Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 42501    https://doi.org/10.1007/s11467-023-1355-6
Twistronics and moiré excitonic physics in van der Waals heterostructures
Siwei Li1, Ke Wei2(), Qirui Liu1, Yuxiang Tang2, Tian Jiang2()
1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2. Institute for Quantum Science and Technology, National University of Defense Technology, Changsha 410073, China
 Download: PDF(14392 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heterostructures composed of two-dimensional van der Waals (vdW) materials allow highly controllable stacking, where interlayer twist angles introduce a continuous degree of freedom to alter the electronic band structures and excitonic physics. Motivated by the discovery of Mott insulating states and superconductivity in magic-angle bilayer graphene, the emerging research fields of “twistronics” and moiré physics have aroused great academic interests in the engineering of optoelectronic properties and the exploration of new quantum phenomena, in which moiré superlattice provides a pathway for the realization of artificial excitonic crystals. Here we systematically summarize the current achievements in twistronics and moiré excitonic physics, with emphasis on the roles of lattice rotational mismatches and atomic registries. Firstly, we review the effects of the interlayer twist on electronic and photonic physics, particularly on exciton properties such as dipole moment and spin-valley polarization, through interlayer interactions and electronic band structures. We also discuss the exciton dynamics in vdW heterostructures with different twist angles, like formation, transport and relaxation processes, whose mechanisms are complicated and still need further investigations. Subsequently, we review the theoretical analysis and experimental observations of moiré superlattice and moiré modulated excitons. Various exotic moiré effects are also shown, including periodic potential, moiré miniband, and varying wave function symmetry, which result in exciton localization, emergent exciton peaks and spatially alternating optical selection rule. We further introduce the expanded properties of moiré systems with external modulation factors such as electric field, doping and strain, showing that moiré lattice is a promising platform with high tunability for optoelectronic applications and in-depth study on frontier physics. Lastly, we focus on the rapidly developing field of correlated electron physics based on the moiré system, which is potentially related to the emerging quantum phenomena.

Keywords moiré superlattice      twistronics      van der Waals heterostructure      moiré exciton      correlated electronic state     
Corresponding Author(s): Ke Wei,Tian Jiang   
Issue Date: 29 February 2024
 Cite this article:   
Siwei Li,Ke Wei,Qirui Liu, et al. Twistronics and moiré excitonic physics in van der Waals heterostructures[J]. Front. Phys. , 2024, 19(4): 42501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1355-6
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/42501
Fig.1  Schematic diagrams of five typical aligned stacking patterns of bilayer MoS2. (a) Side view and (b) Top view of stacking orders with two different kinds of labels, where A?A, A?A′, A′?B, A?B′ and A?B correspond to 3R-like, 2H, 2H-like (Mo), 2H-like (S) and 3R, respectively. One pair of S atoms is denoted by one yellow circle as a concise representation. (a) Reproduced with permission from Ref. [69]. (b) Reproduced with permission from Ref. [77].
Fig.2  Experimental observations of stacking-angle modulated interlayer interactions. (a) The upper panel shows PL spectroscopy for the bottom (as grown, gray line) and top (transferred, green line) monolayers, as well as twisted bilayers (t-BLs) MoS2 at various twist angles θ. The lower panel is the measured (black) and simulated (magenta) peak energies versus θ for the indirect (circles), A (squares), and B (triangles) transitions. (b) Schematic of the interlayer separation of t-BL MoS2 depending on the stacking patterns (upper panel) and twisting angle θ (lower panel) relative to the 60° separation. (c) PL spectra with the Lorentzian fitting at 77 K. (d) The bandgap alignment of coupled as-grown MoS2/WS2 heterostructure. The solid black, green, and orange double-arrow lines represent the energy gap, optical gap, and exciton binding energy, respectively. (e) PL spectra of the randomly twisted WS2 bilayer compared with monolayer. (f) Twist angle dependence of the trion to exciton PL intensity ratio (left panel) and trion binding energy (right panel). (g) The intensity of the interlayer exciton peak versus the twist angle (left panel) and the plane-averaged partial charge density of each band edge state (VBM and CBM at K) versus the interlayer distance for θ = 60° and 27.8° (right panel) of MoSe2/WSe2 heterostructures. (h?i) Scheme of valley and spin polarizations excited by circularly polarized light in bilayers with suppressed (h) interlayer hopping and (i) strong interlayer coupling. (a, b) Reproduced with permission from Ref. [87]. (c, d) Reproduced with permission from Ref. [76]. (e) Reproduced with permission from Ref. [74]. (f) Reproduced with permission from Ref. [88]. (g) Reproduced with permission from Ref. [70]. (h, i) Reproduced with permission from Ref. [77].
Fig.3  Electronic structure and optical properties in twist heterostructures. (a) Quasiparticle band structure of AA′ and AB stacked bilayer TMDs. The green lines indicate the monolayer band structure. (b) Second-derivative plot of the ARPES band map along Mˉ?Γˉ?Kˉ of the MoS2 in Gr/MoS2 heterostructures under different twist angles. (c) Brillouin zone of Gr and surface Brillouin zone of MoS2 under twist angle θ. (d) Scheme of band alignment (left panel) and two-dimensional band structure (right panel) of twisted MoS2/WSe2 heterostructure. |+Γ? is the hybrid state of both layers and moves up as hybridization increases. (e) Measured PL peak energies and calculated transition energies of different interlayer excitons MoS2/WSe2 heterostructure with different twist angles. (f) Geometries (upper panel) and corresponding DFT-calculated band structures (lower panel) of MoSe2/WSe2 heterostructures under twist angle θ = 60° and 27.8°. The contributions of the MoSe2 (black) and WSe2 (red) layer are denoted in band structures. (g) Electric-field-dependent PL spectra of K?Г interlayer excitons (upper panel) and reflectance spectra of K?K intralayer excitons (lower panel) in different spots of t-BL MoSe2 at 4 K. (h) Shifted Brillouin zone corners of two constituent layers under a small twist in TMD heterostructure. The green arrows denote the displacement vector between τK and τK corner. (i) An interlayer exciton formed with kinematic momentum Q. The interlayer Coulomb interaction between the electron and the hole conserving their momentum sum is marked by the gray wavy line. (a) Reproduced with permission from Ref. [68]. (b, c) Reproduced with permission from Ref. [45]. (d, e) Reproduced with permission from Ref. [72]. (f) Reproduced with permission from Ref. [70]. (g) Reproduced with permission from Ref. [82]. (h, i) Reproduced with permission from Ref. [46].
Fig.4  Exciton dynamics modulated by twist angle. (a) Three types of band alignment in semiconductor heterostructures. The VB and CB represent valence band and conduction band positions, respectively. (b) Scheme of the charge transfer in type-II band alignment of TMD heterostructures. (c) Schematic illustration of interlayer hole transfer in of MoS2/WS2 heterostructures after optically pumping MoS2 A-exciton, while the electron remains in the MoS2 layer. (d) The transient absorption spectra obtained by selectively probing the WS2 A-exciton resonance in MoS2 monolayer or MoS2/WS2 heterostructures with varying twist angles. (e) Sketch of the band alignment and ultrafast charge transfer dynamics for twisted MoS2/WSe2 under 1.70 eV pump (left panel) and 1.85 eV pump (right panel). (f) The structure of the monolayer Brillouin zone, where the red and blue closed curves indicate the energy contours of Qc valleys. The dashed circle denotes a ring region with strong interlayer coupling of the conduction band. (g) Schematic illustrations of interlayer charge transfer process mediated by strong layer mixed Г and Q valleys in the energy (upper two panels) and momentum (lower two panels) spaces. The right two panels depict the electron transfer and those on the left correspond to the hole transfer. (h) Differential reflection signal of WS2/WSe2 heterostructures under 30° (upper panel) and 60° (lower panel) twist, respectively. (b) Reproduced with permission from Ref. [54]. (c, d) Reproduced with permission from Ref. [79]. (e) Reproduced with permission from Ref. [85]. (f, g) Reproduced with permission from Ref. [52]. (h) Reproduced with permission from Ref. [84].
Fig.5  Spin-valley polarization physics in twisted vdW TMD heterostructure. (a) Light cones at finite velocities and injection of pure valley current of excitons by linearly polarized light. Currents of different valleys are denoted by green and pink arrows. (b) Schematic of the interlayer excitons in the +K valley. Intralayer excitons are excited by σ+ polarized optical pump (black wavy lines) and form interlayer excitons in the +K valley through fast interlayer charge transfer (blue dotted arrows). (c) Circular polarization-resolved PL spectra of the interlayer exciton performing a strong valley polarization. (d) Polarization-resolved PL spectra (left panel) and degree of circular polarization (DOCP) (right panel) of intralayer (X0) and interlayer (XI) excitons in WSe2 bilayers with varying twist angles. (e) PL (upper panel) and DOCP (lower panel) of twisted MoSe2/WSe2 heterostructure under linearly polarized 532-nm laser pump and circular-polarized detection at 1.8 K. The splitting optical resonances are attributed to the moiré excitons. (a) Reproduced with permission from Ref. [46]. (b, c) Reproduced with permission from Ref. [51]. (d) Reproduced with permission from Ref. [73]. (e) Reproduced with permission from Ref. [83].
Fig.6  MSLs in twisted TMD heterostructures. High symmetry points in a moiré supercell of near R-stacking (a) and near H-stacking (b) MSLs. (c) CAFM image of near-0° (left panel) and near-60° (right panel) heterostructures presenting alternating triangular and hexagonal domains with constant conductivity and narrow boundaries. (a, b) Reproduced with permission from Ref. [93]. (c) Reproduced with permission from Ref. [140].
Fig.7  Theoretical predictions of excitons in moiré superlattices. (a) The monolayer Brillouin zones (solid blue and red hexagons) and the mini Brillouin zone of moiré superlattice (dash black hexagon). (b) The corresponding interlayer hopping terms (green double arrows) between different mini bands near the band edges of the 1D moiré mini BZ. (c) Exciton wave packets at the three high symmetry locals (left column) and the corresponding transformations of electron Bloch wave function with hexagon center of the hole layer as a rotation center. (d) Oscillator strength of the interlayer exciton (left panel) and optical selection rule (right panel) for the spin-up interlayer exciton at the K valley. The insert denotes the major axis of polarization with the length proportional to ellipticity. (e) Contrasted potential landscapes for the intralayer and interlayer excitons, with the optical selection rules for the spin-up species at the energy minima. (f) Upper panel: A perspective view of an STM image zoomed in on one moiré supercell. Lower panel: A height profile under varying stacking order along the diagonal line. (g) The site-dependent electronic structures in MoS2/WSe2 heterobilayers. Upper panel: The experimental values and calculated DFT results of energy differences between KW and ГW of valence band at four different local atomic registries. Lower panel: The experimental and calculated DFT results of local bandgap formed between the CBM of MoS2 and the VBM of WSe2. (h) Optical spectrum of K-valley interlayer excitons under different twist angles of WS2/MoS2 heterobilayer with AA stacking. The red and blue curves show the optical absorption in response to σ+- and σ?-polarized light at frequency ω, respectively. (i) The real-space probability function of the interlayer excitons responsible for the first three absorption peaks at θ = 1°. (a, b) Reproduced with permission from Ref. [52]. (c?e) Reproduced with permission from Ref. [49]. (f, g) Reproduced with permission from Ref. [56]. (h, i) Reproduced with permission from Ref. [56].
Fig.8  Experimental observations of moiré excitons. (a) STM image with different moiré locations of MoS2/WSe2 heterostructure (upper panel) and constant-height conductance map for voltage in the valence band-edge region (lower panel), where confined states occurred at B and C. (b) PL and reflectivity spectra of MoSe2 measured in monolayer and MoSe2/MoS2 heterostructure. (c) Spatial map showing the presence of MoSe2 transition splitting overlaid with the areas of most intense PL of MoS2 and MoSe2. (d) The energy of the observed MoSe2 transitions (blue and red dots) extracted along the horizontal dashed line of (c). Green diamonds denote the MoS2 PL intensity. (e) Comparison between the interlayer exciton PLE spectrum (black dots) and the reflection spectrum (blue curve) of WSe2/WS2 moiré superlattice. (f) Twist-angle dependent PL calculated for i) anti-parallel and ii) parallel stacking twisted WSe2 on SiO2 at 4 K. (g) Reflection contrast spectra in the range of the WSe2 A exciton on the electron-doping side. (h) Optical characteristics of moiré intralayer excitons in WSe2/WSe2 twisted homobilayer. Left panel: Comparing the PL spectra of WSe2 monolayer and homobilayer at 8 K. Right panel: PL spectra of homobilayers with twist angles of 1.36° and 3°. (i) Left panel: Moiré mini Brillouin zone (purple) defined by the moiré Bragg vectors (purple arrows). Right panel: Electronic band structures and Brillouin zone alignment for twisted MoSe2/WS2 heterobilayers. Spin-down (spin-up) bands are colored red or green (grey). (j) Band alignments with almost resonant conduction band states of the twisted bilayer of TMD MoX2 and WX′2 (X, X′ = S, Se, Te) for near parallel (θ ≈ 0°, left panel) and near antiparallel (θ ≈ 60°, right panel) cases. (k) Exciton hybridization in twisted bilayers TMDs. Upper panel: Schematic electronic band structure at the K and Λ valley of the two twisted layers (red and blue, respectively) as well as possible intra- (X) and interlayer excitons (IX). Lower panel: Schematic exciton center-of-mass dispersion without hybridization as well as hybridized K?Λ state hX (green). (l) Twist-angle dependent low-energy absorption spectra near the energy of A exciton in MoSe2/WS2 with resonant conduction band edges. The hXs form at closely alignment cases, leading to the avoided crossings marked by green arrows. The white arrows denote the absorption lines enabled by moiré Umklapp processes. (a) Reproduced with permission from Ref. [57]. (b?d) Reproduced with permission from Ref. [121]. (e, g) Reproduced with permission from Ref. [151]. (f, k) Reproduced with permission from Ref. [149]. (h) Reproduced with permission from Ref. [63]. (i) Reproduced with permission from Ref. [146]. (j, l) Reproduced with permission from Ref. [150].
Fig.9  Exciton properties and dynamics modulated by moiré superlattice. (a) Localized moiré excitons with different twist angles and energies in the MoS2/WS2 heterostructure. The charge densities of the electron and the hole are colored in red and blue, respectively. (b) Gate-dependent PL spectra (left panel) and DOLP (right panel) of the two exciton species in WSe2 bilayers with reconstructed moiré superlattice. Inset in the left panel: SEM image of the measured spot. (c) Upper panel: Band structure schematic and wavefunction distribution at important points in k-space. Lower panel: Side views of AB and BA domains, where type I and II locations are denoted by maroon and orange boxes, respectively. (d) Schematic of alternating properties in the 2D triangular exciton array, showing only excitons in the top layer for brevity. (e) Anomalous diffusion of interlayer excitons in WS2/WSe2 heterobilayers with exciton density at time zero N0 = 6.0 × 1012 cm?2 at 295 K, compared with the normal exciton diffusion in 1L-WSe2 and 1L-WS2 with linear temporal dependence. (f) Twist-angle- and temperature-dependent K?K and K?Q interlayer exciton dynamics. Left panel: Schematic of the probing electron (reflecting K?K interlayer exciton population) and hole (reflecting the sum of the K?K and K?Q exciton populations) dynamics. Right panel: The fitted decay time of the K?K exciton as a function of temperature under exciton density at 4.1 × 1012 cm?2. (g) Spatially resolved PL images of the interlayer excitons for CVD-grown sample A-1, mechanical exfoliation and transfer (MET) sample B-1, and MET sample C with different twist angles θ, respectively. (h) Schematics of the Brillouin zone of twisted bilayers. The red (blue) hexagons denote the Brillouin zone of MoSe2 (WS2) monolayers. In the left panel with θ = 6°, the green arrows indicate vectors of momentum shift between the Brillouin zone corners of the two monolayers. In the middle (right) panel, a commensurate moiré reciprocal lattice is formed with the corresponding moiré Brillouin zone denoted by the black hexagons. The yellow arrow represents the moiré reciprocal lattice base vector that connects KM and KW (KW). (i) Twist-angle dependence of normalized PL spectra at 290 K (left panel) and reflectance contrast spectra at 10 K (right panel) of MoSe2/WS2 heterobilayers near the A-exciton energy in an isolated MoSe2 monolayer (black). (a) Reproduced with permission from Ref. [50]. (b?d) Reproduced with permission from Ref. [141]. (e, f) Reproduced with permission from Ref. [134]. (g) Reproduced with permission from Ref. [158]. (h) Reproduced with permission from Ref. [135]. (i) Reproduced with permission from Ref. [146].
Fig.10  Spin-valley configurations of moiré excitons. (a) Circular-polarization-resolved PL spectrum of MoSe2 measured in (left panel) and out of (right panel) the MoSe2/MoS2 heterostructure region at T = 5 K. The green bars represent the DOP of the peaks. (b) Interlayer excitons valley polarization in WSe2/WSe2 twisted homobilayer at T = 8 K. (c) The illustration of the interlayer excitons transitions for IX1 and IX2 showing opposite circular polarizations. (d) Valley polarization of trapped interlayer excitons of MoSe2/WSe2 heterobilayers with twist angles of 57° (co-circularly polarized), 20° (cross-circularly polarized) and 2° (co-circularly polarized) excited by σ+-polarized light at T = 1.6 K. The σ+ and σ? components of the photoluminescence are shown in red and blue, respectively. (e) Dependence of Zeeman splitting of trapped interlayer excitons on the twist angle in MoSe2/WSe2 heterobilayer. Top: Helicity-resolved PL spectra at 3 T under linearly polarized excitation. Bottom: Plot of total PL intensity as a function of magnetic field. (f) The spin-conserved and spin-flip momentum matrix elements for R-type and H-type MoSe2/WSe2 heterobilayers. The red, blue and black colors correspond to the σ+, σ? and out-of-plane (z) polarized components, respectively. (g) Valley-polarized singlet and triplet interlayer exciton emissions for hBN encapsulated WSe2/MoSe2 twisted bilayer. (h) Circular-polarization-resolved PL spectra of representative IXR excitons of TL heterostructures (ML-WSe2 and BL 2H-MoSe2) trapped in the site Rhh under linearly polarized excitation at 2.33 eV and different applied magnetic fields. (i) Schematics of the selection rules for optical transitions involving the K-point valence band for both spin-singlet and spin-triplet IXs trapped in moiré potential sites with different atomic registries. (j) Sketch of the TL heterostructures consisting of a 2H BL-MoSe2 crystal with ML- and BL-thick terraces stacked on top of an ML-WSe2. Electrons (red shadows) at the ±K valleys localized either in the bottom or top layer MoSe2, are strongly bound to holes (blue shadows) in the WSe2, creating two species of IX (green circles): IXH and IXR, respectively. (a) Reproduced with permission from Ref. [121]. (b, c) Reproduced with permission from Ref. [63]. (d, e) Reproduced with permission from Ref. [62]. (f) Reproduced with permission from Ref. [66]. (g) Reproduced with permission from Ref. [164]. (h) (i, j) Reproduced with permission from Ref. [165].
Fig.11  Moiré system tunning by external methods. (a) The charge density distribution for the lowest-energy moiré exciton in the twisted MoS2/WS2 heterostructure under different electric fields. Red and blue colors represent the charge density of the electron and the hole, respectively. (b) Upper panel: Schematic of the dual-gate device structure for WSe2/WS2 bilayer. Lower panel: Type II band alignment for 60°-aligned and 0°-aligned samples. Intralayer (interlayer) dipole-allowed optical transitions are represented by solid (dashed) double-headed arrows. (c) Electric-field dependence of layer-hybridized excitons in 60°-aligned WSe2/WS2 moiré superlattice at fixed doping densities. Top row: Energy derivative of the reflectance contrast spectrum. Bottom row: The extracted exciton resonance energies, where solid red lines and dashed black lines represent experimental data and the best fit three-level model, respectively. The blue dotted lines show the dispersion of uncoupled exciton states. (d) Moiré trions in a twisted bilayer MoS2. The left panel is the color plot of PL spectra under varying gate voltage. Right panel: Peak intensities of the two trion peaks as a function of gate voltage. (e) Phase diagram of moiré trion formation as a function of exciton density and electron density under positive gating, where Nm denotes moiré trap density. TAB represent different types of trions, where the subscripts A and B denote the phase of the exciton and the electron involved in the trion formation, respectively. (f) PL spectra as a function of doping. Insets depict the charge configuration of both neutral and charged excitons. (g) Left two panels: Schematic of quasi-1D moiré superlattices formed with a uniaxial strain S of 8% under different twist angle ?θ, where the arrows highlight the primary 1D moiré structures and the dashed rectangles of the secondary ones. Right two panels: PFM images at different locations of the twisted hBN/WSe2/MoSe2. Insets: FFTs of the PFM images. (h) Schematic of dynamic tunning of moiré excitons in WSe2/WS2 heterostructure by optical fiber tip (upper panel) and DAC (lower panel). (i) Direct correlation between 1D moiré patterns and linearly polarized PL emissions for WSe2/MoSe2 heterobilayers under different twist angles. Top row: Angular dependence of the PL emission. Bottom row: Corresponding angular distribution in the 2D FFTs of the PFM images. The light-golden sectors represent the angular distributions of the primary oval structures in the strained moiré landscapes, while the green sectors denote the angular distributions of the secondary pseudo-1D stripes formed by the primary structures. The blue double arrows represent the corresponding PL polarization directions. (a) Reproduced with permission from Ref. [50]. (b, c) Reproduced with permission from Ref. [148]. (d, e) Reproduced with permission from Ref. [154]. (f) Reproduced with permission from Ref. [166]. (g, i) Reproduced with permission from Ref. [167]. (h) Reproduced with permissions from Refs. [144, 168].
Fig.12  Correlated electronic states in moiré systems. (a) Illustration of a near-zero twisted WSe2/WS2 heterostructure device used for an ODRC measurement. A small a.c. bias (ΔV~) leads to charge redistribution between the region covered by top gate and the uncovered region, which is detected via the change in the optical reflectivity of the WSe2 exciton in the uncovered region. (b) The doping-dependent Mott insulating states and Wigner crystal of devices in (a) probed by optical contrast reflectance ΔOC. (c) Illustrations of generalized Wigner crystal and Mott insulator states in a WSe2/WS2 moiré superlattice. (d) Two-terminal resistance of 60° aligned WSe2/WS2 bilayers as a function of filling factor at different temperatures. The inset shows the temperature-dependent resistance at two different filling factors. (e) Dependence of the magnetic susceptibility g–g0 (left axis, black filled symbols) on the filling factor at 1.65 K and Weiss constant θ (right axis, red empty symbols) in 60° aligned WSe2/WS2 bilayers, with n0/n022 as the density of moiré supercell. Here g–g0 is the difference of Landé g-factor between excitons in the moiré superlattice and bare excitons. (f) Nearly two dozen insulating states and their energy ordering in a WSe2/WS2 moiré heterostructure at 1.6 K probed by the 2s exciton in the sensor. The top axis shows the proposed filling factor for the insulating states. (g) Gate dependence of differential reflectance spectrum of MoSe2/hBN/MoSe2 with back gate fixed at 4 V. (h) Observation of optically induced ferromagnetism at near v=?1/133 filling of WS2/WSe2 measured by power-dependent RMCD at 1.6 K. (i) Electric field dependence of differential reflectance spectrum of MoSe2/hBN/MoSe2 at two fixed filling factors, with charge configuration of the top and bottom layer indicated by (vtop,vbot) in green. (j) Schematic of moiré exciton I and III under hole and electron doping. (k) Doping-dependent reflection contrast spectrum of a WSe2/WS2 moiré superlattice shows distinct behaviour for WSe2 moiré excitons I, II and III. (l) The schematic of hole distributions for the double-layer system of (left panel) the Mott insulator at point A of (m), (middle panel) interlayer exciton insulator at point B of (m), and (right panel) the particle-hole transformation of the doped Mott insulator state at point B of (m) to form the interlayer exciton insulator. (m) The phase diagram of the correlated interlayer exciton insulator in the double-layer system detected by the WSe2 monolayer 2s exciton signal. (n) MIM spectra as a function of gate voltage for the moiré superlattice of 1L/1L, 2L/1L and 3L/1L WSe2/WS2 at 10 K, respectively. (a?c) Reproduced with permission from Ref. [181]. (d, e) Reproduced with permission from Ref. [129]. (f) Reproduced with permission from Ref. [130]. (g, i) Reproduced with permission from Ref. [131]. (h) Reproduced with permission from Ref. [187]. (j, k) Reproduced with permission from Ref. [186]. (l, m) Reproduced with permission from Ref. [188]. (n) Reproduced with permission from Ref. [185].
1 Osada M. , Sasaki T. . Two‐dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater., 2012, 24(2): 210
https://doi.org/10.1002/adma.201103241
2 Xu M. , Liang T. , Shi M. , Chen H. . Graphene-like two-dimensional materials. Chem. Rev., 2013, 113(5): 3766
https://doi.org/10.1021/cr300263a
3 S. Novoselov K. , Jiang D. , Schedin F. , J. Booth T. , V. Khotkevich V. , V. Morozov S. , K. Geim A. . Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 2005, 102(30): 10451
https://doi.org/10.1073/pnas.0502848102
4 K. Geim A. , S. Novoselov K. . The rise of graphene. Nat. Mater., 2007, 6(3): 183
https://doi.org/10.1038/nmat1849
5 Vogt P. , De Padova P. , Quaresima C. , Avila J. , Frantzeskakis E. , C. Asensio M. , Resta A. , Ealet B. , Le Lay G. . Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett., 2012, 108(15): 155501
https://doi.org/10.1103/PhysRevLett.108.155501
6 Watanabe K. , Taniguchi T. , Kanda H. . Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater., 2004, 3(6): 404
https://doi.org/10.1038/nmat1134
7 Song L. , Ci L. , Lu H. , B. Sorokin P. , Jin C. , Ni J. , G. Kvashnin A. , G. Kvashnin D. , Lou J. , I. Yakobson B. , M. Ajayan P. . Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209
https://doi.org/10.1021/nl1022139
8 Liu H. , T. Neal A. , Zhu Z. , Luo Z. , Xu X. , Tománek D. , D. Ye P. . Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
https://doi.org/10.1021/nn501226z
9 Li L. , Yu Y. , J. Ye G. , Ge Q. , Ou X. , Wu H. , Feng D. , H. Chen X. , Zhang Y. . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
https://doi.org/10.1038/nnano.2014.35
10 Ataca C.Topsakal M.Aktürk E.Ciraci S., A comparative study of lattice dynamics of three- and two-dimensional MoS2, J. Phys. Chem. C 115(33), 16354 (2011)
11 Ganatra R. , Zhang Q. . Few-layer MoS2: A promising layered semiconductor. ACS Nano, 2014, 8(5): 4074
https://doi.org/10.1021/nn405938z
12 H. Wang Q. , Kalantar-zadeh K. , Kis A. , N. Coleman J. , S. Strano M. . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
13 Gong C. , Zhang H. , Wang W. , Colombo L. , M. Wallace R. , Cho K. . Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett., 2013, 103(5): 053513
https://doi.org/10.1063/1.4817409
14 J. Chuang H. , Tan X. , J. Ghimire N. , M. Perera M. , Chamlagain B. , M. C. Cheng M. , Yan J. , Mandrus D. , Tománek D. , Zhou Z. . High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett., 2014, 14(6): 3594
https://doi.org/10.1021/nl501275p
15 Ye Y. , J. Wong Z. , Lu X. , Ni X. , Zhu H. , Chen X. , Wang Y. , Zhang X. . Monolayer excitonic laser. Nat. Photonics, 2015, 9(11): 733
https://doi.org/10.1038/nphoton.2015.197
16 K. Luo Y. , Xu J. , Zhu T. , Wu G. , J. McCormick E. , Zhan W. , R. Neupane M. , K. Kawakami R. . Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett., 2017, 17(6): 3877
https://doi.org/10.1021/acs.nanolett.7b01393
17 Radisavljevic B. , B. Whitwick M. , Kis A. . Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5(12): 9934
https://doi.org/10.1021/nn203715c
18 S. Ross J. , Rivera P. , Schaibley J. , Lee-Wong E. , Yu H. , Taniguchi T. , Watanabe K. , Yan J. , Mandrus D. , Cobden D. , Yao W. , Xu X. . Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett., 2017, 17(2): 638
https://doi.org/10.1021/acs.nanolett.6b03398
19 Gao C. , Nie Q. , Y. Lin C. , Huang F. , Wang L. , Xia W. , Wang X. , Hu Z. , Li M. , W. Lu H. , C. Lai Y. , F. Lin Y. , Chu J. , Li W. . Touch-modulated van der Waals heterostructure with self-writing power switch for synaptic simulation. Nano Energy, 2022, 91: 106659
https://doi.org/10.1016/j.nanoen.2021.106659
20 D. Wenbiao Niu G. , Jia Z. , Q. Ma X. , Y. Zhao J. , Zhou K. , T. Han S. , C. Kuo C. , Zhou Y. . Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402
https://doi.org/10.1007/s11467-023-1329-8
21 Chaves A. , G. Azadani J. , Alsalman H. , R. da Costa D. , Frisenda R. , J. Chaves A. , H. Song S. , D. Kim Y. , He D. , Zhou J. , Castellanos-Gomez A. , M. Peeters F. , Liu Z. , L. Hinkle C. , Oh S.-H. , D. Ye P. , J. Koester S. , H. Lee Y. , Avouris P. , Wang X. , Low T. . Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl., 2020, 4: 29
https://doi.org/10.1038/s41699-020-00162-4
22 Wang Y. , Nie Z. , Wang F. . Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors. Light Sci. Appl., 2020, 9(1): 192
https://doi.org/10.1038/s41377-020-00430-4
23 Wu S. , S. Ross J. , B. Liu G. , Aivazian G. , Jones A. , Fei Z. , Zhu W. , Xiao D. , Yao W. , Cobden D. , Xu X. . Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys., 2013, 9(3): 149
https://doi.org/10.1038/nphys2524
24 Lee I. , Rathi S. , Lim D. , Li L. , Park J. , Lee Y. , S. Yi K. , P. Dhakal K. , Kim J. , Lee C. , H. Lee G. , D. Kim Y. , Hone J. , J. Yun S. , H. Youn D. , H. Kim G. . Gate-tunable hole and electron carrier transport in atomically thin dual-channel WSe2/MoS2 heterostructure for ambipolar field-effect transistors. Adv. Mater., 2016, 28(43): 9519
https://doi.org/10.1002/adma.201601949
25 Lee J. , F. Mak K. , Shan J. . Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11: 421
https://doi.org/10.1038/nnano.2015.337
26 A. Jauregui L. , Y. Joe A. , Pistunova K. , S. Wild D. , A. High A. , Zhou Y. , Scuri G. , De Greve K. , Sushko A. , H. Yu C. , Taniguchi T. , Watanabe K. , J. Needleman D. , D. Lukin M. , Park H. , Kim P. . Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870
https://doi.org/10.1126/science.aaw4194
27 Chernikov A. , M. van der Zande A. , M. Hill H. , F. Rigosi A. , Velauthapillai A. , Hone J. , F. Heinz T. . Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett., 2015, 115(12): 126802
https://doi.org/10.1103/PhysRevLett.115.126802
28 V. Nguyen P. , C. Teutsch N. , P. Wilson N. , Kahn J. , Xia X. , J. Graham A. , Kandyba V. , Giampietri A. , Barinov A. , C. Constantinescu G. , Yeung N. , Hine N. , Xu X. , H. Cobden D. , R. Wilson N. . Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature, 2019, 572(7768): 220
https://doi.org/10.1038/s41586-019-1402-1
29 Peng Z. , Chen X. , Fan Y. , J. Srolovitz D. , Lei D. . Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications. Light Sci. Appl., 2020, 9(1): 190
https://doi.org/10.1038/s41377-020-00421-5
30 J. Conley H. , Wang B. , I. Ziegler J. , F. Jr Haglund R. , T. Pantelides S. , I. Bolotin K. . Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett., 2013, 13(8): 3626
https://doi.org/10.1021/nl4014748
31 G. Harats M. , N. Kirchhof J. , Qiao M. , Greben K. , I. Bolotin K. . Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photonics, 2020, 14(5): 324
https://doi.org/10.1038/s41566-019-0581-5
32 Li Z. , Lv Y. , Ren L. , Li J. , Kong L. , Zeng Y. , Tao Q. , Wu R. , Ma H. , Zhao B. , Wang D. , Dang W. , Chen K. , Liao L. , Duan X. , Duan X. , Liu Y. . Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun., 2020, 11(1): 1151
https://doi.org/10.1038/s41467-020-15023-3
33 Luo G. , Lv X. , Wen L. , Li Z. , Dai Z. . Strain induced topological transitions in twisted double bilayer graphene. Front. Phys., 2022, 17(2): 23502
https://doi.org/10.1007/s11467-021-1146-x
34 M. Fitzgerald J. , J. P. Thompson J. , Malic E. . Twist angle tuning of moiré exciton polaritons in van der Waals heterostructures. Nano Lett., 2022, 22(11): 4468
https://doi.org/10.1021/acs.nanolett.2c01175
35 Hoshi Y. , Kuroda T. , Okada M. , Moriya R. , Masubuchi S. , Watanabe K. , Taniguchi T. , Kitaura R. , Machida T. . Suppression of exciton−exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B, 2017, 95(24): 241403
https://doi.org/10.1103/PhysRevB.95.241403
36 K. M. Newaz A. , S. Puzyrev Y. , Wang B. , T. Pantelides S. , I. Bolotin K. . Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nat. Commun., 2012, 3(1): 734
https://doi.org/10.1038/ncomms1740
37 Raja A. , Chaves A. , Yu J. , Arefe G. , M. Hill H. , F. Rigosi A. , C. Berkelbach T. , Nagler P. , Schüller C. , Korn T. , Nuckolls C. , Hone J. , E. Brus L. , F. Heinz T. , R. Reichman D. , Chernikov A. . Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun., 2017, 8(1): 15251
https://doi.org/10.1038/ncomms15251
38 P. Wilson N. , Yao W. , Shan J. , Xu X. . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383
https://doi.org/10.1038/s41586-021-03979-1
39 F. Mak K. , Lee C. , Hone J. , Shan J. , F. Heinz T. . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105: 136805
https://doi.org/10.1103/physrevlett.105.136805
40 Li Y. , Chernikov A. , Zhang X. , Rigosi A. , M. Hill H. , M. van der Zande A. , A. Chenet D. , M. Shih E. , Hone J. , F. Heinz T. . Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 2014, 90(20): 205422
https://doi.org/10.1103/PhysRevB.90.205422
41 C. Berkelbach T. , S. Hybertsen M. , R. Reichman D. . Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B, 2013, 88(4): 045318
https://doi.org/10.1103/PhysRevB.88.045318
42 Xiao D. , Yao W. , Niu Q. . Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett., 2007, 99(23): 236809
https://doi.org/10.1103/PhysRevLett.99.236809
43 Yao W. , Xiao D. , Niu Q. . Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406
https://doi.org/10.1103/PhysRevB.77.235406
44 Cao T. , Wang G. , Han W. , Ye H. , Zhu C. , Shi J. , Niu Q. , Tan P. , Wang E. , Liu B. , Feng J. . Valley- selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 2012, 3(1): 887
https://doi.org/10.1038/ncomms1882
45 Jin W. , C. Yeh P. , Zaki N. , Chenet D. , Arefe G. , Hao Y. , Sala A. , O. Mentes T. , I. Dadap J. , Locatelli A. , Hone J. , M. Osgood R. . Tuning the electronic structure of monolayer graphene/MoS2 van der Waals heterostructures via interlayer twist. Phys. Rev. B, 2015, 92(20): 201409
https://doi.org/10.1103/PhysRevB.92.201409
46 Yu H. , Wang Y. , Tong Q. , Xu X. , Yao W. . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett., 2015, 115(18): 187002
https://doi.org/10.1103/PhysRevLett.115.187002
47 P. Eisenstein J. , H. MacDonald A. . Bose–Einstein condensation of excitons in bilayer electron systems. Nature, 2004, 432(7018): 691
https://doi.org/10.1038/nature03081
48 R. Dean C. , Wang L. , Maher P. , Forsythe C. , Ghahari F. , Gao Y. , Katoch J. , Ishigami M. , Moon P. , Koshino M. , Taniguchi T. , Watanabe K. , L. Shepard K. , Hone J. , Kim P. . Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 2013, 497(7451): 598
https://doi.org/10.1038/nature12186
49 Yu H. , B. Liu G. , Tang J. , Xu X. , Yao W. . Moiré excitons: From programmable quantum emitter arrays to spin‒orbit coupled artificial lattices. Sci. Adv., 2017, 3(11): e1701696
https://doi.org/10.1126/sciadv.1701696
50 Guo H. , Zhang X. , Lu G. . Shedding light on moiré excitons: A first-principles perspective. Sci. Adv., 2020, 6(42): eabc5638
https://doi.org/10.1126/sciadv.abc5638
51 Rivera P. , L. Seyler K. , Yu H. , R. Schaibley J. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Valley- polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688
https://doi.org/10.1126/science.aac7820
52 Wang Y. , Wang Z. , Yao W. , B. Liu G. , Yu H. . Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B, 2017, 95(11): 115429
https://doi.org/10.1103/PhysRevB.95.115429
53 Ren W. , Lu S. , Yu C. , He J. , Zhang Z. , Chen J. , Zhang G. . Impact of moiré superlattice on atomic stress and thermal transport in van der Waals heterostructures. Appl. Phys. Rev., 2023, 10(4): 041404
https://doi.org/10.1063/5.0159598
54 Jiang Y. , Chen S. , Zheng W. , Zheng B. , Pan A. . Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl., 2021, 10(1): 72
https://doi.org/10.1038/s41377-021-00500-1
55 Tong Q. , Yu H. , Zhu Q. , Wang Y. , Xu X. , Yao W. . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
https://doi.org/10.1038/nphys3968
56 Zhang C. , P. Chuu C. , Ren X. , Y. Li M. , J. Li L. , Jin C. , Y. Chou M. , K. Shih C. , couplings Interlayer . Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv., 2017, 3(1): e1601459
https://doi.org/10.1126/sciadv.1601459
57 Pan Y. , Fölsch S. , Nie Y. , Waters D. , C. Lin Y. , Jariwala B. , Zhang K. , Cho K. , A. Robinson J. , M. Feenstra R. . Quantum-confined electronic states arising from the moiré pattern of MoS2–WSe2 heterobilayers. Nano Lett., 2018, 18(3): 1849
https://doi.org/10.1021/acs.nanolett.7b05125
58 J. McGilly L. , Kerelsky A. , R. Finney N. , Shapovalov K. , M. Shih E. , Ghiotto A. , Zeng Y. , L. Moore S. , Wu W. , Bai Y. , Watanabe K. , Taniguchi T. , Stengel M. , Zhou L. , Hone J. , Zhu X. , N. Basov D. , Dean C. , E. Dreyer C. , N. Pasupathy A. . Visualization of moiré superlattices. Nat. Nanotechnol., 2020, 15(7): 580
https://doi.org/10.1038/s41565-020-0708-3
59 Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
60 Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
61 Li L. , Wu M. , Lu X. . Correlation, superconductivity and topology in graphene moiré superlattice. Front. Phys., 2023, 18(4): 43401
https://doi.org/10.1007/s11467-023-1302-6
62 L. Seyler K. , Rivera P. , Yu H. , P. Wilson N. , L. Ray E. , G. Mandrus D. , Yan J. , Yao W. , Xu X. . Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66
https://doi.org/10.1038/s41586-019-0957-1
63 Wu B. , Zheng H. , Li S. , Ding J. , He J. , Zeng Y. , Chen K. , Liu Z. , Chen S. , Pan A. , Liu Y. . Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl., 2022, 11(1): 166
https://doi.org/10.1038/s41377-022-00854-0
64 Wu F. , Lovorn T. , H. MacDonald A. . Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett., 2017, 118(14): 147401
https://doi.org/10.1103/PhysRevLett.118.147401
65 Wu F. , Lovorn T. , H. MacDonald A. . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B, 2018, 97(3): 035306
https://doi.org/10.1103/PhysRevB.97.035306
66 Yu H. , B. Liu G. , Yao W. . Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater., 2018, 5: 035021
https://doi.org/10.1088/2053-1583/aac065
67 Jin C. , C. Regan E. , Wang D. , Iqbal Bakti Utama M. , S. Yang C. , Cain J. , Qin Y. , Shen Y. , Zheng Z. , Watanabe K. , Taniguchi T. , Tongay S. , Zettl A. , Wang F. . Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys., 2019, 15(11): 1140
https://doi.org/10.1038/s41567-019-0631-4
68 He J. , Hummer K. , Franchini C. . Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 2014, 89(7): 075409
https://doi.org/10.1103/PhysRevB.89.075409
69 Liu Q. , Li L. , Li Y. , Gao Z. , Chen Z. , Lu J. . Tuning electronic structure of bilayer MoS2 by vertical electric field: A first-principles investigation. J. Phys. Chem. C, 2012, 116(40): 21556
https://doi.org/10.1021/jp307124d
70 K. Nayak P. , Horbatenko Y. , Ahn S. , Kim G. , U. Lee J. , Y. Ma K. , R. Jang A. , Lim H. , Kim D. , Ryu S. , Cheong H. , Park N. , S. Shin H. . Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano, 2017, 11(4): 4041
https://doi.org/10.1021/acsnano.7b00640
71 Choi W. , Akhtar I. , A. Rehman M. , Kim M. , Kang D. , Jung J. , Myung Y. , Kim J. , Cheong H. , Seo Y. . Twist-angle-dependent optoelectronics in a few-layer transition-metal dichalcogenide heterostructure. ACS Appl. Mater. Interfaces, 2019, 11(2): 2470
https://doi.org/10.1021/acsami.8b15817
72 Kunstmann J. , Mooshammer F. , Nagler P. , Chaves A. , Stein F. , Paradiso N. , Plechinger G. , Strunk C. , Schüller C. , Seifert G. , R. Reichman D. , Korn T. . Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys., 2018, 14(8): 801
https://doi.org/10.1038/s41567-018-0123-y
73 Scuri G. , I. Andersen T. , Zhou Y. , S. Wild D. , Sung J. , J. Gelly R. , Bérubé D. , Heo H. , Shao L. , Y. Joe A. , M. Mier Valdivia A. , Taniguchi T. , Watanabe K. , Lončar M. , Kim P. , D. Lukin M. , Park H. . Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett., 2020, 124(21): 217403
https://doi.org/10.1103/PhysRevLett.124.217403
74 Zheng S. , Sun L. , Zhou X. , Liu F. , Liu Z. , Shen Z. , J. Fan H. . Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater., 2015, 3(11): 1600
https://doi.org/10.1002/adom.201500301
75 A. Puretzky A. , Liang L. , Li X. , Xiao K. , G. Sumpter B. , Meunier V. , B. Geohegan D. . Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano, 2016, 10(2): 2736
https://doi.org/10.1021/acsnano.5b07807
76 Zhang J. , Wang J. , Chen P. , Sun Y. , Wu S. , Jia Z. , Lu X. , Yu H. , Chen W. , Zhu J. , Xie G. , Yang R. , Shi D. , Xu X. , Xiang J. , Liu K. , Zhang G. . Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater., 2016, 28(10): 1950
https://doi.org/10.1002/adma.201504631
77 Jiang T. , Liu H. , Huang D. , Zhang S. , Li Y. , Gong X. , R. Shen Y. , T. Liu W. , Wu S. . Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol., 2014, 9(10): 825
https://doi.org/10.1038/nnano.2014.176
78 Wang K. , Huang B. , Tian M. , Ceballos F. , W. Lin M. , Mahjouri-Samani M. , Boulesbaa A. , A. Puretzky A. , M. Rouleau C. , Yoon M. , Zhao H. , Xiao K. , Duscher G. , B. Geohegan D. . Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano, 2016, 10(7): 6612
https://doi.org/10.1021/acsnano.6b01486
79 Ji Z. , Hong H. , Zhang J. , Zhang Q. , Huang W. , Cao T. , Qiao R. , Liu C. , Liang J. , Jin C. , Jiao L. , Shi K. , Meng S. , Liu K. . Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano, 2017, 11(12): 12020
https://doi.org/10.1021/acsnano.7b04541
80 Wu L. , Cong C. , Shang J. , Yang W. , Chen Y. , Zhou J. , Ai W. , Wang Y. , Feng S. , Zhang H. , Liu Z. , Yu T. . Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res., 2021, 14(7): 2215
https://doi.org/10.1007/s12274-020-3193-y
81 Wang X. , Yasuda K. , Zhang Y. , Liu S. , Watanabe K. , Taniguchi T. , Hone J. , Fu L. , Jarillo-Herrero P. . Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol., 2022, 17: 367
https://doi.org/10.1038/s41565-021-01059-z
82 Sung J. , Zhou Y. , Scuri G. , Zólyomi V. , I. Andersen T. , Yoo H. , S. Wild D. , Y. Joe A. , J. Gelly R. , Heo H. , J. Magorrian S. , Bérubé D. , M. M. Valdivia A. , Taniguchi T. , Watanabe K. , D. Lukin M. , Kim P. , I. Fal’ko V. , Park H. . Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol., 2020, 15(9): 750
https://doi.org/10.1038/s41565-020-0728-z
83 Michl J. , C. Palekar C. , A. Tarasenko S. , Lohof F. , Gies C. , von Helversen M. , Sailus R. , Tongay S. , Taniguchi T. , Watanabe K. , Heindel T. , Rosa B. , Rödel M. , Shubina T. , Höfling S. , Reitzenstein S. , Anton-Solanas C. , Schneider C. . Intrinsic circularly polarized exciton emission in a twisted van der Waals heterostructure. Phys. Rev. B, 2022, 105(24): L241406
https://doi.org/10.1103/PhysRevB.105.L241406
84 Shi J. , Li Y. , Zhang Z. , Feng W. , Wang Q. , Ren S. , Zhang J. , Du W. , Wu X. , Sui X. , Mi Y. , Wang R. , Sun Y. , Zhang L. , Qiu X. , Lu J. , Shen C. , Zhang Y. , Zhang Q. , Liu X. . Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics, 2019, 6(12): 3082
https://doi.org/10.1021/acsphotonics.9b00855
85 E. Zimmermann J. , Axt M. , Mooshammer F. , Nagler P. , Schüller C. , Korn T. , Höfer U. , Mette G. . Ultrafast charge-transfer dynamics in twisted MoS2/WSe2 heterostructures. ACS Nano, 2021, 15(9): 14725
https://doi.org/10.1021/acsnano.1c04549
86 Luo D. , Tang J. , Shen X. , Ji F. , Yang J. , Weathersby S. , E. Kozina M. , Chen Z. , Xiao J. , Ye Y. , Cao T. , Zhang G. , Wang X. , M. Lindenberg A. . Twist-angle-dependent ultrafast charge transfer in MoS2-graphene van der Waals heterostructures. Nano Lett., 2021, 21(19): 8051
https://doi.org/10.1021/acs.nanolett.1c02356
87 M. van der Zande A. , Kunstmann J. , Chernikov A. , A. Chenet D. , You Y. , Zhang X. , Y. Huang P. , C. Berkelbach T. , Wang L. , Zhang F. , S. Hybertsen M. , A. Muller D. , R. Reichman D. , F. Heinz T. , C. Hone J. . Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett., 2014, 14(7): 3869
https://doi.org/10.1021/nl501077m
88 Huang S. , Ling X. , Liang L. , Kong J. , Terrones H. , Meunier V. , S. Dresselhaus M. . Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett., 2014, 14(10): 5500
https://doi.org/10.1021/nl5014597
89 Wang Y. , Su Z. , Wu W. , Nie S. , Xie N. , Gong H. , Guo Y. , Hwan Lee J. , Xing S. , Lu X. , Wang H. , Lu X. , McCarty K. , Pei S. , Robles-Hernandez F. , G. Hadjiev V. , Bao J. . Resonance Raman spectroscopy of G-line and folded phonons in twisted bilayer graphene with large rotation angles. Appl. Phys. Lett., 2013, 103(12): 123101
https://doi.org/10.1063/1.4821434
90 C. Lu C. , C. Lin Y. , Liu Z. , H. Yeh C. , Suenaga K. , W. Chiu P. . Twisting bilayer graphene superlattices. ACS Nano, 2013, 7(3): 2587
https://doi.org/10.1021/nn3059828
91 Ren W. , Chen J. , Zhang G. . Phonon physics in twisted two-dimensional materials. Appl. Phys. Lett., 2022, 121: 140501
https://doi.org/10.1063/5.0106676
92 Dai Y. , Qi P. , Tao G. , Yao G. , Shi B. , Liu Z. , Liu Z. , He X. , Peng P. , Dang Z. , Zheng L. , Zhang T. , Gong Y. , Guan Y. , Liu K. , Fang Z. . Phonon-assisted upconversion in twisted two-dimensional semiconductors. Light Sci. Appl., 2023, 12(1): 6
https://doi.org/10.1038/s41377-022-01051-9
93 Huang D. , Choi J. , K. Shih C. , Li X. . Excitons in semiconductor moiré superlattices. Nat. Nanotechnol., 2022, 17(3): 227
https://doi.org/10.1038/s41565-021-01068-y
94 Xiao D. , B. Liu G. , Feng W. , Xu X. , Yao W. . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
https://doi.org/10.1103/PhysRevLett.108.196802
95 F. Mak K. , He K. , Shan J. , F. Heinz T. . Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7: 494
https://doi.org/10.1038/nnano.2012.96
96 Sallen G. , Bouet L. , Marie X. , Wang G. , R. Zhu C. , P. Han W. , Lu Y. , H. Tan P. , Amand T. , L. Liu B. , Urbaszek B. . Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B., 2012, 86(8): 081301
https://doi.org/10.1103/PhysRevB.86.081301
97 F. Mak K. , L. McGill K. , Park J. , L. McEuen P. . The valley Hall effect in MoS2 transistors. Science, 2014, 344: 1489
https://doi.org/10.1126/science.1250140
98 Lee J. , Wang Z. , Xie H. , F. Mak K. , Shan J. . Valley magnetoelectricity in single-layer MoS2. Nat. Mater., 2017, 16: 887
https://doi.org/10.1038/nmat4931
99 Srivastava A. , Sidler M. , V. Allain A. , S. Lembke D. , Kis A. , Imamoğlu A. . Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
https://doi.org/10.1038/nphys3203
100 Gong Z. , B. Liu G. , Yu H. , Xiao D. , Cui X. , Xu X. , Yao W. . Magnetoelectric effects and valley- controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun., 2013, 4(1): 2053
https://doi.org/10.1038/ncomms3053
101 Ebnonnasir A. , Narayanan B. , Kodambaka S. , V. Ciobanu C. . Tunable MoS2 bandgap in MoS2-graphene heterostructures. Appl. Phys. Lett., 2014, 105: 031603
https://doi.org/10.1063/1.4891430
102 Rivera P. , R. Schaibley J. , M. Jones A. , S. Ross J. , Wu S. , Aivazian G. , Klement P. , Seyler K. , Clark G. , J. Ghimire N. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun., 2015, 6(1): 6242
https://doi.org/10.1038/ncomms7242
103 Rivera P. , Yu H. , L. Seyler K. , P. Wilson N. , Yao W. , Xu X. . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2018, 13(11): 1004
https://doi.org/10.1038/s41565-018-0193-0
104 R. Schaibley J. , Yu H. , Clark G. , Rivera P. , S. Ross J. , L. Seyler K. , Yao W. , Xu X. . Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
105 F. Mak K. , Xiao D. , Shan J. . Light–valley interactions in 2D semiconductors. Nat. Photonics, 2018, 12(8): 451
https://doi.org/10.1038/s41566-018-0204-6
106 Singh A. , Tran K. , Kolarczik M. , Seifert J. , Wang Y. , Hao K. , Pleskot D. , M. Gabor N. , Helmrich S. , Owschimikow N. , Woggon U. , Li X. . Long-lived valley polarization of intravalley trions in monolayer WSe2. Phys. Rev. Lett., 2016, 117(25): 257402
https://doi.org/10.1103/PhysRevLett.117.257402
107 Ge M. , Wang H. , Wu J. , Si C. , Zhang J. , Zhang S. . Enhanced valley splitting of WSe2 in twisted van der Waals WSe2/CrI3 heterostructures. npj Comput. Mater., 2022, 8: 32
https://doi.org/10.1038/s41524-022-00715-9
108 Hu W. , Yang J. . Two-dimensional van der Waals heterojunctions for functional materials and devices. J. Mater. Chem. C, 2017, 5(47): 12289
https://doi.org/10.1039/C7TC04697A
109 O. Özçelik V. , G. Azadani J. , Yang C. , J. Koester S. , Low T. . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B, 2016, 94(3): 035125
https://doi.org/10.1103/PhysRevB.94.035125
110 Hong X. , Kim J. , F. Shi S. , Zhang Y. , Jin C. , Sun Y. , Tongay S. , Wu J. , Zhang Y. , Wang F. . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 2014, 9(9): 682
https://doi.org/10.1038/nnano.2014.167
111 Zhu H. , Wang J. , Gong Z. , D. Kim Y. , Hone J. , Y. Zhu X. . Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett., 2017, 17(6): 3591
https://doi.org/10.1021/acs.nanolett.7b00748
112 F. Rigosi A. , M. Hill H. , Li Y. , Chernikov A. , F. Heinz T. . Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
https://doi.org/10.1021/acs.nanolett.5b01055
113 Yu Y. , Hu S. , Su L. , Huang L. , Liu Y. , Jin Z. , A. Purezky A. , B. Geohegan D. , W. Kim K. , Zhang Y. , Cao L. . Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett., 2015, 15(1): 486
https://doi.org/10.1021/nl5038177
114 Liu F. , Li Q. , Y. Zhu X. . Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B, 2020, 101(20): 201405
https://doi.org/10.1103/PhysRevB.101.201405
115 Merkl P. , Mooshammer F. , Steinleitner P. , Girnghuber A. , Q. Lin K. , Nagler P. , Holler J. , Schüller C. , M. Lupton J. , Korn T. , Ovesen S. , Brem S. , Malic E. , Huber R. . Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater., 2019, 18(7): 691
https://doi.org/10.1038/s41563-019-0337-0
116 Wang H. , Bang J. , Sun Y. , Liang L. , West D. , Meunier V. , Zhang S. . The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. Nat. Commun., 2016, 7(1): 11504
https://doi.org/10.1038/ncomms11504
117 K. Behura S. , Miranda A. , Nayak S. , Johnson K. , Das P. , R. Pradhan N. . Moiré physics in twisted van der Waals heterostructures of 2D materials. Emergent Mater., 2021, 4(4): 813
https://doi.org/10.1007/s42247-021-00270-x
118 Wu F. , Lovorn T. , Tutuc E. , H. MacDonald A. . Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
https://doi.org/10.1103/PhysRevLett.121.026402
119 Wang H. , Ma S. , Zhang S. , Lei D. . Intrinsic superflat bands in general twisted bilayer systems. Light Sci. Appl., 2022, 11(1): 159
https://doi.org/10.1038/s41377-022-00838-0
120 Ma Z. , Li S. , M. Xiao M. , W. Zheng Y. , Lu M. , Liu H. , H. Gao J. , C. Xie X. . Moiré flat bands of twisted few-layer graphite. Front. Phys., 2023, 18(1): 13307
https://doi.org/10.1007/s11467-022-1220-z
121 Zhang N. , Surrente A. , Baranowski M. , K. Maude D. , Gant P. , Castellanos-Gomez A. , Plochocka P. . Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett., 2018, 18(12): 7651
https://doi.org/10.1021/acs.nanolett.8b03266
122 Remez B. , R. Cooper N. . Leaky exciton condensates in transition metal dichalcogenide moiré bilayers. Phys. Rev. Mater., 2022, 4: L022042
https://doi.org/10.1103/PhysRevResearch.4.L022042
123 Bistritzer R. , H. MacDonald A. . Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12233
https://doi.org/10.1073/pnas.1108174108
124 Chen G. , Jiang L. , Wu S. , Lyu B. , Li H. , L. Chittari B. , Watanabe K. , Taniguchi T. , Shi Z. , Jung J. , Zhang Y. , Wang F. . Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
https://doi.org/10.1038/s41567-018-0387-2
125 Chen G. , L. Sharpe A. , Gallagher P. , T. Rosen I. , J. Fox E. , Jiang L. , Lyu B. , Li H. , Watanabe K. , Taniguchi T. , Jung J. , Shi Z. , Goldhaber-Gordon D. , Zhang Y. , Wang F. . Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
https://doi.org/10.1038/s41586-019-1393-y
126 Chen G. , L. Sharpe A. , J. Fox E. , H. Zhang Y. , Wang S. , Jiang L. , Lyu B. , Li H. , Watanabe K. , Taniguchi T. , Shi Z. , Senthil T. , Goldhaber-Gordon D. , Zhang Y. , Wang F. . Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579(7797): 56
https://doi.org/10.1038/s41586-020-2049-7
127 Su R. , Kuiri M. , Watanabe K. , Taniguchi T. , Folk J. . Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nat. Mater., 2023, 22(11): 1332
https://doi.org/10.1038/s41563-023-01653-7
128 Wang L. , M. Shih E. , Ghiotto A. , Xian L. , A. Rhodes D. , Tan C. , Claassen M. , M. Kennes D. , Bai Y. , Kim B. , Watanabe K. , Taniguchi T. , Zhu X. , Hone J. , Rubio A. , N. Pasupathy A. , R. Dean C. . Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater., 2020, 19(8): 861
https://doi.org/10.1038/s41563-020-0708-6
129 Tang Y. , Li L. , Li T. , Xu Y. , Liu S. , Barmak K. , Watanabe K. , Taniguchi T. , H. MacDonald A. , Shan J. , F. Mak K. . Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 353
https://doi.org/10.1038/s41586-020-2085-3
130 Xu Y. , Liu S. , A. Rhodes D. , Watanabe K. , Taniguchi T. , Hone J. , Elser V. , F. Mak K. , Shan J. . Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587(7833): 214
https://doi.org/10.1038/s41586-020-2868-6
131 Shimazaki Y. , Schwartz I. , Watanabe K. , Taniguchi T. , Kroner M. , Imamoğlu A. . Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804): 472
https://doi.org/10.1038/s41586-020-2191-2
132 Liu Y. , Zeng C. , Yu J. , Zhong J. , Li B. , Zhang Z. , Liu Z. , M. Wang Z. , Pan A. , Duan X. . Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem. Soc. Rev., 2021, 50(11): 6401
https://doi.org/10.1039/D0CS01002B
133 H. Naik M. , Kundu S. , Maity I. , Jain M. . Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots. Phys. Rev. B, 2020, 102(7): 075413
https://doi.org/10.1103/PhysRevB.102.075413
134 Yuan L. , Zheng B. , Kunstmann J. , Brumme T. , B. Kuc A. , Ma C. , Deng S. , Blach D. , Pan A. , Huang L. . Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater., 2020, 19(6): 617
https://doi.org/10.1038/s41563-020-0670-3
135 Zhang L. , Zhang Z. , Wu F. , Wang D. , Gogna R. , Hou S. , Watanabe K. , Taniguchi T. , Kulkarni K. , Kuo T. , R. Forrest S. , Deng H. . Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11(1): 5888
https://doi.org/10.1038/s41467-020-19466-6
136 Li Z. , Lu X. , F. Cordovilla Leon D. , Lyu Z. , Xie H. , Hou J. , Lu Y. , Guo X. , Kaczmarek A. , Taniguchi T. , Watanabe K. , Zhao L. , Yang L. , B. Deotare P. . Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539
https://doi.org/10.1021/acsnano.0c08981
137 Zhao X. , Qiao J. , Zhou X. , Chen H. , Y. Tan J. , Yu H. , M. Chan S. , Li J. , Zhang H. , Zhou J. , Dan J. , Liu Z. , Zhou W. , Liu Z. , Peng B. , Deng L. , J. Pennycook S. , Y. Quek S. , P. Loh K. . Strong moiré excitons in high-angle twisted transition metal dichalcogenide homobilayers with robust commensuration. Nano Lett., 2022, 22(1): 203
https://doi.org/10.1021/acs.nanolett.1c03622
138 Ribeiro-Palau R. , Zhang C. , Watanabe K. , Taniguchi T. , Hone J. , R. Dean C. . Twistable electronics with dynamically rotatable heterostructures. Science, 2018, 361(6403): 690
https://doi.org/10.1126/science.aat6981
139 Weston A. , Zou Y. , Enaldiev V. , Summerfield A. , Clark N. , Zólyomi V. , Graham A. , Yelgel C. , Magorrian S. , Zhou M. , Zultak J. , Hopkinson D. , Barinov A. , H. Bointon T. , Kretinin A. , R. Wilson N. , H. Beton P. , I. Fal’ko V. , J. Haigh S. , Gorbachev R. . Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2020, 15(7): 592
https://doi.org/10.1038/s41565-020-0682-9
140 R. Rosenberger M. , J. Chuang H. , Phillips M. , P. Oleshko V. , M. McCreary K. , V. Sivaram S. , S. Hellberg C. , T. Jonker B. . Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(4): 4550
https://doi.org/10.1021/acsnano.0c00088
141 I. Andersen T. , Scuri G. , Sushko A. , De Greve K. , Sung J. , Zhou Y. , S. Wild D. , J. Gelly R. , Heo H. , Bérubé D. , Y. Joe A. , A. Jauregui L. , Watanabe K. , Taniguchi T. , Kim P. , Park H. , D. Lukin M. . Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater., 2021, 20(4): 480
https://doi.org/10.1038/s41563-020-00873-5
142 Quan J. , Linhart L. , L. Lin M. , Lee D. , Zhu J. , Y. Wang C. , T. Hsu W. , Choi J. , Embley J. , Young C. , Taniguchi T. , Watanabe K. , K. Shih C. , Lai K. , H. MacDonald A. , H. Tan P. , Libisch F. , Li X. . Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater., 2021, 20(8): 1100
https://doi.org/10.1038/s41563-021-00960-1
143 H. Lin B. , C. Chao Y. , T. Hsieh I. , P. Chuu C. , J. Lee C. , H. Chu F. , S. Lu L. , T. Hsu W. , W. Pao C. , K. Shih C. , J. Su J. , H. Chang W. . Remarkably deep moiré potential for intralayer excitons in MoSe2/MoS2 twisted heterobilayers. Nano Lett., 2023, 23(4): 1306
https://doi.org/10.1021/acs.nanolett.2c04524
144 Li S. , Zheng H. , Ding J. , Wu B. , He J. , Liu Z. , Liu Y. . Dynamic control of moiré potential in twisted WS2‒WSe2 heterostructures. Nano Res., 2022, 15(8): 7688
https://doi.org/10.1007/s12274-022-4579-9
145 Wu B. , Zheng H. , Li S. , Ding J. , Zeng Y. , Liu Z. , Liu Y. . Observation of moiré excitons in the twisted WS2/WS2 homostructure. Nanoscale, 2022, 14(34): 12447
https://doi.org/10.1039/D2NR02450K
146 M. Alexeev E. , A. Ruiz-Tijerina D. , Danovich M. , J. Hamer M. , J. Terry D. , K. Nayak P. , Ahn S. , Pak S. , Lee J. , I. Sohn J. , R. Molas M. , Koperski M. , Watanabe K. , Taniguchi T. , S. Novoselov K. , V. Gorbachev R. , S. Shin H. , I. Fal’ko V. , I. Tartakovskii A. . Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81
https://doi.org/10.1038/s41586-019-0986-9
147 Tran K. , Moody G. , Wu F. , Lu X. , Choi J. , Kim K. , Rai A. , A. Sanchez D. , Quan J. , Singh A. , Embley J. , Zepeda A. , Campbell M. , Autry T. , Taniguchi T. , Watanabe K. , Lu N. , K. Banerjee S. , L. Silverman K. , Kim S. , Tutuc E. , Yang L. , H. MacDonald A. , Li X. . Evidence for moiré excitons in van der Waals heterostructures. Nature, 2019, 567(7746): 71
https://doi.org/10.1038/s41586-019-0975-z
148 Tang Y. , Gu J. , Liu S. , Watanabe K. , Taniguchi T. , Hone J. , F. Mak K. , Shan J. . Tuning layer- hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol., 2021, 16(1): 52
https://doi.org/10.1038/s41565-020-00783-2
149 Brem S. , Q. Lin K. , Gillen R. , M. Bauer J. , Maultzsch J. , M. Lupton J. , Malic E. . Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12: 11088
https://doi.org/10.1039/D0NR02160A
150 A. Ruiz-Tijerina D. , I. Fal’ko V. . Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B, 2019, 99(12): 125424
https://doi.org/10.1103/PhysRevB.99.125424
151 Jin C. , C. Regan E. , Yan A. , Iqbal Bakti Utama M. , Wang D. , Zhao S. , Qin Y. , Yang S. , Zheng Z. , Shi S. , Watanabe K. , Taniguchi T. , Tongay S. , Zettl A. , Wang F. . Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76
https://doi.org/10.1038/s41586-019-0976-y
152 Zheng H.Wu B.Li S.He J.Chen K.Liu Z.Liu Y.. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 16(2), 3429 (2023)
153 Karni O. , Barré E. , Pareek V. , D. Georgaras J. , K. L. Man M. , Sahoo C. , R. Bacon D. , Zhu X. , B. Ribeiro H. , L. O’Beirne A. , Hu J. , Al-Mahboob A. , M. M. Abdelrasoul M. , S. Chan N. , Karmakar A. , J. Winchester A. , Kim B. , Watanabe K. , Taniguchi T. , Barmak K. , Madéo J. , H. da Jornada F. , F. Heinz T. , M. Dani K. . Structure of the moiré exciton captured by imaging its electron and hole. Nature, 2022, 603(7900): 247
https://doi.org/10.1038/s41586-021-04360-y
154 Dandu M. , Gupta G. , Dasika P. , Watanabe K. , Taniguchi T. , Majumdar K. . Electrically tunable localized versus delocalized intralayer moiré excitons and trions in a twisted MoS2 bilayer. ACS Nano, 2022, 16(6): 8983
https://doi.org/10.1021/acsnano.2c00145
155 Brem S. , Malic E. . Bosonic delocalization of dipolar moiré excitons. Nano Lett., 2023, 23(10): 4627
https://doi.org/10.1021/acs.nanolett.3c01160
156 Lagoin C. , Dubin F. . Key role of the moiré potential for the quasicondensation of interlayer excitons in van der Waals heterostructures. Phys. Rev. B, 2021, 103(4): L041406
https://doi.org/10.1103/PhysRevB.103.L041406
157 Götting N. , Lohof F. , Gies C. . Moiré-Bose-Hubbard model for interlayer excitons in twisted transition metal dichalcogenide heterostructures. Phys. Rev. B, 2022, 105(16): 165419
https://doi.org/10.1103/PhysRevB.105.165419
158 Choi J. , T. Hsu W. , S. Lu L. , Sun L. , Y. Cheng H. , H. Lee M. , Quan J. , Tran K. , Y. Wang C. , Staab M. , Jones K. , Taniguchi T. , Watanabe K. , W. Chu M. , Gwo S. , Kim S. , K. Shih C. , Li X. , H. Chang W. . Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv., 2020, 6(39): eaba8866
https://doi.org/10.1126/sciadv.aba8866
159 Mahdikhanysarvejahany F. , N. Shanks D. , Muccianti C. , H. Badada B. , Idi I. , Alfrey A. , Raglow S. , R. Koehler M. , G. Mandrus D. , Taniguchi T. , Watanabe K. , L. A. Monti O. , Yu H. , J. LeRoy B. , R. Schaibley J. . Temperature dependent moiré trapping of interlayer excitons in MoSe2‒WSe2 heterostructures. npj 2D Mater. Appl., 2021, 5: 67
https://doi.org/10.1038/s41699-021-00248-7
160 Choi J. , Florian M. , Steinhoff A. , Erben D. , Tran K. , S. Kim D. , Sun L. , Quan J. , Claassen R. , Majumder S. , A. Hollingsworth J. , Taniguchi T. , Watanabe K. , Ueno K. , Singh A. , Moody G. , Jahnke F. , Li X. . Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett., 2021, 126(4): 047401
https://doi.org/10.1103/PhysRevLett.126.047401
161 Cai H. , Rasmita A. , Tan Q. , M. Lai J. , He R. , Cai X. , Zhao Y. , Chen D. , Wang N. , Mu Z. , Huang Z. , Zhang Z. , J. H. Eng J. , Liu Y. , She Y. , Pan N. , Miao Y. , Wang X. , Liu X. , Zhang J. , Gao W. . Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moiré heterobilayer. Nat. Commun., 2023, 14(1): 5766
https://doi.org/10.1038/s41467-023-41330-6
162 Zheng H. , Wu B. , T. Wang C. , Li S. , He J. , Liu Z. , T. Wang J. , Duan J. , Liu Y. . Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Res., 2023, 16(7): 10573
https://doi.org/10.1007/s12274-023-5822-8
163 Zheng H. , Wu B. , Li S. , Ding J. , He J. , Liu Z. , T. Wang C. , T. Wang J. , Pan A. , Liu Y. . Localization- enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. Light Sci. Appl., 2023, 12(1): 117
https://doi.org/10.1038/s41377-023-01171-w
164 Zhang L. , Gogna R. , W. Burg G. , Horng J. , Paik E. , H. Chou Y. , Kim K. , Tutuc E. , Deng H. . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B, 2019, 100(4): 041402
https://doi.org/10.1103/PhysRevB.100.041402
165 Brotons-Gisbert M. , Baek H. , Molina-Sánchez A. , Campbell A. , Scerri E. , White D. , Watanabe K. , Taniguchi T. , Bonato C. , D. Gerardot B. . Spin-layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater., 2020, 19(6): 630
https://doi.org/10.1038/s41563-020-0687-7
166 Wang X. , Zhu J. , L. Seyler K. , Rivera P. , Zheng H. , Wang Y. , He M. , Taniguchi T. , Watanabe K. , Yan J. , G. Mandrus D. , R. Gamelin D. , Yao W. , Xu X. . Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol., 2021, 16(11): 1208
https://doi.org/10.1038/s41565-021-00969-2
167 Bai Y. , Zhou L. , Wang J. , Wu W. , J. McGilly L. , Halbertal D. , F. B. Lo C. , Liu F. , Ardelean J. , Rivera P. , R. Finney N. , C. Yang X. , N. Basov D. , Yao W. , Xu X. , Hone J. , N. Pasupathy A. , Y. Zhu X. . Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater., 2020, 19(10): 1068
https://doi.org/10.1038/s41563-020-0730-8
168 Zhao W. , C. Regan E. , Wang D. , Jin C. , Hsieh S. , Wang Z. , Wang J. , Wang Z. , Yumigeta K. , Blei M. , Watanabe K. , Taniguchi T. , Tongay S. , Y. Yao N. , Wang F. . Dynamic tuning of moiré excitons in a WSe2/WS2 heterostructure via mechanical deformation. Nano Lett., 2021, 21(20): 8910
https://doi.org/10.1021/acs.nanolett.1c03611
169 Anđelković M. , P. Milovanović S. , Covaci L. , M. Peeters F. . Double moiré with a twist: Supermoiré in encapsulated graphene. Nano Lett., 2020, 20(2): 979
https://doi.org/10.1021/acs.nanolett.9b04058
170 Tagarelli F. , Lopriore E. , Erkensten D. , Perea-Causín R. , Brem S. , Hagel J. , Sun Z. , Pasquale G. , Watanabe K. , Taniguchi T. , Malic E. , Kis A. . Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nat. Photonics, 2023, 17(7): 615
https://doi.org/10.1038/s41566-023-01198-w
171 Lian Z. , Chen D. , Meng Y. , Chen X. , Su Y. , Banerjee R. , Taniguchi T. , Watanabe K. , Tongay S. , Zhang C. , T. Cui Y. , F. Shi S. . Exciton superposition across moiré states in a semiconducting moiré superlattice. Nat. Commun., 2023, 14(1): 5042
https://doi.org/10.1038/s41467-023-40783-z
172 Li L. , Wu M. . Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382
https://doi.org/10.1021/acsnano.7b02756
173 Li F. , Fu J. , Xue M. , Li Y. , Zeng H. , Kan E. , Hu T. , Wan Y. . Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding. Front. Phys., 2023, 18(5): 53305
https://doi.org/10.1007/s11467-023-1304-4
174 Wang Y. , Cong C. , Yang W. , Shang J. , Peimyoo N. , Chen Y. , Kang J. , Wang J. , Huang W. , Yu T. . Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res., 2015, 8(8): 2562
https://doi.org/10.1007/s12274-015-0762-6
175 He X. , Li H. , Zhu Z. , Dai Z. , Yang Y. , Yang P. , Zhang Q. , Li P. , Schwingenschlogl U. , Zhang X. . Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett., 2016, 109(17): 173105
https://doi.org/10.1063/1.4966218
176 Feng J. , Qian X. , W. Huang C. , Li J. . Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics, 2012, 6(12): 866
https://doi.org/10.1038/nphoton.2012.285
177 Castellanos-Gomez A. , Roldán R. , Cappelluti E. , Buscema M. , Guinea F. , S. J. van der Zant H. , A. Steele G. . Local strain engineering in atomically thin MoS2. Nano Lett., 2013, 13(11): 5361
https://doi.org/10.1021/nl402875m
178 Wang W. , Ma X. . Strain-induced trapping of indirect excitons in MoSe2/WSe2 heterostructures. ACS Photon., 2020, 7: 2460
https://doi.org/10.1021/acsphotonics.0c00567
179 Liu X. , Zeng J. . Gap solitons in parity–time symmetric moiré optical lattices. Photon. Res., 2023, 11(2): 196
https://doi.org/10.1364/PRJ.474527
180 Liu Y. , Ouyang C. , Xu Q. , Su X. , Yang Q. , Ma J. , Li Y. , Tian Z. , Gu J. , Liu L. , Han J. , Shi Y. , Zhang W. . Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface. Photon. Res., 2022, 10(9): 2056
https://doi.org/10.1364/PRJ.462119
181 C. Regan E. , Wang D. , Jin C. , I. Bakti Utama M. , Gao B. , Wei X. , Zhao S. , Zhao W. , Zhang Z. , Yumigeta K. , Blei M. , D. Carlström J. , Watanabe K. , Taniguchi T. , Tongay S. , Crommie M. , Zettl A. , Wang F. . Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 359
https://doi.org/10.1038/s41586-020-2092-4
182 G. Bednorz J. , A. Müller K. . Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter, 1986, 64: 189
https://doi.org/10.1007/BF01303701
183 Li T. , Jiang S. , Li L. , Zhang Y. , Kang K. , Zhu J. , Watanabe K. , Taniguchi T. , Chowdhury D. , Fu L. , Shan J. , F. Mak K. . Continuous Mott transition in semiconductor moiré superlattices. Nature, 2021, 597(7876): 350
https://doi.org/10.1038/s41586-021-03853-0
184 Miao S. , Wang T. , Huang X. , Chen D. , Lian Z. , Wang C. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Wang Z. , Xiao D. , T. Cui Y. , F. Shi S. . Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice. Nat. Commun., 2021, 12(1): 3608
https://doi.org/10.1038/s41467-021-23732-6
185 Chen D. , Lian Z. , Huang X. , Su Y. , Rashetnia M. , Yan L. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Wang Z. , Zhang C. , T. Cui Y. , F. Shi S. . Tuning moiré excitons and correlated electronic states through layer degree of freedom. Nat. Commun., 2022, 13(1): 4810
https://doi.org/10.1038/s41467-022-32493-9
186 H. Naik M. , C. Regan E. , Zhang Z. , H. Chan Y. , Li Z. , Wang D. , Yoon Y. , S. Ong C. , Zhao W. , Zhao S. , I. B. Utama M. , Gao B. , Wei X. , Sayyad M. , Yumigeta K. , Watanabe K. , Taniguchi T. , Tongay S. , H. da Jornada F. , Wang F. , G. Louie S. . Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature, 2022, 609(7925): 52
https://doi.org/10.1038/s41586-022-04991-9
187 Wang X. , Xiao C. , Park H. , Zhu J. , Wang C. , Taniguchi T. , Watanabe K. , Yan J. , Xiao D. , R. Gamelin D. , Yao W. , Xu X. . Light-induced ferromagnetism in moiré superlattices. Nature, 2022, 604(7906): 468
https://doi.org/10.1038/s41586-022-04472-z
188 Zhang Z. , C. Regan E. , Wang D. , Zhao W. , Wang S. , Sayyad M. , Yumigeta K. , Watanabe K. , Taniguchi T. , Tongay S. , Crommie M. , Zettl A. , P. Zaletel M. , Wang F. . Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys., 2022, 18(10): 1214
https://doi.org/10.1038/s41567-022-01702-z
189 Rohringer G. , Hafermann H. , Toschi A. , A. Katanin A. , E. Antipov A. , I. Katsnelson M. , I. Lichtenstein A. , N. Rubtsov A. , Held K. . Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys., 2018, 90(2): 025003
https://doi.org/10.1103/RevModPhys.90.025003
190 Quintanilla J. , A. Hooley C. . The strong-correlations puzzle. Physics World, 2009, 22(06): 32
https://doi.org/10.1088/2058-7058/22/06/38
191 Ghiotto A. , M. Shih E. , S. S. G. Pereira G. , A. Rhodes D. , Kim B. , Zang J. , J. Millis A. , Watanabe K. , Taniguchi T. , C. Hone J. , Wang L. , R. Dean C. , N. Pasupathy A. . Quantum criticality in twisted transition metal dichalcogenides. Nature, 2021, 597(7876): 345
https://doi.org/10.1038/s41586-021-03815-6
192 Szasz A. , Motruk J. , P. Zaletel M. , E. Moore J. . Chiral spin liquid phase of the triangular lattice Hubbard model: A density matrix renormalization group study. Phys. Rev. X, 2020, 10(2): 021042
https://doi.org/10.1103/PhysRevX.10.021042
193 Senthil T. . Theory of a continuous Mott transition in two dimensions. Phys. Rev. B, 2008, 78(4): 045109
https://doi.org/10.1103/PhysRevB.78.045109
194 Imada M. , Fujimori A. , Tokura Y. . Metal−insulator transitions. Rev. Mod. Phys., 1998, 70(4): 1039
https://doi.org/10.1103/RevModPhys.70.1039
195 M. Jones A. , Yu H. , S. Ross J. , Klement P. , J. Ghimire N. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys., 2014, 10(2): 130
https://doi.org/10.1038/nphys2848
196 Xiong R. , Nie J. , Brantly S. , Hays P. , Sailus R. , Watanabe K. , Taniguchi T. , Tongay S. , Jin C. . Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science, 2023, 380(6647): 860
https://doi.org/10.1126/science.add5574
197 Brem S. , Linderälv C. , Erhart P. , Malic E. . Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett., 2020, 20(12): 8534
https://doi.org/10.1021/acs.nanolett.0c03019
198 Zhang Z. , Wang Y. , Watanabe K. , Taniguchi T. , Ueno K. , Tutuc E. , J. LeRoy B. . Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys., 2020, 16(11): 1093
https://doi.org/10.1038/s41567-020-0958-x
199 Hu Q. , Zhan Z. , Cui H. , Zhang Y. , Jin F. , Zhao X. , Zhang M. , Wang Z. , Zhang Q. , Watanabe K. , Taniguchi T. , Cao X. , M. Liu W. , Wu F. , Yuan S. , Xu Y. . Observation of Rydberg moiré excitons. Science, 2023, 380(6652): 1367
https://doi.org/10.1126/science.adh1506
200 Tan Q. , Rasmita A. , Zhang Z. , S. Novoselov K. , Gao W. . Signature of cascade transitions between interlayer excitons in a moiré superlattice. Phys. Rev. Lett., 2022, 129(24): 247401
https://doi.org/10.1103/PhysRevLett.129.247401
201 Halbertal D. , R. Finney N. , S. Sunku S. , Kerelsky A. , Rubio-Verdú C. , Shabani S. , Xian L. , Carr S. , Chen S. , Zhang C. , Wang L. , Gonzalez-Acevedo D. , S. McLeod A. , Rhodes D. , Watanabe K. , Taniguchi T. , Kaxiras E. , R. Dean C. , C. Hone J. , N. Pasupathy A. , M. Kennes D. , Rubio A. , N. Basov D. . Moiré metrology of energy landscapes in van der Waals heterostructures. Nat. Commun., 2021, 12(1): 242
https://doi.org/10.1038/s41467-020-20428-1
202 Li H. , Li S. , C. Regan E. , Wang D. , Zhao W. , Kahn S. , Yumigeta K. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Zettl A. , F. Crommie M. , Wang F. . Imaging two-dimensional generalized Wigner crystals. Nature, 2021, 597(7878): 650
https://doi.org/10.1038/s41586-021-03874-9
203 H. Stansbury C. , I. B. Utama M. , G. Fatuzzo C. , C. Regan E. , Wang D. , Xiang Z. , Ding M. , Watanabe K. , Taniguchi T. , Blei M. , Shen Y. , Lorcy S. , Bostwick A. , Jozwiak C. , Koch R. , Tongay S. , Avila J. , Rotenberg E. , Wang F. , Lanzara A. . Visualizing electron localization of WS2/WSe2 moiré superlattices in momentum space. Sci. Adv., 2021, 7(37): eabf4387
https://doi.org/10.1126/sciadv.abf4387
204 Z. Chen Y. , G. Yu S. , Jiang T. , J. Liu X. , B. Cheng X. , Huang D. . Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides. Front. Phys., 2024, 19: 23301
https://doi.org/10.1007/s11467-023-1345-8
205 V. Enaldiev V. , Ferreira F. , J. Magorrian S. , I. Fal’ko V. . Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater., 2021, 8: 025030
https://doi.org/10.1088/2053-1583/abdd92
206 Xiao F. , Chen K. , Tong Q. . Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Research., 2021, 3: 013027
https://doi.org/10.1103/PhysRevResearch.3.013027
[1] Tingyin Ning, Yingying Ren, Yanyan Huo, Yangjian Cai. Efficient high harmonic generation in nonlinear photonic moiré superlattice[J]. Front. Phys. , 2023, 18(5): 52305-.
[2] Lingxiao Li, Min Wu, Xiaobo Lu. Correlation, superconductivity and topology in graphene moiré superlattice[J]. Front. Phys. , 2023, 18(4): 43401-.
[3] Tao Zhu, Yao Zhang, Xin Wei, Man Jiang, Hua Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics[J]. Front. Phys. , 2023, 18(3): 33601-.
[4] Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures[J]. Front. Phys. , 2023, 18(3): 33307-.
[5] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[6] Xueping Li, Peize Yuan, Lin Li, Ting Liu, Chenhai Shen, Yurong Jiang, Xiaohui Song, Congxin Xia. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment[J]. Front. Phys. , 2023, 18(1): 13305-.
[7] Junjie Zeng, Rui Xue, Tao Hou, Yulei Han, Zhenhua Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems[J]. Front. Phys. , 2022, 17(6): 63503-.
[8] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[9] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[10] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed