|
|
|
Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system |
Ye-Jun Xu1( ), Hong Xie2( ) |
1. Interdisciplinary Research Center of Quantum and Photoelectric Information, Chizhou University, Chizhou 247000, China 2. Department of Mathematics and Physics, Fujian Jiangxia University, Fuzhou 350108, China |
|
|
|
|
Abstract We propose a scheme to realize antibunched multiple-photon bundles based on phonon blockade in a quadratically coupled optomechanical system. Through adjusting the detunings to match the conditions of phonon blockade in the photon sidebands, we establish super-Rabi oscillation between zero-photon state and multiple-photon states with adjustable super-Rabi frequencies under appropriate single-phonon resonant conditions. Taking the system dissipation into account, we numerically calculate the standard and generalized second-order functions of the cavity mode as well as the quantum trajectories of the state populations with Monte Carlo simulation to confirm that the emitted photons form antibunched multiple-photon bundles. Interestingly, the desirable n-photon states are reconstructed after a direct phonon emission based on phonon blockade, and thus the single-phonon emission heralds the cascade emission of n-photon bundles. Our proposal shows that the optomechanical system can simultaneously behave as antibunched multiple-photon emitter and single-phonon gun. Such a nonclassical source could have potential applications in quantum information science.
|
| Keywords
multiple-photon bundle emission
phonon blockade
optomechanical system
|
|
Corresponding Author(s):
Ye-Jun Xu,Hong Xie
|
| About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
|
Issue Date: 17 November 2023
|
|
| 1 |
Giovannetti V. , Lloyd S. , Maccone L. . Quantum metrology. Phys. Rev. Lett., 2006, 96(1): 010401
https://doi.org/10.1103/PhysRevLett.96.010401
|
| 2 |
Pezzè L. , Smerzi A. , K. Oberthaler M. , Schmied R. , Treutlein P. . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
https://doi.org/10.1103/RevModPhys.90.035005
|
| 3 |
Braun D. , Adesso G. , Benatti F. , Floreanini R. , Marzolino U. , W. Mitchell M. , Pirandola S. . Quantum-enhanced measurements without entanglement. Rev. Mod. Phys., 2018, 90(3): 035006
https://doi.org/10.1103/RevModPhys.90.035006
|
| 4 |
M. Duan L. , D. Lukin M. , I. Cirac J. , Zoller P. . Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
https://doi.org/10.1038/35106500
|
| 5 |
Kok P. , J. Munro W. , Nemoto K. , C. Ralph T. , P. Dowling J. , J. Milburn G. . Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007, 79(1): 135
https://doi.org/10.1103/RevModPhys.79.135
|
| 6 |
J. Kimble H. . The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
|
| 7 |
Afek I. , Ambar O. , Silberberg Y. . High-NOON states by mixing quantum and classical light. Science, 2010, 328(5980): 879
https://doi.org/10.1126/science.1188172
|
| 8 |
D’Angelo M. , V. Chekhova M. , Shih Y. . Two-photon diffraction and quantum lithography. Phys. Rev. Lett., 2001, 87(1): 013602
https://doi.org/10.1103/PhysRevLett.87.013602
|
| 9 |
E. Dorfman K. , Schlawin F. , Mukamel S. . Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys., 2016, 88(4): 045008
https://doi.org/10.1103/RevModPhys.88.045008
|
| 10 |
C. López Carreño J. , Sánchez Muñoz C. , Sanvitto D. , del Valle E. , P. Laussy F. . Exciting polaritons with quantum light. Phys. Rev. Lett., 2015, 115(19): 196402
https://doi.org/10.1103/PhysRevLett.115.196402
|
| 11 |
R. Zhong Z. , Wang X. , Qin W. . Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys., 2018, 13(5): 130319
https://doi.org/10.1007/s11467-018-0824-9
|
| 12 |
H. Liu J. , B. Zhang Y. , F. Yu Y. , M. Zhang Z. . Photon‒phonon squeezing and entanglement in a cavity optomechanical system with a flying atom. Front. Phys., 2019, 14(1): 12601
https://doi.org/10.1007/s11467-018-0861-4
|
| 13 |
S. Muñoz C. , del Valle E. , G. Tudela A. , Müller K. , Lichtmannecker S. , Kaniber M. , Tejedor C. , J. Finley J. , P. Laussy F. . Emitters of N-photon bundles. Nat. Photonics, 2014, 8(7): 550
https://doi.org/10.1038/nphoton.2014.114
|
| 14 |
Sánchez Muñoz C. , P. Laussy F. , Valle E. , Tejedor C. , González-Tudela A. . Filtering multiphoton emission from state-of-the-art cavity quantum electrodynamics. Optica, 2018, 5(1): 14
https://doi.org/10.1364/OPTICA.5.000014
|
| 15 |
Bin Q. , Y. Lü X. , P. Laussy F. , Nori F. , Wu Y. . N-phonon bundle emission via the Stokes process. Phys. Rev. Lett., 2020, 124(5): 053601
https://doi.org/10.1103/PhysRevLett.124.053601
|
| 16 |
Bin Q. , Wu Y. , Y. Lü X. . Parity‒symmetry-protected multiphoton bundle emission. Phys. Rev. Lett., 2021, 127(7): 073602
https://doi.org/10.1103/PhysRevLett.127.073602
|
| 17 |
Deng Y. , Shi T. , Yi S. . Motional n-phonon bundle states of a trapped atom with clock transitions. Photon. Res., 2021, 9(7): 1289
https://doi.org/10.1364/PRJ.427062
|
| 18 |
Y. Jiang S. , Zou F. , Wang Y. , F. Huang J. , W. Xu X. , Q. Liao J. . Multiple-photon bundle emission in the n-photon Jaynes‒Cummings model. Opt. Express, 2023, 31(10): 15697
https://doi.org/10.1364/OE.488167
|
| 19 |
Liu C. , F. Huang J. , Tian L. . Deterministic generation of multi-photon bundles in a quantum Rabi model. Sci. China Phys. Mech. Astron., 2023, 66(2): 220311
https://doi.org/10.1007/s11433-022-2047-9
|
| 20 |
González-Tudela A. , Paulisch V. , E. Chang D. , J. Kimble H. , I. Cirac J. . Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett., 2015, 115(16): 163603
https://doi.org/10.1103/PhysRevLett.115.163603
|
| 21 |
S. Douglas J. , Caneva T. , E. Chang D. . Photon molecules in atomic gases trapped near photonic crystal waveguides. Phys. Rev. X, 2016, 6(3): 031017
https://doi.org/10.1103/PhysRevX.6.031017
|
| 22 |
González-Tudela A. , Paulisch V. , J. Kimble H. , I. Cirac J. . Efficient multiphoton generation in waveguide quantum electrodynamics. Phys. Rev. Lett., 2017, 118(21): 213601
https://doi.org/10.1103/PhysRevLett.118.213601
|
| 23 |
L. Ma S. , K. Li X. , L. Ren Y. , K. Xie J. , L. Li F. . Antibunched N-photon bundles emitted by a Josephson photonic device. Phys. Rev. Res., 2021, 3(4): 043020
https://doi.org/10.1103/PhysRevResearch.3.043020
|
| 24 |
Ota Y. , Iwamoto S. , Kumagai N. , Arakawa Y. . Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett., 2011, 107(23): 233602
https://doi.org/10.1103/PhysRevLett.107.233602
|
| 25 |
Callsen G. , Carmele A. , Hönig G. , Kindel C. , Brunnmeier J. , R. Wagner M. , Stock E. , S. Reparaz J. , Schliwa A. , Reitzenstein S. , Knorr A. , Hoffmann A. , Kako S. , Arakawa Y. . Steering photon statistics in single quantum dots: From one- to two-photon emission. Phys. Rev. B, 2013, 87(24): 245314
https://doi.org/10.1103/PhysRevB.87.245314
|
| 26 |
Sánchez Muñoz C. , P. Laussy F. , Tejedor C. , Valle E. . Enhanced two-photon emission from a dressed biexciton. New J. Phys., 2015, 17(12): 123021
https://doi.org/10.1088/1367-2630/17/12/123021
|
| 27 |
Chang Y. , González-Tudela A. , Sánchez Muñoz C. , Navarrete-Benlloch C. , Shi T. . Deterministic down-converter and continuous photon-pair source within the bad-cavity limit. Phys. Rev. Lett., 2016, 117(20): 203602
https://doi.org/10.1103/PhysRevLett.117.203602
|
| 28 |
L. Dong X. , B. Li P. . Multiphonon interactions between nitrogen‒vacancy centers and nanomechanical resonators. Phys. Rev. A, 2019, 100(4): 043825
https://doi.org/10.1103/PhysRevA.100.043825
|
| 29 |
Bienias P. , Choi S. , Firstenberg O. , F. Maghrebi M. , Gullans M. , D. Lukin M. , V. Gorshkov A. , P. Büchler H. . Scattering resonances and bound states for strongly interacting Rydberg polaritons. Phys. Rev. A, 2014, 90(5): 053804
https://doi.org/10.1103/PhysRevA.90.053804
|
| 30 |
F. Maghrebi M. , J. Gullans M. , Bienias P. , Choi S. , Martin I. , Firstenberg O. , D. Lukin M. , P. Büchler H. , V. Gorshkov A. . Coulomb bound states of strongly interacting photons. Phys. Rev. Lett., 2015, 115(12): 123601
https://doi.org/10.1103/PhysRevLett.115.123601
|
| 31 |
Zou F. , Q. Liao J. , Li Y. . Dynamical emission of phonon pairs in optomechanical systems. Phys. Rev. A, 2022, 105(5): 053507
https://doi.org/10.1103/PhysRevA.105.053507
|
| 32 |
Y. Yuan H. , K. Xie J. , A. Duine R. . Magnon bundle in a strongly dissipative magnet. Phys. Rev. Appl., 2023, 19(6): 064070
https://doi.org/10.1103/PhysRevApplied.19.064070
|
| 33 |
Aspelmeyer M. , J. Kippenberg T. , Marquardt F. . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
https://doi.org/10.1103/RevModPhys.86.1391
|
| 34 |
J. Kippenberg T. , J. Vahala K. . Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321(5893): 1172
https://doi.org/10.1126/science.1156032
|
| 35 |
Aspelmeyer M. , Meystre P. , Schwab K. . Quantum optomechanics. Phys. Today, 2012, 65(7): 29
https://doi.org/10.1063/PT.3.1640
|
| 36 |
Meystre P. . A short walk through quantum optomechanics. Ann. Phys., 2013, 525(3): 215
https://doi.org/10.1002/andp.201200226
|
| 37 |
Xiong H. , G. Si L. , Y. Lü X. , X. Yang X. , Wu Y. . Review of cavity optomechanics in the weak-coupling regime: From linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron., 2015, 58(5): 1
https://doi.org/10.1007/s11433-015-5648-9
|
| 38 |
Nunnenkamp A. , Børkje K. , M. Girvin S. . Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
https://doi.org/10.1103/PhysRevLett.107.063602
|
| 39 |
Q. Liao J. , K. Cheung H. , K. Law C. . Spectrum of single-photon emission and scattering in cavity optomechanics. Phys. Rev. A, 2012, 85(2): 025803
https://doi.org/10.1103/PhysRevA.85.025803
|
| 40 |
Kómár P. , D. Bennett S. , Stannigel K. , J. M. Habraken S. , Rabl P. , Zoller P. , D. Lukin M. . Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A, 2013, 87(1): 013839
https://doi.org/10.1103/PhysRevA.87.013839
|
| 41 |
Hong T. , Yang H. , Miao H. , Chen Y. . Open quantum dynamics of single-photon optomechanical devices. Phys. Rev. A, 2013, 88(2): 023812
https://doi.org/10.1103/PhysRevA.88.023812
|
| 42 |
Q. Liao J. , Nori F. . Single-photon quadratic optomechanics. Sci. Rep., 2014, 4(1): 6302
https://doi.org/10.1038/srep06302
|
| 43 |
Q. Liao J. , Tian L. . Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett., 2016, 116(16): 163602
https://doi.org/10.1103/PhysRevLett.116.163602
|
| 44 |
Xie H. , W. Lin G. , Chen X. , H. Chen Z. , M. Lin X. . Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A, 2016, 93(6): 063860
https://doi.org/10.1103/PhysRevA.93.063860
|
| 45 |
W. Xu X. , X. Chen A. , X. Liu Y. . Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit. Phys. Rev. A, 2016, 94(6): 063853
https://doi.org/10.1103/PhysRevA.94.063853
|
| 46 |
Xie H. , G. Liao C. , Shang X. , Y. Ye M. , M. Lin X. . Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A, 2017, 96(1): 013861
https://doi.org/10.1103/PhysRevA.96.013861
|
| 47 |
Q. Shi H. , T. Zhou X. , W. Xu X. , H. Liu N. . Tunable phonon blockade in quadratically coupled optomechanical systems. Sci. Rep., 2018, 8(1): 2212
https://doi.org/10.1038/s41598-018-20568-x
|
| 48 |
L. Zheng L. , S. Yin T. , Bin Q. , Y. Lü X. , Wu Y. . Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Phys. Rev. A, 2019, 99(1): 013804
https://doi.org/10.1103/PhysRevA.99.013804
|
| 49 |
S. Yin T. , Bin Q. , L. Zhu G. , R. Jin G. , X. Chen A. . Phonon blockade in a hybrid system via the second-order magnetic gradient. Phys. Rev. A, 2019, 100(6): 063840
https://doi.org/10.1103/PhysRevA.100.063840
|
| 50 |
Y. Yang J. , Jin Z. , S. Liu J. , F. Wang H. , D. Zhu A. . Unconventional phonon blockade in a Tavis‒Cummings coupled optomechanical system. Ann. Phys., 2020, 532(12): 2000299
https://doi.org/10.1002/andp.202000299
|
| 51 |
Rabl P. . Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
https://doi.org/10.1103/PhysRevLett.107.063601
|
| 52 |
Q. Liao J. , Nori F. . Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A, 2013, 88(2): 023853
https://doi.org/10.1103/PhysRevA.88.023853
|
| 53 |
Z. Shen H. , H. Zhou Y. , X. Yi X. . Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A, 2015, 91(6): 063808
https://doi.org/10.1103/PhysRevA.91.063808
|
| 54 |
Flayac H. , Savona V. . Unconventional photon blockade. Phys. Rev. A, 2017, 96(5): 053810
https://doi.org/10.1103/PhysRevA.96.053810
|
| 55 |
Huang R. , Miranowicz A. , Q. Liao J. , Nori F. , Jing H. . Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601
https://doi.org/10.1103/PhysRevLett.121.153601
|
| 56 |
J. Snijders H. , A. Frey J. , Norman J. , Flayac H. , Savona V. , C. Gossard A. , E. Bowers J. , P. van Exter M. , Bouwmeester D. , Löffler W. . Observation of the unconventional photon blockade. Phys. Rev. Lett., 2018, 121(4): 043601
https://doi.org/10.1103/PhysRevLett.121.043601
|
| 57 |
Sarma B. , K. Sarma A. . Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A, 2018, 98(1): 013826
https://doi.org/10.1103/PhysRevA.98.013826
|
| 58 |
J. Li B. , Huang R. , W. Xu X. , Miranowicz A. , Jing H. . Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630
https://doi.org/10.1364/PRJ.7.000630
|
| 59 |
Y. Wang D. , H. Bai C. , Liu S. , Zhang S. , F. Wang H. . Distinguishing photon blockade in a PT-symmetric optomechanical system. Phys. Rev. A, 2019, 99(4): 043818
https://doi.org/10.1103/PhysRevA.99.043818
|
| 60 |
Y. Wang D. , H. Bai C. , Liu S. , Zhang S. , F. Wang H. . Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys., 2020, 22(9): 093006
https://doi.org/10.1088/1367-2630/abaa8a
|
| 61 |
P. Gao Y. , Cao C. , F. Lu P. , Wang C. . Phase-controlled photon blockade in optomechanical systems. Fundamental Research, 2023, 3(1): 30
https://doi.org/10.1016/j.fmre.2022.07.009
|
| 62 |
J. Feng L. , Yan L. , Q. Gong S. . Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities. Front. Phys., 2023, 18(1): 12304
https://doi.org/10.1007/s11467-022-1213-y
|
| 63 |
X. Liu Z. , Xiong H. , Wu Y. . Magnon blockade in a hybrid ferromagnet‒superconductor quantum system. Phys. Rev. B, 2019, 100(13): 134421
https://doi.org/10.1103/PhysRevB.100.134421
|
| 64 |
K. Xie J. , L. Ma S. , L. Li F. . Quantum-interference-enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A, 2020, 101(4): 042331
https://doi.org/10.1103/PhysRevA.101.042331
|
| 65 |
J. Xu Y. , L. Yang T. , Lin L. , Song J. . Conventional and unconventional magnon blockades in a qubit-magnon hybrid quantum system. J. Opt. Soc. Am. B, 2021, 38(3): 876
https://doi.org/10.1364/JOSAB.414600
|
| 66 |
Y. Li X. , Wang X. , Wu Z. , X. Yang W. , X. Chen A. . Tunable magnon antibunching in a hybrid ferromagnet‒superconductor system with two qubits. Phys. Rev. B, 2021, 104(22): 224434
https://doi.org/10.1103/PhysRevB.104.224434
|
| 67 |
M. Wang Y. , Xiong W. , Y. Xu Z. , Q. Zhang G. , Q. You J. . Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system. Sci. China Phys. Mech. Astron., 2022, 65(6): 260314
https://doi.org/10.1007/s11433-021-1880-7
|
| 68 |
K. Paraïso T. , Kalaee M. , Zang L. , Pfeifer H. , Marquardt F. , Painter O. . Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X, 2015, 5(4): 041024
https://doi.org/10.1103/PhysRevX.5.041024
|
| 69 |
C. Sankey J. , Yang C. , M. Zwickl B. , M. Jayich A. , G. Harris J. . Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 2010, 6(9): 707
https://doi.org/10.1038/nphys1707
|
| 70 |
Sekoguchi H. , Takahashi Y. , Asano T. , Noda S. . Photonic crystal nanocavity with a Q-factor of ~9 million. Opt. Express, 2014, 22(1): 916
https://doi.org/10.1364/OE.22.000916
|
| 71 |
S. Yin T. , Y. Lü X. , L. Zheng L. , Wang M. , Li S. , Wu Y. . Nonlinear effects in modulated quantum optomechanics. Phys. Rev. A, 2017, 95(5): 053861
https://doi.org/10.1103/PhysRevA.95.053861
|
| 72 |
Vitali D. , Gigan S. , Ferreira A. , R. Böhm H. , Tombesi P. , Guerreiro A. , Vedral V. , Zeilinger A. , Aspelmeyer M. . Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett., 2007, 98(3): 030405
https://doi.org/10.1103/PhysRevLett.98.030405
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|