Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 32202    https://doi.org/10.1007/s11467-023-1352-9
RESEARCH ARTICLE
Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system
Ye-Jun Xu1(), Hong Xie2()
1. Interdisciplinary Research Center of Quantum and Photoelectric Information, Chizhou University, Chizhou 247000, China
2. Department of Mathematics and Physics, Fujian Jiangxia University, Fuzhou 350108, China
 Download: PDF(4107 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a scheme to realize antibunched multiple-photon bundles based on phonon blockade in a quadratically coupled optomechanical system. Through adjusting the detunings to match the conditions of phonon blockade in the photon sidebands, we establish super-Rabi oscillation between zero-photon state and multiple-photon states with adjustable super-Rabi frequencies under appropriate single-phonon resonant conditions. Taking the system dissipation into account, we numerically calculate the standard and generalized second-order functions of the cavity mode as well as the quantum trajectories of the state populations with Monte Carlo simulation to confirm that the emitted photons form antibunched multiple-photon bundles. Interestingly, the desirable n-photon states are reconstructed after a direct phonon emission based on phonon blockade, and thus the single-phonon emission heralds the cascade emission of n-photon bundles. Our proposal shows that the optomechanical system can simultaneously behave as antibunched multiple-photon emitter and single-phonon gun. Such a nonclassical source could have potential applications in quantum information science.

Keywords multiple-photon bundle emission      phonon blockade      optomechanical system     
Corresponding Author(s): Ye-Jun Xu,Hong Xie   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 17 November 2023
 Cite this article:   
Ye-Jun Xu,Hong Xie. Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system[J]. Front. Phys. , 2024, 19(3): 32202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1352-9
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/32202
Fig.1  (a) Schematic diagram of a quadratically coupled optomechanical system with a “membrane-in-middle” configuration. (b) Anharmonic energy-level diagram limited in the subspace spanned by the zero- and one-phonon states. States labelled as |n~(m),m? denote the cavity mode being in m-phonon-dependent displaced Fock state and the mechanical mode being in m-phonon state. (c) Frequency spectrogram of the driven optomechanical system with quadratic coupling. There are high-order sidebands due to the nonlinear optomechanical interaction. (d) Illustration of cascade emission of antibunched n-photon (n=2,3) bundles, where the system releases each photon bundle accompanied by single-phonon emission.
Fig.2  (a) Steady-state mean phonon number ?b?b? and mean atomic excited-state probability ?σ?σ? governed respectively by the Hamiltonians (7) and (8) as functions of the detuning Δm/Δg. (b) Steady-state equal-time second-order phonon correlation function gbb(2)(0) as a function of Δm/Δg. The other parameters are Δc/G=2, Δg=G2/Δc, κ/G=0.1, γ=0.01κ, ε/κ=0.1, and nˉth=0.
Fig.3  The state populations P|n?p|1? and P|0?p|0? (n=2and3) are plotted as functions of the scaled time Gt in (a) for n=2, Δc/G=7.14, Δm=2G2/Δc?2Δc and in (b) for n=3, Δc/G=2.86, Δm=2G2/Δc?3Δc, and the common parameter ε/G=0.01. The red and blue curves correspond to the numerical results of the state populations, while the red square and blue circle correspond to the analytical results based on the effective Rabi frequencies Ωeff(2) and Ωeff(3).
Fig.4  (a) Zero-delay nth-order photon correlation functions g(n)(0) versus Δm/Δc. (b, c) The generalized time-delay second-order correlation functions gN(2)(τ) as functions of the scaled evolution time κτ for N=2 at (b) Δm=2G2/Δc?2Δc, and at (c) Δm=2G2/Δc?3Δc. The other parameters are κ=1, G/κ=10, Δc/G=2, γ/κ=0.01, and ε/κ=0.1, and nˉth=0.
Fig.5  Small fraction of one quantum trajectory of the state populations P|n?|0(1)? (n=0,1,2,3) at (a?c) G/κ=10 and Δm=2G2/Δc?2Δc, corresponding to the two-photon bundle emission; (d?g) G/κ=30 and Δm=2G2/Δc?3Δc, corresponding to the three-photon bundle emission. The other parameters are Δc=G, γ/κ=0.01, ε/κ=0.2, and nˉth=0.
1 Giovannetti V. , Lloyd S. , Maccone L. . Quantum metrology. Phys. Rev. Lett., 2006, 96(1): 010401
https://doi.org/10.1103/PhysRevLett.96.010401
2 Pezzè L. , Smerzi A. , K. Oberthaler M. , Schmied R. , Treutlein P. . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
https://doi.org/10.1103/RevModPhys.90.035005
3 Braun D. , Adesso G. , Benatti F. , Floreanini R. , Marzolino U. , W. Mitchell M. , Pirandola S. . Quantum-enhanced measurements without entanglement. Rev. Mod. Phys., 2018, 90(3): 035006
https://doi.org/10.1103/RevModPhys.90.035006
4 M. Duan L. , D. Lukin M. , I. Cirac J. , Zoller P. . Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
https://doi.org/10.1038/35106500
5 Kok P. , J. Munro W. , Nemoto K. , C. Ralph T. , P. Dowling J. , J. Milburn G. . Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007, 79(1): 135
https://doi.org/10.1103/RevModPhys.79.135
6 J. Kimble H. . The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
7 Afek I. , Ambar O. , Silberberg Y. . High-NOON states by mixing quantum and classical light. Science, 2010, 328(5980): 879
https://doi.org/10.1126/science.1188172
8 D’Angelo M. , V. Chekhova M. , Shih Y. . Two-photon diffraction and quantum lithography. Phys. Rev. Lett., 2001, 87(1): 013602
https://doi.org/10.1103/PhysRevLett.87.013602
9 E. Dorfman K. , Schlawin F. , Mukamel S. . Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys., 2016, 88(4): 045008
https://doi.org/10.1103/RevModPhys.88.045008
10 C. López Carreño J. , Sánchez Muñoz C. , Sanvitto D. , del Valle E. , P. Laussy F. . Exciting polaritons with quantum light. Phys. Rev. Lett., 2015, 115(19): 196402
https://doi.org/10.1103/PhysRevLett.115.196402
11 R. Zhong Z. , Wang X. , Qin W. . Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys., 2018, 13(5): 130319
https://doi.org/10.1007/s11467-018-0824-9
12 H. Liu J. , B. Zhang Y. , F. Yu Y. , M. Zhang Z. . Photon‒phonon squeezing and entanglement in a cavity optomechanical system with a flying atom. Front. Phys., 2019, 14(1): 12601
https://doi.org/10.1007/s11467-018-0861-4
13 S. Muñoz C. , del Valle E. , G. Tudela A. , Müller K. , Lichtmannecker S. , Kaniber M. , Tejedor C. , J. Finley J. , P. Laussy F. . Emitters of N-photon bundles. Nat. Photonics, 2014, 8(7): 550
https://doi.org/10.1038/nphoton.2014.114
14 Sánchez Muñoz C. , P. Laussy F. , Valle E. , Tejedor C. , González-Tudela A. . Filtering multiphoton emission from state-of-the-art cavity quantum electrodynamics. Optica, 2018, 5(1): 14
https://doi.org/10.1364/OPTICA.5.000014
15 Bin Q. , Y. Lü X. , P. Laussy F. , Nori F. , Wu Y. . N-phonon bundle emission via the Stokes process. Phys. Rev. Lett., 2020, 124(5): 053601
https://doi.org/10.1103/PhysRevLett.124.053601
16 Bin Q. , Wu Y. , Y. Lü X. . Parity‒symmetry-protected multiphoton bundle emission. Phys. Rev. Lett., 2021, 127(7): 073602
https://doi.org/10.1103/PhysRevLett.127.073602
17 Deng Y. , Shi T. , Yi S. . Motional n-phonon bundle states of a trapped atom with clock transitions. Photon. Res., 2021, 9(7): 1289
https://doi.org/10.1364/PRJ.427062
18 Y. Jiang S. , Zou F. , Wang Y. , F. Huang J. , W. Xu X. , Q. Liao J. . Multiple-photon bundle emission in the n-photon Jaynes‒Cummings model. Opt. Express, 2023, 31(10): 15697
https://doi.org/10.1364/OE.488167
19 Liu C. , F. Huang J. , Tian L. . Deterministic generation of multi-photon bundles in a quantum Rabi model. Sci. China Phys. Mech. Astron., 2023, 66(2): 220311
https://doi.org/10.1007/s11433-022-2047-9
20 González-Tudela A. , Paulisch V. , E. Chang D. , J. Kimble H. , I. Cirac J. . Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett., 2015, 115(16): 163603
https://doi.org/10.1103/PhysRevLett.115.163603
21 S. Douglas J. , Caneva T. , E. Chang D. . Photon molecules in atomic gases trapped near photonic crystal waveguides. Phys. Rev. X, 2016, 6(3): 031017
https://doi.org/10.1103/PhysRevX.6.031017
22 González-Tudela A. , Paulisch V. , J. Kimble H. , I. Cirac J. . Efficient multiphoton generation in waveguide quantum electrodynamics. Phys. Rev. Lett., 2017, 118(21): 213601
https://doi.org/10.1103/PhysRevLett.118.213601
23 L. Ma S. , K. Li X. , L. Ren Y. , K. Xie J. , L. Li F. . Antibunched N-photon bundles emitted by a Josephson photonic device. Phys. Rev. Res., 2021, 3(4): 043020
https://doi.org/10.1103/PhysRevResearch.3.043020
24 Ota Y. , Iwamoto S. , Kumagai N. , Arakawa Y. . Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett., 2011, 107(23): 233602
https://doi.org/10.1103/PhysRevLett.107.233602
25 Callsen G. , Carmele A. , Hönig G. , Kindel C. , Brunnmeier J. , R. Wagner M. , Stock E. , S. Reparaz J. , Schliwa A. , Reitzenstein S. , Knorr A. , Hoffmann A. , Kako S. , Arakawa Y. . Steering photon statistics in single quantum dots: From one- to two-photon emission. Phys. Rev. B, 2013, 87(24): 245314
https://doi.org/10.1103/PhysRevB.87.245314
26 Sánchez Muñoz C. , P. Laussy F. , Tejedor C. , Valle E. . Enhanced two-photon emission from a dressed biexciton. New J. Phys., 2015, 17(12): 123021
https://doi.org/10.1088/1367-2630/17/12/123021
27 Chang Y. , González-Tudela A. , Sánchez Muñoz C. , Navarrete-Benlloch C. , Shi T. . Deterministic down-converter and continuous photon-pair source within the bad-cavity limit. Phys. Rev. Lett., 2016, 117(20): 203602
https://doi.org/10.1103/PhysRevLett.117.203602
28 L. Dong X. , B. Li P. . Multiphonon interactions between nitrogen‒vacancy centers and nanomechanical resonators. Phys. Rev. A, 2019, 100(4): 043825
https://doi.org/10.1103/PhysRevA.100.043825
29 Bienias P. , Choi S. , Firstenberg O. , F. Maghrebi M. , Gullans M. , D. Lukin M. , V. Gorshkov A. , P. Büchler H. . Scattering resonances and bound states for strongly interacting Rydberg polaritons. Phys. Rev. A, 2014, 90(5): 053804
https://doi.org/10.1103/PhysRevA.90.053804
30 F. Maghrebi M. , J. Gullans M. , Bienias P. , Choi S. , Martin I. , Firstenberg O. , D. Lukin M. , P. Büchler H. , V. Gorshkov A. . Coulomb bound states of strongly interacting photons. Phys. Rev. Lett., 2015, 115(12): 123601
https://doi.org/10.1103/PhysRevLett.115.123601
31 Zou F. , Q. Liao J. , Li Y. . Dynamical emission of phonon pairs in optomechanical systems. Phys. Rev. A, 2022, 105(5): 053507
https://doi.org/10.1103/PhysRevA.105.053507
32 Y. Yuan H. , K. Xie J. , A. Duine R. . Magnon bundle in a strongly dissipative magnet. Phys. Rev. Appl., 2023, 19(6): 064070
https://doi.org/10.1103/PhysRevApplied.19.064070
33 Aspelmeyer M. , J. Kippenberg T. , Marquardt F. . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
https://doi.org/10.1103/RevModPhys.86.1391
34 J. Kippenberg T. , J. Vahala K. . Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321(5893): 1172
https://doi.org/10.1126/science.1156032
35 Aspelmeyer M. , Meystre P. , Schwab K. . Quantum optomechanics. Phys. Today, 2012, 65(7): 29
https://doi.org/10.1063/PT.3.1640
36 Meystre P. . A short walk through quantum optomechanics. Ann. Phys., 2013, 525(3): 215
https://doi.org/10.1002/andp.201200226
37 Xiong H. , G. Si L. , Y. Lü X. , X. Yang X. , Wu Y. . Review of cavity optomechanics in the weak-coupling regime: From linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron., 2015, 58(5): 1
https://doi.org/10.1007/s11433-015-5648-9
38 Nunnenkamp A. , Børkje K. , M. Girvin S. . Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
https://doi.org/10.1103/PhysRevLett.107.063602
39 Q. Liao J. , K. Cheung H. , K. Law C. . Spectrum of single-photon emission and scattering in cavity optomechanics. Phys. Rev. A, 2012, 85(2): 025803
https://doi.org/10.1103/PhysRevA.85.025803
40 Kómár P. , D. Bennett S. , Stannigel K. , J. M. Habraken S. , Rabl P. , Zoller P. , D. Lukin M. . Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A, 2013, 87(1): 013839
https://doi.org/10.1103/PhysRevA.87.013839
41 Hong T. , Yang H. , Miao H. , Chen Y. . Open quantum dynamics of single-photon optomechanical devices. Phys. Rev. A, 2013, 88(2): 023812
https://doi.org/10.1103/PhysRevA.88.023812
42 Q. Liao J. , Nori F. . Single-photon quadratic optomechanics. Sci. Rep., 2014, 4(1): 6302
https://doi.org/10.1038/srep06302
43 Q. Liao J. , Tian L. . Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett., 2016, 116(16): 163602
https://doi.org/10.1103/PhysRevLett.116.163602
44 Xie H. , W. Lin G. , Chen X. , H. Chen Z. , M. Lin X. . Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A, 2016, 93(6): 063860
https://doi.org/10.1103/PhysRevA.93.063860
45 W. Xu X. , X. Chen A. , X. Liu Y. . Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit. Phys. Rev. A, 2016, 94(6): 063853
https://doi.org/10.1103/PhysRevA.94.063853
46 Xie H. , G. Liao C. , Shang X. , Y. Ye M. , M. Lin X. . Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A, 2017, 96(1): 013861
https://doi.org/10.1103/PhysRevA.96.013861
47 Q. Shi H. , T. Zhou X. , W. Xu X. , H. Liu N. . Tunable phonon blockade in quadratically coupled optomechanical systems. Sci. Rep., 2018, 8(1): 2212
https://doi.org/10.1038/s41598-018-20568-x
48 L. Zheng L. , S. Yin T. , Bin Q. , Y. Lü X. , Wu Y. . Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Phys. Rev. A, 2019, 99(1): 013804
https://doi.org/10.1103/PhysRevA.99.013804
49 S. Yin T. , Bin Q. , L. Zhu G. , R. Jin G. , X. Chen A. . Phonon blockade in a hybrid system via the second-order magnetic gradient. Phys. Rev. A, 2019, 100(6): 063840
https://doi.org/10.1103/PhysRevA.100.063840
50 Y. Yang J. , Jin Z. , S. Liu J. , F. Wang H. , D. Zhu A. . Unconventional phonon blockade in a Tavis‒Cummings coupled optomechanical system. Ann. Phys., 2020, 532(12): 2000299
https://doi.org/10.1002/andp.202000299
51 Rabl P. . Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
https://doi.org/10.1103/PhysRevLett.107.063601
52 Q. Liao J. , Nori F. . Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A, 2013, 88(2): 023853
https://doi.org/10.1103/PhysRevA.88.023853
53 Z. Shen H. , H. Zhou Y. , X. Yi X. . Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A, 2015, 91(6): 063808
https://doi.org/10.1103/PhysRevA.91.063808
54 Flayac H. , Savona V. . Unconventional photon blockade. Phys. Rev. A, 2017, 96(5): 053810
https://doi.org/10.1103/PhysRevA.96.053810
55 Huang R. , Miranowicz A. , Q. Liao J. , Nori F. , Jing H. . Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601
https://doi.org/10.1103/PhysRevLett.121.153601
56 J. Snijders H. , A. Frey J. , Norman J. , Flayac H. , Savona V. , C. Gossard A. , E. Bowers J. , P. van Exter M. , Bouwmeester D. , Löffler W. . Observation of the unconventional photon blockade. Phys. Rev. Lett., 2018, 121(4): 043601
https://doi.org/10.1103/PhysRevLett.121.043601
57 Sarma B. , K. Sarma A. . Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A, 2018, 98(1): 013826
https://doi.org/10.1103/PhysRevA.98.013826
58 J. Li B. , Huang R. , W. Xu X. , Miranowicz A. , Jing H. . Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630
https://doi.org/10.1364/PRJ.7.000630
59 Y. Wang D. , H. Bai C. , Liu S. , Zhang S. , F. Wang H. . Distinguishing photon blockade in a PT-symmetric optomechanical system. Phys. Rev. A, 2019, 99(4): 043818
https://doi.org/10.1103/PhysRevA.99.043818
60 Y. Wang D. , H. Bai C. , Liu S. , Zhang S. , F. Wang H. . Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys., 2020, 22(9): 093006
https://doi.org/10.1088/1367-2630/abaa8a
61 P. Gao Y. , Cao C. , F. Lu P. , Wang C. . Phase-controlled photon blockade in optomechanical systems. Fundamental Research, 2023, 3(1): 30
https://doi.org/10.1016/j.fmre.2022.07.009
62 J. Feng L. , Yan L. , Q. Gong S. . Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities. Front. Phys., 2023, 18(1): 12304
https://doi.org/10.1007/s11467-022-1213-y
63 X. Liu Z. , Xiong H. , Wu Y. . Magnon blockade in a hybrid ferromagnet‒superconductor quantum system. Phys. Rev. B, 2019, 100(13): 134421
https://doi.org/10.1103/PhysRevB.100.134421
64 K. Xie J. , L. Ma S. , L. Li F. . Quantum-interference-enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A, 2020, 101(4): 042331
https://doi.org/10.1103/PhysRevA.101.042331
65 J. Xu Y. , L. Yang T. , Lin L. , Song J. . Conventional and unconventional magnon blockades in a qubit-magnon hybrid quantum system. J. Opt. Soc. Am. B, 2021, 38(3): 876
https://doi.org/10.1364/JOSAB.414600
66 Y. Li X. , Wang X. , Wu Z. , X. Yang W. , X. Chen A. . Tunable magnon antibunching in a hybrid ferromagnet‒superconductor system with two qubits. Phys. Rev. B, 2021, 104(22): 224434
https://doi.org/10.1103/PhysRevB.104.224434
67 M. Wang Y. , Xiong W. , Y. Xu Z. , Q. Zhang G. , Q. You J. . Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system. Sci. China Phys. Mech. Astron., 2022, 65(6): 260314
https://doi.org/10.1007/s11433-021-1880-7
68 K. Paraïso T. , Kalaee M. , Zang L. , Pfeifer H. , Marquardt F. , Painter O. . Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X, 2015, 5(4): 041024
https://doi.org/10.1103/PhysRevX.5.041024
69 C. Sankey J. , Yang C. , M. Zwickl B. , M. Jayich A. , G. Harris J. . Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 2010, 6(9): 707
https://doi.org/10.1038/nphys1707
70 Sekoguchi H. , Takahashi Y. , Asano T. , Noda S. . Photonic crystal nanocavity with a Q-factor of ~9 million. Opt. Express, 2014, 22(1): 916
https://doi.org/10.1364/OE.22.000916
71 S. Yin T. , Y. Lü X. , L. Zheng L. , Wang M. , Li S. , Wu Y. . Nonlinear effects in modulated quantum optomechanics. Phys. Rev. A, 2017, 95(5): 053861
https://doi.org/10.1103/PhysRevA.95.053861
72 Vitali D. , Gigan S. , Ferreira A. , R. Böhm H. , Tombesi P. , Guerreiro A. , Vedral V. , Zeilinger A. , Aspelmeyer M. . Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett., 2007, 98(3): 030405
https://doi.org/10.1103/PhysRevLett.98.030405
[1] Ling-Juan Feng, Li Yan, Shang-Qing Gong. Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities[J]. Front. Phys. , 2023, 18(1): 12304-.
[2] Junya Yang, Chengsong Zhao, Zhen Yang, Rui Peng, Shilei Chao, Ling Zhou. Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system[J]. Front. Phys. , 2022, 17(5): 52507-.
[3] Zhi-Rong Zhong, Lei Chen, Jian-Qi Sheng, Li-Tuo Shen, Shi-Biao Zheng. Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system[J]. Front. Phys. , 2022, 17(1): 12501-.
[4] Yexiong Zeng, Biao Xiong, Chong Li. Suppressing laser phase noise in an optomechanical system[J]. Front. Phys. , 2022, 17(1): 12503-.
[5] Zhi-Rong Zhong, Xin Wang, Wei Qin. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure[J]. Front. Phys. , 2018, 13(5): 130319-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed