Yang X., J. Zhao Y.. Theoretical study of strain induced magnetic transition of single-layer CrTe3. J. Appl. Phys., 2020, 127(3): 033903
https://doi.org/10.1063/1.5126246
77 Liu H., Fan J., Zheng H., Wang J., Ma C., Wang H., Zhang L., Wang C., Zhu Y., Yang H.. Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film. Front. Phys., 2023, 18(1): 13302
https://doi.org/10.1007/s11467-022-1210-1
78 Wang W., Fan J., Liu H., Zheng H., Ma C., Zhang L., Sun Y., Wang C., Zhu Y., Yang H.. Fabrication and magnetic-electronic properties of van der Waals Cr4Te5 ferromagnetic films. CrystEngComm, 2022, 24(3): 674
https://doi.org/10.1039/D1CE01200B
79 Liu J., Ding B., Liang J., Li X., Yao Y., Wang W.. Magnetic skyrmionic bubbles at room temperature and sign reversal of the topological Hall effect in a layered ferromagnet Cr0.87Te. ACS Nano, 2022, 16(9): 13911
https://doi.org/10.1021/acsnano.2c02928
80 Huang M., Gao L., Zhang Y., Lei X., Hu G., Xiang J., Zeng H., Fu X., Zhang Z., Chai G., Peng Y., Lu Y., Du H., Chen G., Zang J., Xiang B.. Possible topological Hall effect above room temperature in layered Cr1.2Te2 ferromagnet. Nano Lett., 2021, 21(10): 4280
https://doi.org/10.1021/acs.nanolett.1c00493
81 Yan J., Luo X., Lin G., Chen F., Gao J., Sun Y., Hu L., Tong P., Song W., Sheng Z., Lu W., Zhu X., Sun Y.. Anomalous Hall effect of the quasi-two-dimensional weak itinerant ferromagnet Cr4.14Te8. Europhys. Lett., 2019, 124(6): 67005
https://doi.org/10.1209/0295-5075/124/67005
82 Wang J., Xu X., Cheng T., Gu L., Qiao R., Liang Z., Ding D., Hong H., Zheng P., Zhang Z., Zhang Z., Zhang S., Cui G., Chang C., Huang C., Qi J., Liang J., Liu C., Zuo Y., Xue G., Fang X., Tian J., Wu M., Guo Y., Yao Z., Jiao Q., Liu L., Gao P., Li Q., Yang R., Zhang G., Tang Z., Yu D., Wang E., Lu J., Zhao Y., Wu S., Ding F., Liu K.. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol., 2022, 17(1): 33
https://doi.org/10.1038/s41565-021-01004-0
83 Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., Chhowalla M.. Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11(12): 5111
https://doi.org/10.1021/nl201874w
84 Zheng J., Zhang H., Dong S., Liu Y., Tai Nai C., Suk Shin H., Young Jeong H., Liu B., Ping Loh K.. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun., 2014, 5(1): 2995
https://doi.org/10.1038/ncomms3995
85 N. L. Coleman J., Lotya M., O’Neill A., D. Bergin S., J. King P., Khan U., Young K., Gaucher A., De S., J. Smith R., V. Shvets I., K. Arora S., Stanton G., Y. Kim H., Lee K., T. Kim G., S. Duesberg G., Hallam T., J. Boland J., J. Wang J., F. Donegan J., C. Grunlan J., Moriarty G., Shmeliov A., J. Nicholls R., M. Perkins J., M. Grieveson E., Theuwissen K., W. McComb D., D. Nellist P., Nicolosi V.. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011, 331(6017): 568
https://doi.org/10.1126/science.1194975
86 Huang M., Wang S., Wang Z., Liu P., Xiang J., Feng C., Wang X., Zhang Z., Wen Z., Xu H., Yu G., Lu Y., Zhao W., A. Yang S., Hou D., Xiang B.. Colossal anomalous Hall effect in ferromagnetic van der Waals CrTe2. ACS Nano, 2021, 15(6): 9759
https://doi.org/10.1021/acsnano.1c00488
87 Sun X., Li W., Wang X., Sui Q., Zhang T., Wang Z., Liu L., Li D., Feng S., Zhong S., Wang H., Bouchiat V., Nunez Regueiro M., Rougemaille N., Coraux J., Purbawati A., Hadj-Azzem A., Wang Z., Dong B., Wu X., Yang T., Yu G., Wang B., Han Z., Han X., Zhang Z.. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res., 2020, 13(12): 3358
https://doi.org/10.1007/s12274-020-3021-4
88 Huang M., Ma Z., Wang S., Li S., Li M., Xiang J., Liu P., Hu G., Zhang Z., Sun Z., Lu Y., Sheng Z., Chen G., Chueh Y.-L., A. Yang S., Xiang B.. Significant perpendicular magnetic anisotropy in room-temperature layered ferromagnet of Cr-intercalated CrTe2. 2D Mater., 2021, 8(3): 031003
https://doi.org/10.1088/2053-1583/abfaae
89 Hussain W., Badshah A., A. Hussain R., A. Aleem Imtiaz-ud-Din, Bahadur M., Iqbal A., U. Farooq S., Ali M.. Photocatalytic applications of Cr2S3 synthesized from single and multi-source precursors. Mater. Chem. Phys., 2017, 194: 345
https://doi.org/10.1016/j.matchemphys.2017.04.001
90 Ramaraj S., Mani S., M. Chen S., Palanisamy S., Velusamy V., M. Hall J., W. Chen T., W. Tseng T.. Hydrothermal synthesis of Cr2Se3 hexagons for sensitive and low-level detection of 4-nitrophenol in water. Sci. Rep., 2018, 8(1): 4839
https://doi.org/10.1038/s41598-018-23243-3
91 Zhang X., Lu Q., Liu W., Niu W., Sun J., Cook J., Vaninger M., F. Miceli P., J. Singh D., W. Lian S., R. Chang T., He X., Du J., He L., Zhang R., Bian G., Xu Y.. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun., 2021, 12(1): 2492
https://doi.org/10.1038/s41467-021-22777-x
92 Liu M., L. Huang Y., Gou J., Liang Q., Chua R., Arramel S., Duan S., Zhang L., L. Cai L., Yu X., Zhong D., Zhang W., T. S. Wee A.. Diverse structures and magnetic properties in nonlayered monolayer chromium selenide. J. Phys. Chem. Lett., 2021, 12(32): 7752
https://doi.org/10.1021/acs.jpclett.1c01493
93 Koma A., Van der Waals epitaxy for highly lattice mismatched systems, J. Cryst. Growth 201‒202, 236 (1999)
94 Chen C., Chen X., Wu C., Wang X., Ping Y., Wei X., Zhou X., Lu J., Zhu L., Zhou J., Zhai T., Han J., Xu H.. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater., 2022, 34(2): 2107512
https://doi.org/10.1002/adma.202107512
95 Tang Q., Liu C., Zhang B., Jie W.. Synthesis of sub-micro-flakes CrSe2 on glass and (110) Si substrates by solvothermal method. J. Solid State Chem., 2018, 262: 53
https://doi.org/10.1016/j.jssc.2018.02.020
96 A. Kariper I.. Synthesis and characterization of CrSe thin film produced via chemical bath deposition. Opt. Rev., 2017, 24(2): 139
https://doi.org/10.1007/s10043-017-0307-1
97 M. Tezel F.A. Kariper İ., A new process to synthesize CrSe thin films with nanosize by CBD method, Mater. Res. Express 6(3), 036412 (2018)
98 Liu S., Yuan X., Zou Y., Sheng Y., Huang C., Zhang E., Ling J., Liu Y., Wang W., Zhang C., Zou J., Wang K., Xiu F.. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl., 2017, 1(1): 30
https://doi.org/10.1038/s41699-017-0033-3
99 M. Poh S., Zhao X., J. R. Tan S., Fu D., Fei W., Chu L., Jiadong D., Zhou W., J. Pennycook S., H. Castro Neto A., P. Loh K.. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano, 2018, 12(8): 7562
https://doi.org/10.1021/acsnano.8b04037
100 Roy A., Guchhait S., Dey R., Pramanik T., C. Hsieh C., Rai A., K. Banerjee S.. Perpendicular magnetic anisotropy and spin glass-like behavior in molecular beam epitaxy grown chromium telluride thin films. ACS Nano, 2015, 9(4): 3772
https://doi.org/10.1021/nn5065716
101 Wang C., Zhang B., You B., K. Lok S., K. Chan S., X. Zhang X., K. L. Wong G., K. Sou I.. Molecular-beam-epitaxy-grown CrSe/Fe bilayer on GaAs(100) substrate. J. Appl. Phys., 2007, 102(8): 083901
https://doi.org/10.1063/1.2795625
102 Li H., Wang L., Chen J., Yu T., Zhou L., Qiu Y., He H., Ye F., K. Sou I., Wang G.. Molecular beam epitaxy grown Cr2Te3 thin films with tunable Curie temperatures for spintronic devices. ACS Appl. Nano Mater., 2019, 2(11): 6809
https://doi.org/10.1021/acsanm.9b01179
103 Zuo Y., Liu C., Ding L., Qiao R., Tian J., Liu C., Wang Q., Xue G., You Y., Guo Q., Wang J., Fu Y., Liu K., Zhou X., Hong H., Wu M., Lu X., Yang R., Zhang G., Yu D., Wang E., Bai X., Ding F., Liu K.. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun., 2022, 13(1): 1007
https://doi.org/10.1038/s41467-022-28628-7
104 Yang P., Zhang S., Pan S., Tang B., Liang Y., Zhao X., Zhang Z., Shi J., Huan Y., Shi Y., J. Pennycook S., Ren Z., Zhang G., Chen Q., Zou X., Liu Z., Zhang Y.. Epitaxial growth ofcentimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano, 2020, 14(4): 5036
https://doi.org/10.1021/acsnano.0c01478
105 Cui F., Zhao X., Tang B., Zhu L., Huan Y., Chen Q., Liu Z., Zhang Y.. Epitaxial growth of step-like Cr2S3 lateral homojunctions towards versatile conduction polarities and enhanced transistor performances. Small, 2021, 18(4): 2105744
https://doi.org/10.1002/smll.202105744
106 Cui F., Zhao X., Xu J., Tang B., Shang Q., Shi J., Huan Y., Liao J., Chen Q., Hou Y., Zhang Q., J. Pennycook S., Zhang Y.. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater., 2020, 32(4): 1905896
https://doi.org/10.1002/adma.201905896
107 Zhang X., Wang B., Guo Y., Zhang Y., Chen Y., Wang J., High Curie temperature, intrinsic ferromagnetic half-metallicity in two-dimensional Cr3X4 (X = S. Te) nanosheets. Nanoscale Horiz., 2019, 4(4): 859
https://doi.org/10.1039/C9NH00038K
108 Ma C., R. Beckett J., R. Rossman G.. Cr5S6, a new mineral from the Murchison meteorite. Am. Mineral., 2011, 96(11−12): 1905
https://doi.org/10.2138/am.2011.3858
109 Li B., Wan Z., Wang C., Chen P., Huang B., Cheng X., Qian Q., Li J., Zhang Z., Sun G., Zhao B., Ma H., Wu R., Wei Z., Liu Y., Liao L., Ye Y., Huang Y., Xu X., Duan X., Ji W., Duan X.. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
https://doi.org/10.1038/s41563-021-00927-2
110 Wu Q., Liu R., Qiu Z., Li D., Li J., Wang X., Ding G., Cr3X4 (X = Se. Te) monolayers as a new platform to realize robust spin filters, spin diodes and spin valves. Phys. Chem. Chem. Phys., 2022, 24(40): 24873
https://doi.org/10.1039/D2CP03615K
111 Zhao D., Zhang L., A. Malik I., Liao M., Cui W., Cai X., Zheng C., Li L., Hu X., Zhang D., Zhang J., Chen X., Jiang W., Xue Q.. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films. Nano Res., 2018, 11(6): 3116
https://doi.org/10.1007/s12274-017-1913-8
112 Wang M., Kang L., Su J., Zhang L., Dai H., Cheng H., Han X., Zhai T., Liu Z., Han J.. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale, 2020, 12(31): 16427
https://doi.org/10.1039/D0NR04108D
113 Meng L., Zhou Z., Xu M., Yang S., Si K., Liu L., Wang X., Jiang H., Li B., Qin P., Zhang P., Wang J., Liu Z., Tang P., Ye Y., Zhou W., Bao L., J. Gao H., Gong Y.. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun., 2021, 12(1): 809
https://doi.org/10.1038/s41467-021-21072-z
114 J. Xian J., Wang C., H. Nie J., Li R., Han M., Lin J., H. Zhang W., Y. Liu Z., M. Zhang Z., P. Miao M., Yi Y., Wu S., Chen X., Han J., Xia Z., Ji W., S. Fu Y.. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2. Nat. Commun., 2022, 13(1): 257
https://doi.org/10.1038/s41467-021-27834-z
115 Chua R., Zhou J., Yu X., Yu W., Gou J., Zhu R., Zhang L., Liu M., B. H. Breese M., Chen W., P. Loh K., P. Feng Y., Yang M., L. Huang Y., T. S. Wee A.. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater., 2021, 33(42): 2103360
https://doi.org/10.1002/adma.202103360
116 Li R., H. Nie J., J. Xian J., W. Zhou J., Lu Y., P. Miao M., H. Zhang W., S. Fu Y.. Planar heterojunction of ultrathin CrTe3 and CrTe2 van der Waals magnet. ACS Nano, 2022, 16(3): 4348
https://doi.org/10.1021/acsnano.1c10555
117 L. Liu C., T. Tseng Y., W. Huang C., Y. Lo H., Y. Hou A., H. Wang C., Yasuhara A., W. Wu W.. Atomic imaging and thermally induced dynamic structural evolution of two-dimensional Cr2S3. Nano Lett., 2022, 22(19): 7944
https://doi.org/10.1021/acs.nanolett.2c02974
118 Zhou W., Chen M., Yuan C., Huang H., Zhang J., Wu Y., Zheng X., Shen J., Wang G., Wang S., Shen B.. Antiferromagnetic phase induced by nitrogen doping in 2D Cr2S3. Materials (Basel), 2022, 15(5): 1716
https://doi.org/10.3390/ma15051716
119 Yang H., Wu A., Yi H., Cao W., Yao J., Yang G., C. Zou Y.. Atomic scale insights into the epitaxial growth mechanism of 2D Cr3Te4 on mica. Nanoscale Adv., 2023, 5(3): 693
https://doi.org/10.1039/D2NA00835A
120 Guo Y., Zhao L., Zheng D.. Theoretical investigation on the electronic structure of new InSe/CrS2 van der Waals heterostructure. J. Mater. Res., 2022, 37(13): 2157
https://doi.org/10.1557/s43578-022-00548-8
121 Zhao S.Zhang X.Cao J., Mechanistic study of CrS2/BP as a direct Z-scheme heterojunction for photocatalyst of splitting water under biaxial strain, Catl. Lett., doi: 10.1007/s10562-022-04224-8 (2022)
122 Jiang C., Yang Z., Xiong W., Wang F.. Effect of strain engineering on magnetism-induced valley splitting in WSe2 based on the WSe2/CrSe2 heterojunction. Appl. Phys. Lett., 2021, 119(16): 162101
https://doi.org/10.1063/5.0065762
123 Ou Y., Yanez W., Xiao R., Stanley M., Ghosh S., Zheng B., Jiang W., S. Huang Y., Pillsbury T., Richardella A., Liu C., Low T., H. Crespi V., A. Mkhoyan K., Samarth N.. ZrTe2/CrTe2: An epitaxial van der Waals platform for spintronics. Nat. Commun., 2022, 13(1): 2972
https://doi.org/10.1038/s41467-022-30738-1
124 Zhang X., C. Ambhire S., Lu Q., Niu W., Cook J., S. Jiang J., Hong D., Alahmed L., He L., Zhang R., Xu Y., S. Zhang S., Li P., Bian G.. Giant topological Hall effect in van der Waals heterostructures of CrTe2/Bi2Te3. ACS Nano, 2021, 15(10): 15710
https://doi.org/10.1021/acsnano.1c05519
125 Yao J., Wang H., Yuan B., Hu Z., Wu C., Zhao A.. Ultrathin van der Waals antiferromagnet CrTe3 for fabrication of in-plane CrTe3/CrTe2 monolayer magnetic heterostructures. Adv. Mater., 2022, 34(23): 2200236
https://doi.org/10.1002/adma.202200236
126 Chen J., Wang L., Zhang M., Zhou L., Zhang R., Jin L., Wang X., Qin H., Qiu Y., Mei J., Ye F., Xi B., He H., Li B., Wang G.. Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator heterostructures. Nano Lett., 2019, 19(9): 6144
https://doi.org/10.1021/acs.nanolett.9b02191
127 Matsuno J., Ogawa N., Yasuda K., Kagawa F., Koshibae W., Nagaosa N., Tokura Y., Kawasaki M.. Interface-driven topological Hall effect in SrRuO3‒SrIrO3 bilayer. Sci. Adv., 2016, 2(7): e1600304
https://doi.org/10.1126/sciadv.1600304
128 Soumyanarayanan A., Raju M., L. Gonzalez Oyarce A., K. C. Tan A., Y. Im M., P. Petrović A., Ho P., H. Khoo K., Tran M., K. Gan C., Ernult F., Panagopoulos C.. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater., 2017, 16(9): 898
https://doi.org/10.1038/nmat4934
129 Zhang Z., Shang J., Jiang C., Rasmita A., Gao W., Yu T.. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett., 2019, 19(5): 3138
https://doi.org/10.1021/acs.nanolett.9b00553
130 Wu L., Zhou L., Zhou X., Wang C., Ji W.. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers. Phys. Rev. B, 2022, 106(8): L081401
https://doi.org/10.1103/PhysRevB.106.L081401
131 H. Jeon J., R. Na H., Kim H., Lee S., Song S., Kim J., Park S., Kim J., Noh H., Kim G., K. Jerng S., H. Chun S.. Emergent topological Hall effect from exchange coupling in ferromagnetic Cr2Te3/noncoplanar antiferromagnetic Cr2Se3 bilayers. ACS Nano, 2022, 16(6): 8974
https://doi.org/10.1021/acsnano.2c00025
132 Fujisawa Y., Pardo-Almanza M., Garland J., Yamagami K., Zhu X., Chen X., Araki K., Takeda T., Kobayashi M., Takeda Y., H. Hsu C., C. Chuang F., Laskowski R., H. Khoo K., Soumyanarayanan A., Okada Y.. Tailoring magnetism in self-intercalated Cr1+δTe2 epitaxial films. Phys. Rev. Mater., 2020, 4(11): 114001
https://doi.org/10.1103/PhysRevMaterials.4.114001
133 Yu F., Yin Y., Liu G., Tian Q., Meng Q., Zhao W., Wang K., Wang C., Yang S., Wu D., Wan X., Zhang Y.. Thickness-dependent structural phase transition and self-intercalation of two-dimensional ferromagnetic chromium telluride thin films. Appl. Phys. Lett., 2022, 120(26): 261602
https://doi.org/10.1063/5.0096612
134 Zhong J., Wang M., Liu T., Zhao Y., Xu X., Zhou S., Han J., Gan L., Zhai T.. Strain-sensitive ferromagnetic two-dimensional Cr2Te3. Nano Res., 2022, 15(2): 1254
https://doi.org/10.1007/s12274-021-3633-3
135 Chi H., Ou Y., B. Eldred T., Gao W., Kwon S., Murray J., Dreyer M., E. Butera R., C. Foucher A., Ambaye H., Keum J., T. Greenberg A., Liu Y., R. Neupane M., J. de Coster G., A. Vail O., J. Taylor P., A. Folkes P., Rong C., Yin G., K. Lake R., M. Ross F., Lauter V., Heiman D., S. Moodera J.. Strain-tunable Berry curvature in quasi-two-dimensional chromium telluride. Nat. Commun., 2023, 14(1): 3222
https://doi.org/10.1038/s41467-023-38995-4
136 Q. Li Q., Li S., Wu D., K. Ding Z., H. Cao X., Huang L., Pan H., Li B., Q. Chen K., D. Duan X.. Magnetic properties manipulation of CrTe2 bilayer through strain and self-intercalation. Appl. Phys. Lett., 2021, 119(16): 162402
https://doi.org/10.1063/5.0068018
137 Zhu X., Liu H., Liu L., Ren L., Li W., Fang L., Chen X., Xie L., Jing Y., Chen J., Liu S., Ouyang F., Zhou Y., Xiong X.. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets. Chem. Mater., 2021, 33(10): 3851
https://doi.org/10.1021/acs.chemmater.1c01222
138 Sun S., Liang J., Liu R., Shen W., Wu H., Tian M., Cao L., Yang Y., Huang Z., Lin W., Du J., Ni Z., Xu Y., Chen Q., Zhai Y.. Anisotropic magnetoresistance in room temperature ferromagnetic single crystal CrTe flake. J. Alloys Compd., 2022, 890: 161818
https://doi.org/10.1016/j.jallcom.2021.161818
139 S. Luo F., S. Ying J., W. Chen T., Tang F., W. Zhang D., Q. Dong W., Zhang Y., S. Li S., Fang Y., K. Zheng R.. Anomalous Hall effect and anisotropic magnetoresistance of molecular beam epitaxy grown Cr2Te3 thin films. J. Cryst. Growth, 2022, 582: 126541
https://doi.org/10.1016/j.jcrysgro.2022.126541
140 A. Denev S., T. A. Lummen T., Barnes E., Kumar A., Gopalan V.. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc., 2011, 94(9): 2699
https://doi.org/10.1111/j.1551-2916.2011.04740.x
141 Zhang R., Ruan W., Yu J., Gao L., Berger H., Forró L., Watanabe K., Taniguchi T., Ranjbar A., V. Belosludov R., D. Kühne T., S. Bahramy M., Xi X.. Second-harmonic generation in atomically thin 1T-TiSe2 and its possible origin from charge density wave transitions. Phys. Rev. B, 2022, 105(8): 085409
https://doi.org/10.1103/PhysRevB.105.085409
142 Xie L., Wang J., Li J., Li C., Zhang Y., Zhu B., Guo Y., Wang Z., Zhang K.. An atomically thin air-stable narrow-gap semiconductor Cr2S3 for broadband photodetection with high responsivity. Adv. Electron. Mater., 2021, 7(7): 2000962
https://doi.org/10.1002/aelm.202000962
143 Zhou X., Liu C., Song L., Zhang H., Huang Z., He C., Li B., Lin X., Zhang Z., Shi S., Shen D., Song R., Li J., Liu X., Zou X., Huang L., Liao L., Duan X., Li B.. Promoting the optoelectronic and ferromagnetic properties of Cr2S3 nanosheets via Se doping. Sci. China Phys. Mech., 2022, 65(7): 276811
https://doi.org/10.1007/s11433-022-1914-2
144 Fan X., Zou L., Chu W., Wang L., Zhou Y.. Synthesis of high resistive two-dimensional nonlayered Cr2S3 nanoflakes with stable phosphorus dopants by chemical vapor deposition. Appl. Phys. Lett., 2023, 122(22): 222101
https://doi.org/10.1063/5.0151795
145 Cheng M., Yang J., Li X., Li H., Du R., Shi J., He J.. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
146 Zeng H., Wen Y., Yin L., Cheng R., Wang H., Liu C., He J.. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(3): 53603
https://doi.org/10.1007/s11467-023-1286-2
147 Zeng S., Li F., Tan C., Yang L., Wang Z.. Defect repairing in two-dimensional transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53604
https://doi.org/10.1007/s11467-023-1290-6
148 Yang R., Fan J., Sun M.. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
https://doi.org/10.1007/s11467-022-1176-z
[1] Xinqin Meng, Chengbing Qin, Xilong Liang, Guofeng Zhang, Ruiyun Chen, Jianyong Hu, Zhichun Yang, Jianzhong Huo, Liantuan Xiao, Suotang Jia. Deep learning in two-dimensional materials: Characterization, prediction, and design[J]. Front. Phys. , 2024, 19(5): 53601-.
[2] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[3] Kun Chen, Qianpeng Zhang, Yin Liang, Jiepeng Song, Chun Li, Shi Chen, Fang Li, Qing Zhang. Quasi-two dimensional Ruddlesden−Popper halide perovskites for laser applications[J]. Front. Phys. , 2024, 19(2): 23502-.
[4] Na Sa, Meng Wu, Hui-Qiong Wang. Review of the role of ionic liquids in two-dimensional materials[J]. Front. Phys. , 2023, 18(4): 43601-.
[5] Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan, Jinlan Wang. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer[J]. Front. Phys. , 2023, 18(4): 43304-.
[6] Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics[J]. Front. Phys. , 2023, 18(3): 33601-.
[7] Qingquan Kong, Xuguang An, Jing Zhang, Weitang Yao, Chenghua Sun. Design of heterojunction with components in different dimensions for electrocatalysis applications[J]. Front. Phys. , 2022, 17(4): 43601-.
[8] Liyu Qian, Juan Zhao, Yiqun Xie. Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress[J]. Front. Phys. , 2022, 17(1): 13502-.
[9] Haoyu Dong, Le Lei, Shuya Xing, Jianfeng Guo, Feiyue Cao, Shangzhi Gu, Yanyan Geng, Shuo Mi, Hanxiang Wu, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng. Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film[J]. Front. Phys. , 2021, 16(6): 63502-.
[10] Lin Ju, Mei Bie, Xiwei Zhang, Xiangming Chen, Liangzhi Kou. Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses[J]. Front. Phys. , 2021, 16(1): 13201-.
[11] Qinye Li, Siyao Qiu, Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503-.
[12] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
[13] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[14] T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, K. S. Novoselov. Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals[J]. Front. Phys. , 2019, 14(1): 13606-.
[15] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed