|
|
Twistronics and moiré excitonic physics in van der Waals heterostructures |
Siwei Li1, Ke Wei2( ), Qirui Liu1, Yuxiang Tang2, Tian Jiang2( ) |
1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China 2. Institute for Quantum Science and Technology, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Heterostructures composed of two-dimensional van der Waals (vdW) materials allow highly controllable stacking, where interlayer twist angles introduce a continuous degree of freedom to alter the electronic band structures and excitonic physics. Motivated by the discovery of Mott insulating states and superconductivity in magic-angle bilayer graphene, the emerging research fields of “twistronics” and moiré physics have aroused great academic interests in the engineering of optoelectronic properties and the exploration of new quantum phenomena, in which moiré superlattice provides a pathway for the realization of artificial excitonic crystals. Here we systematically summarize the current achievements in twistronics and moiré excitonic physics, with emphasis on the roles of lattice rotational mismatches and atomic registries. Firstly, we review the effects of the interlayer twist on electronic and photonic physics, particularly on exciton properties such as dipole moment and spin-valley polarization, through interlayer interactions and electronic band structures. We also discuss the exciton dynamics in vdW heterostructures with different twist angles, like formation, transport and relaxation processes, whose mechanisms are complicated and still need further investigations. Subsequently, we review the theoretical analysis and experimental observations of moiré superlattice and moiré modulated excitons. Various exotic moiré effects are also shown, including periodic potential, moiré miniband, and varying wave function symmetry, which result in exciton localization, emergent exciton peaks and spatially alternating optical selection rule. We further introduce the expanded properties of moiré systems with external modulation factors such as electric field, doping and strain, showing that moiré lattice is a promising platform with high tunability for optoelectronic applications and in-depth study on frontier physics. Lastly, we focus on the rapidly developing field of correlated electron physics based on the moiré system, which is potentially related to the emerging quantum phenomena.
|
Keywords
moiré superlattice
twistronics
van der Waals heterostructure
moiré exciton
correlated electronic state
|
Corresponding Author(s):
Ke Wei,Tian Jiang
|
Issue Date: 29 February 2024
|
|
1 |
Osada M. , Sasaki T. . Two‐dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater., 2012, 24(2): 210
https://doi.org/10.1002/adma.201103241
|
2 |
Xu M. , Liang T. , Shi M. , Chen H. . Graphene-like two-dimensional materials. Chem. Rev., 2013, 113(5): 3766
https://doi.org/10.1021/cr300263a
|
3 |
S. Novoselov K. , Jiang D. , Schedin F. , J. Booth T. , V. Khotkevich V. , V. Morozov S. , K. Geim A. . Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA, 2005, 102(30): 10451
https://doi.org/10.1073/pnas.0502848102
|
4 |
K. Geim A. , S. Novoselov K. . The rise of graphene. Nat. Mater., 2007, 6(3): 183
https://doi.org/10.1038/nmat1849
|
5 |
Vogt P. , De Padova P. , Quaresima C. , Avila J. , Frantzeskakis E. , C. Asensio M. , Resta A. , Ealet B. , Le Lay G. . Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett., 2012, 108(15): 155501
https://doi.org/10.1103/PhysRevLett.108.155501
|
6 |
Watanabe K. , Taniguchi T. , Kanda H. . Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater., 2004, 3(6): 404
https://doi.org/10.1038/nmat1134
|
7 |
Song L. , Ci L. , Lu H. , B. Sorokin P. , Jin C. , Ni J. , G. Kvashnin A. , G. Kvashnin D. , Lou J. , I. Yakobson B. , M. Ajayan P. . Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8): 3209
https://doi.org/10.1021/nl1022139
|
8 |
Liu H. , T. Neal A. , Zhu Z. , Luo Z. , Xu X. , Tománek D. , D. Ye P. . Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
https://doi.org/10.1021/nn501226z
|
9 |
Li L. , Yu Y. , J. Ye G. , Ge Q. , Ou X. , Wu H. , Feng D. , H. Chen X. , Zhang Y. . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
https://doi.org/10.1038/nnano.2014.35
|
10 |
Ataca C.Topsakal M.Aktürk E.Ciraci S., A comparative study of lattice dynamics of three- and two-dimensional MoS2, J. Phys. Chem. C 115(33), 16354 (2011)
|
11 |
Ganatra R. , Zhang Q. . Few-layer MoS2: A promising layered semiconductor. ACS Nano, 2014, 8(5): 4074
https://doi.org/10.1021/nn405938z
|
12 |
H. Wang Q. , Kalantar-zadeh K. , Kis A. , N. Coleman J. , S. Strano M. . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
|
13 |
Gong C. , Zhang H. , Wang W. , Colombo L. , M. Wallace R. , Cho K. . Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Appl. Phys. Lett., 2013, 103(5): 053513
https://doi.org/10.1063/1.4817409
|
14 |
J. Chuang H. , Tan X. , J. Ghimire N. , M. Perera M. , Chamlagain B. , M. C. Cheng M. , Yan J. , Mandrus D. , Tománek D. , Zhou Z. . High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett., 2014, 14(6): 3594
https://doi.org/10.1021/nl501275p
|
15 |
Ye Y. , J. Wong Z. , Lu X. , Ni X. , Zhu H. , Chen X. , Wang Y. , Zhang X. . Monolayer excitonic laser. Nat. Photonics, 2015, 9(11): 733
https://doi.org/10.1038/nphoton.2015.197
|
16 |
K. Luo Y. , Xu J. , Zhu T. , Wu G. , J. McCormick E. , Zhan W. , R. Neupane M. , K. Kawakami R. . Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett., 2017, 17(6): 3877
https://doi.org/10.1021/acs.nanolett.7b01393
|
17 |
Radisavljevic B. , B. Whitwick M. , Kis A. . Integrated circuits and logic operations based on single-layer MoS2. ACS Nano, 2011, 5(12): 9934
https://doi.org/10.1021/nn203715c
|
18 |
S. Ross J. , Rivera P. , Schaibley J. , Lee-Wong E. , Yu H. , Taniguchi T. , Watanabe K. , Yan J. , Mandrus D. , Cobden D. , Yao W. , Xu X. . Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett., 2017, 17(2): 638
https://doi.org/10.1021/acs.nanolett.6b03398
|
19 |
Gao C. , Nie Q. , Y. Lin C. , Huang F. , Wang L. , Xia W. , Wang X. , Hu Z. , Li M. , W. Lu H. , C. Lai Y. , F. Lin Y. , Chu J. , Li W. . Touch-modulated van der Waals heterostructure with self-writing power switch for synaptic simulation. Nano Energy, 2022, 91: 106659
https://doi.org/10.1016/j.nanoen.2021.106659
|
20 |
D. Wenbiao Niu G. , Jia Z. , Q. Ma X. , Y. Zhao J. , Zhou K. , T. Han S. , C. Kuo C. , Zhou Y. . Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402
https://doi.org/10.1007/s11467-023-1329-8
|
21 |
Chaves A. , G. Azadani J. , Alsalman H. , R. da Costa D. , Frisenda R. , J. Chaves A. , H. Song S. , D. Kim Y. , He D. , Zhou J. , Castellanos-Gomez A. , M. Peeters F. , Liu Z. , L. Hinkle C. , Oh S.-H. , D. Ye P. , J. Koester S. , H. Lee Y. , Avouris P. , Wang X. , Low T. . Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl., 2020, 4: 29
https://doi.org/10.1038/s41699-020-00162-4
|
22 |
Wang Y. , Nie Z. , Wang F. . Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors. Light Sci. Appl., 2020, 9(1): 192
https://doi.org/10.1038/s41377-020-00430-4
|
23 |
Wu S. , S. Ross J. , B. Liu G. , Aivazian G. , Jones A. , Fei Z. , Zhu W. , Xiao D. , Yao W. , Cobden D. , Xu X. . Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys., 2013, 9(3): 149
https://doi.org/10.1038/nphys2524
|
24 |
Lee I. , Rathi S. , Lim D. , Li L. , Park J. , Lee Y. , S. Yi K. , P. Dhakal K. , Kim J. , Lee C. , H. Lee G. , D. Kim Y. , Hone J. , J. Yun S. , H. Youn D. , H. Kim G. . Gate-tunable hole and electron carrier transport in atomically thin dual-channel WSe2/MoS2 heterostructure for ambipolar field-effect transistors. Adv. Mater., 2016, 28(43): 9519
https://doi.org/10.1002/adma.201601949
|
25 |
Lee J. , F. Mak K. , Shan J. . Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11: 421
https://doi.org/10.1038/nnano.2015.337
|
26 |
A. Jauregui L. , Y. Joe A. , Pistunova K. , S. Wild D. , A. High A. , Zhou Y. , Scuri G. , De Greve K. , Sushko A. , H. Yu C. , Taniguchi T. , Watanabe K. , J. Needleman D. , D. Lukin M. , Park H. , Kim P. . Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science, 2019, 366(6467): 870
https://doi.org/10.1126/science.aaw4194
|
27 |
Chernikov A. , M. van der Zande A. , M. Hill H. , F. Rigosi A. , Velauthapillai A. , Hone J. , F. Heinz T. . Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett., 2015, 115(12): 126802
https://doi.org/10.1103/PhysRevLett.115.126802
|
28 |
V. Nguyen P. , C. Teutsch N. , P. Wilson N. , Kahn J. , Xia X. , J. Graham A. , Kandyba V. , Giampietri A. , Barinov A. , C. Constantinescu G. , Yeung N. , Hine N. , Xu X. , H. Cobden D. , R. Wilson N. . Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature, 2019, 572(7768): 220
https://doi.org/10.1038/s41586-019-1402-1
|
29 |
Peng Z. , Chen X. , Fan Y. , J. Srolovitz D. , Lei D. . Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications. Light Sci. Appl., 2020, 9(1): 190
https://doi.org/10.1038/s41377-020-00421-5
|
30 |
J. Conley H. , Wang B. , I. Ziegler J. , F. Jr Haglund R. , T. Pantelides S. , I. Bolotin K. . Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett., 2013, 13(8): 3626
https://doi.org/10.1021/nl4014748
|
31 |
G. Harats M. , N. Kirchhof J. , Qiao M. , Greben K. , I. Bolotin K. . Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photonics, 2020, 14(5): 324
https://doi.org/10.1038/s41566-019-0581-5
|
32 |
Li Z. , Lv Y. , Ren L. , Li J. , Kong L. , Zeng Y. , Tao Q. , Wu R. , Ma H. , Zhao B. , Wang D. , Dang W. , Chen K. , Liao L. , Duan X. , Duan X. , Liu Y. . Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun., 2020, 11(1): 1151
https://doi.org/10.1038/s41467-020-15023-3
|
33 |
Luo G. , Lv X. , Wen L. , Li Z. , Dai Z. . Strain induced topological transitions in twisted double bilayer graphene. Front. Phys., 2022, 17(2): 23502
https://doi.org/10.1007/s11467-021-1146-x
|
34 |
M. Fitzgerald J. , J. P. Thompson J. , Malic E. . Twist angle tuning of moiré exciton polaritons in van der Waals heterostructures. Nano Lett., 2022, 22(11): 4468
https://doi.org/10.1021/acs.nanolett.2c01175
|
35 |
Hoshi Y. , Kuroda T. , Okada M. , Moriya R. , Masubuchi S. , Watanabe K. , Taniguchi T. , Kitaura R. , Machida T. . Suppression of exciton−exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B, 2017, 95(24): 241403
https://doi.org/10.1103/PhysRevB.95.241403
|
36 |
K. M. Newaz A. , S. Puzyrev Y. , Wang B. , T. Pantelides S. , I. Bolotin K. . Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nat. Commun., 2012, 3(1): 734
https://doi.org/10.1038/ncomms1740
|
37 |
Raja A. , Chaves A. , Yu J. , Arefe G. , M. Hill H. , F. Rigosi A. , C. Berkelbach T. , Nagler P. , Schüller C. , Korn T. , Nuckolls C. , Hone J. , E. Brus L. , F. Heinz T. , R. Reichman D. , Chernikov A. . Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun., 2017, 8(1): 15251
https://doi.org/10.1038/ncomms15251
|
38 |
P. Wilson N. , Yao W. , Shan J. , Xu X. . Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383
https://doi.org/10.1038/s41586-021-03979-1
|
39 |
F. Mak K. , Lee C. , Hone J. , Shan J. , F. Heinz T. . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105: 136805
https://doi.org/10.1103/physrevlett.105.136805
|
40 |
Li Y. , Chernikov A. , Zhang X. , Rigosi A. , M. Hill H. , M. van der Zande A. , A. Chenet D. , M. Shih E. , Hone J. , F. Heinz T. . Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 2014, 90(20): 205422
https://doi.org/10.1103/PhysRevB.90.205422
|
41 |
C. Berkelbach T. , S. Hybertsen M. , R. Reichman D. . Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B, 2013, 88(4): 045318
https://doi.org/10.1103/PhysRevB.88.045318
|
42 |
Xiao D. , Yao W. , Niu Q. . Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett., 2007, 99(23): 236809
https://doi.org/10.1103/PhysRevLett.99.236809
|
43 |
Yao W. , Xiao D. , Niu Q. . Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406
https://doi.org/10.1103/PhysRevB.77.235406
|
44 |
Cao T. , Wang G. , Han W. , Ye H. , Zhu C. , Shi J. , Niu Q. , Tan P. , Wang E. , Liu B. , Feng J. . Valley- selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 2012, 3(1): 887
https://doi.org/10.1038/ncomms1882
|
45 |
Jin W. , C. Yeh P. , Zaki N. , Chenet D. , Arefe G. , Hao Y. , Sala A. , O. Mentes T. , I. Dadap J. , Locatelli A. , Hone J. , M. Osgood R. . Tuning the electronic structure of monolayer graphene/MoS2 van der Waals heterostructures via interlayer twist. Phys. Rev. B, 2015, 92(20): 201409
https://doi.org/10.1103/PhysRevB.92.201409
|
46 |
Yu H. , Wang Y. , Tong Q. , Xu X. , Yao W. . Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett., 2015, 115(18): 187002
https://doi.org/10.1103/PhysRevLett.115.187002
|
47 |
P. Eisenstein J. , H. MacDonald A. . Bose–Einstein condensation of excitons in bilayer electron systems. Nature, 2004, 432(7018): 691
https://doi.org/10.1038/nature03081
|
48 |
R. Dean C. , Wang L. , Maher P. , Forsythe C. , Ghahari F. , Gao Y. , Katoch J. , Ishigami M. , Moon P. , Koshino M. , Taniguchi T. , Watanabe K. , L. Shepard K. , Hone J. , Kim P. . Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 2013, 497(7451): 598
https://doi.org/10.1038/nature12186
|
49 |
Yu H. , B. Liu G. , Tang J. , Xu X. , Yao W. . Moiré excitons: From programmable quantum emitter arrays to spin‒orbit coupled artificial lattices. Sci. Adv., 2017, 3(11): e1701696
https://doi.org/10.1126/sciadv.1701696
|
50 |
Guo H. , Zhang X. , Lu G. . Shedding light on moiré excitons: A first-principles perspective. Sci. Adv., 2020, 6(42): eabc5638
https://doi.org/10.1126/sciadv.abc5638
|
51 |
Rivera P. , L. Seyler K. , Yu H. , R. Schaibley J. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Valley- polarized exciton dynamics in a 2D semiconductor heterostructure. Science, 2016, 351(6274): 688
https://doi.org/10.1126/science.aac7820
|
52 |
Wang Y. , Wang Z. , Yao W. , B. Liu G. , Yu H. . Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B, 2017, 95(11): 115429
https://doi.org/10.1103/PhysRevB.95.115429
|
53 |
Ren W. , Lu S. , Yu C. , He J. , Zhang Z. , Chen J. , Zhang G. . Impact of moiré superlattice on atomic stress and thermal transport in van der Waals heterostructures. Appl. Phys. Rev., 2023, 10(4): 041404
https://doi.org/10.1063/5.0159598
|
54 |
Jiang Y. , Chen S. , Zheng W. , Zheng B. , Pan A. . Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl., 2021, 10(1): 72
https://doi.org/10.1038/s41377-021-00500-1
|
55 |
Tong Q. , Yu H. , Zhu Q. , Wang Y. , Xu X. , Yao W. . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
https://doi.org/10.1038/nphys3968
|
56 |
Zhang C. , P. Chuu C. , Ren X. , Y. Li M. , J. Li L. , Jin C. , Y. Chou M. , K. Shih C. , couplings Interlayer . Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv., 2017, 3(1): e1601459
https://doi.org/10.1126/sciadv.1601459
|
57 |
Pan Y. , Fölsch S. , Nie Y. , Waters D. , C. Lin Y. , Jariwala B. , Zhang K. , Cho K. , A. Robinson J. , M. Feenstra R. . Quantum-confined electronic states arising from the moiré pattern of MoS2–WSe2 heterobilayers. Nano Lett., 2018, 18(3): 1849
https://doi.org/10.1021/acs.nanolett.7b05125
|
58 |
J. McGilly L. , Kerelsky A. , R. Finney N. , Shapovalov K. , M. Shih E. , Ghiotto A. , Zeng Y. , L. Moore S. , Wu W. , Bai Y. , Watanabe K. , Taniguchi T. , Stengel M. , Zhou L. , Hone J. , Zhu X. , N. Basov D. , Dean C. , E. Dreyer C. , N. Pasupathy A. . Visualization of moiré superlattices. Nat. Nanotechnol., 2020, 15(7): 580
https://doi.org/10.1038/s41565-020-0708-3
|
59 |
Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
|
60 |
Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
|
61 |
Li L. , Wu M. , Lu X. . Correlation, superconductivity and topology in graphene moiré superlattice. Front. Phys., 2023, 18(4): 43401
https://doi.org/10.1007/s11467-023-1302-6
|
62 |
L. Seyler K. , Rivera P. , Yu H. , P. Wilson N. , L. Ray E. , G. Mandrus D. , Yan J. , Yao W. , Xu X. . Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66
https://doi.org/10.1038/s41586-019-0957-1
|
63 |
Wu B. , Zheng H. , Li S. , Ding J. , He J. , Zeng Y. , Chen K. , Liu Z. , Chen S. , Pan A. , Liu Y. . Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl., 2022, 11(1): 166
https://doi.org/10.1038/s41377-022-00854-0
|
64 |
Wu F. , Lovorn T. , H. MacDonald A. . Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett., 2017, 118(14): 147401
https://doi.org/10.1103/PhysRevLett.118.147401
|
65 |
Wu F. , Lovorn T. , H. MacDonald A. . Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B, 2018, 97(3): 035306
https://doi.org/10.1103/PhysRevB.97.035306
|
66 |
Yu H. , B. Liu G. , Yao W. . Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater., 2018, 5: 035021
https://doi.org/10.1088/2053-1583/aac065
|
67 |
Jin C. , C. Regan E. , Wang D. , Iqbal Bakti Utama M. , S. Yang C. , Cain J. , Qin Y. , Shen Y. , Zheng Z. , Watanabe K. , Taniguchi T. , Tongay S. , Zettl A. , Wang F. . Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys., 2019, 15(11): 1140
https://doi.org/10.1038/s41567-019-0631-4
|
68 |
He J. , Hummer K. , Franchini C. . Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B, 2014, 89(7): 075409
https://doi.org/10.1103/PhysRevB.89.075409
|
69 |
Liu Q. , Li L. , Li Y. , Gao Z. , Chen Z. , Lu J. . Tuning electronic structure of bilayer MoS2 by vertical electric field: A first-principles investigation. J. Phys. Chem. C, 2012, 116(40): 21556
https://doi.org/10.1021/jp307124d
|
70 |
K. Nayak P. , Horbatenko Y. , Ahn S. , Kim G. , U. Lee J. , Y. Ma K. , R. Jang A. , Lim H. , Kim D. , Ryu S. , Cheong H. , Park N. , S. Shin H. . Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano, 2017, 11(4): 4041
https://doi.org/10.1021/acsnano.7b00640
|
71 |
Choi W. , Akhtar I. , A. Rehman M. , Kim M. , Kang D. , Jung J. , Myung Y. , Kim J. , Cheong H. , Seo Y. . Twist-angle-dependent optoelectronics in a few-layer transition-metal dichalcogenide heterostructure. ACS Appl. Mater. Interfaces, 2019, 11(2): 2470
https://doi.org/10.1021/acsami.8b15817
|
72 |
Kunstmann J. , Mooshammer F. , Nagler P. , Chaves A. , Stein F. , Paradiso N. , Plechinger G. , Strunk C. , Schüller C. , Seifert G. , R. Reichman D. , Korn T. . Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys., 2018, 14(8): 801
https://doi.org/10.1038/s41567-018-0123-y
|
73 |
Scuri G. , I. Andersen T. , Zhou Y. , S. Wild D. , Sung J. , J. Gelly R. , Bérubé D. , Heo H. , Shao L. , Y. Joe A. , M. Mier Valdivia A. , Taniguchi T. , Watanabe K. , Lončar M. , Kim P. , D. Lukin M. , Park H. . Electrically tunable valley dynamics in twisted WSe2/WSe2 bilayers. Phys. Rev. Lett., 2020, 124(21): 217403
https://doi.org/10.1103/PhysRevLett.124.217403
|
74 |
Zheng S. , Sun L. , Zhou X. , Liu F. , Liu Z. , Shen Z. , J. Fan H. . Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater., 2015, 3(11): 1600
https://doi.org/10.1002/adom.201500301
|
75 |
A. Puretzky A. , Liang L. , Li X. , Xiao K. , G. Sumpter B. , Meunier V. , B. Geohegan D. . Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano, 2016, 10(2): 2736
https://doi.org/10.1021/acsnano.5b07807
|
76 |
Zhang J. , Wang J. , Chen P. , Sun Y. , Wu S. , Jia Z. , Lu X. , Yu H. , Chen W. , Zhu J. , Xie G. , Yang R. , Shi D. , Xu X. , Xiang J. , Liu K. , Zhang G. . Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater., 2016, 28(10): 1950
https://doi.org/10.1002/adma.201504631
|
77 |
Jiang T. , Liu H. , Huang D. , Zhang S. , Li Y. , Gong X. , R. Shen Y. , T. Liu W. , Wu S. . Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol., 2014, 9(10): 825
https://doi.org/10.1038/nnano.2014.176
|
78 |
Wang K. , Huang B. , Tian M. , Ceballos F. , W. Lin M. , Mahjouri-Samani M. , Boulesbaa A. , A. Puretzky A. , M. Rouleau C. , Yoon M. , Zhao H. , Xiao K. , Duscher G. , B. Geohegan D. . Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano, 2016, 10(7): 6612
https://doi.org/10.1021/acsnano.6b01486
|
79 |
Ji Z. , Hong H. , Zhang J. , Zhang Q. , Huang W. , Cao T. , Qiao R. , Liu C. , Liang J. , Jin C. , Jiao L. , Shi K. , Meng S. , Liu K. . Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano, 2017, 11(12): 12020
https://doi.org/10.1021/acsnano.7b04541
|
80 |
Wu L. , Cong C. , Shang J. , Yang W. , Chen Y. , Zhou J. , Ai W. , Wang Y. , Feng S. , Zhang H. , Liu Z. , Yu T. . Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res., 2021, 14(7): 2215
https://doi.org/10.1007/s12274-020-3193-y
|
81 |
Wang X. , Yasuda K. , Zhang Y. , Liu S. , Watanabe K. , Taniguchi T. , Hone J. , Fu L. , Jarillo-Herrero P. . Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol., 2022, 17: 367
https://doi.org/10.1038/s41565-021-01059-z
|
82 |
Sung J. , Zhou Y. , Scuri G. , Zólyomi V. , I. Andersen T. , Yoo H. , S. Wild D. , Y. Joe A. , J. Gelly R. , Heo H. , J. Magorrian S. , Bérubé D. , M. M. Valdivia A. , Taniguchi T. , Watanabe K. , D. Lukin M. , Kim P. , I. Fal’ko V. , Park H. . Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol., 2020, 15(9): 750
https://doi.org/10.1038/s41565-020-0728-z
|
83 |
Michl J. , C. Palekar C. , A. Tarasenko S. , Lohof F. , Gies C. , von Helversen M. , Sailus R. , Tongay S. , Taniguchi T. , Watanabe K. , Heindel T. , Rosa B. , Rödel M. , Shubina T. , Höfling S. , Reitzenstein S. , Anton-Solanas C. , Schneider C. . Intrinsic circularly polarized exciton emission in a twisted van der Waals heterostructure. Phys. Rev. B, 2022, 105(24): L241406
https://doi.org/10.1103/PhysRevB.105.L241406
|
84 |
Shi J. , Li Y. , Zhang Z. , Feng W. , Wang Q. , Ren S. , Zhang J. , Du W. , Wu X. , Sui X. , Mi Y. , Wang R. , Sun Y. , Zhang L. , Qiu X. , Lu J. , Shen C. , Zhang Y. , Zhang Q. , Liu X. . Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics, 2019, 6(12): 3082
https://doi.org/10.1021/acsphotonics.9b00855
|
85 |
E. Zimmermann J. , Axt M. , Mooshammer F. , Nagler P. , Schüller C. , Korn T. , Höfer U. , Mette G. . Ultrafast charge-transfer dynamics in twisted MoS2/WSe2 heterostructures. ACS Nano, 2021, 15(9): 14725
https://doi.org/10.1021/acsnano.1c04549
|
86 |
Luo D. , Tang J. , Shen X. , Ji F. , Yang J. , Weathersby S. , E. Kozina M. , Chen Z. , Xiao J. , Ye Y. , Cao T. , Zhang G. , Wang X. , M. Lindenberg A. . Twist-angle-dependent ultrafast charge transfer in MoS2-graphene van der Waals heterostructures. Nano Lett., 2021, 21(19): 8051
https://doi.org/10.1021/acs.nanolett.1c02356
|
87 |
M. van der Zande A. , Kunstmann J. , Chernikov A. , A. Chenet D. , You Y. , Zhang X. , Y. Huang P. , C. Berkelbach T. , Wang L. , Zhang F. , S. Hybertsen M. , A. Muller D. , R. Reichman D. , F. Heinz T. , C. Hone J. . Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett., 2014, 14(7): 3869
https://doi.org/10.1021/nl501077m
|
88 |
Huang S. , Ling X. , Liang L. , Kong J. , Terrones H. , Meunier V. , S. Dresselhaus M. . Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett., 2014, 14(10): 5500
https://doi.org/10.1021/nl5014597
|
89 |
Wang Y. , Su Z. , Wu W. , Nie S. , Xie N. , Gong H. , Guo Y. , Hwan Lee J. , Xing S. , Lu X. , Wang H. , Lu X. , McCarty K. , Pei S. , Robles-Hernandez F. , G. Hadjiev V. , Bao J. . Resonance Raman spectroscopy of G-line and folded phonons in twisted bilayer graphene with large rotation angles. Appl. Phys. Lett., 2013, 103(12): 123101
https://doi.org/10.1063/1.4821434
|
90 |
C. Lu C. , C. Lin Y. , Liu Z. , H. Yeh C. , Suenaga K. , W. Chiu P. . Twisting bilayer graphene superlattices. ACS Nano, 2013, 7(3): 2587
https://doi.org/10.1021/nn3059828
|
91 |
Ren W. , Chen J. , Zhang G. . Phonon physics in twisted two-dimensional materials. Appl. Phys. Lett., 2022, 121: 140501
https://doi.org/10.1063/5.0106676
|
92 |
Dai Y. , Qi P. , Tao G. , Yao G. , Shi B. , Liu Z. , Liu Z. , He X. , Peng P. , Dang Z. , Zheng L. , Zhang T. , Gong Y. , Guan Y. , Liu K. , Fang Z. . Phonon-assisted upconversion in twisted two-dimensional semiconductors. Light Sci. Appl., 2023, 12(1): 6
https://doi.org/10.1038/s41377-022-01051-9
|
93 |
Huang D. , Choi J. , K. Shih C. , Li X. . Excitons in semiconductor moiré superlattices. Nat. Nanotechnol., 2022, 17(3): 227
https://doi.org/10.1038/s41565-021-01068-y
|
94 |
Xiao D. , B. Liu G. , Feng W. , Xu X. , Yao W. . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
https://doi.org/10.1103/PhysRevLett.108.196802
|
95 |
F. Mak K. , He K. , Shan J. , F. Heinz T. . Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7: 494
https://doi.org/10.1038/nnano.2012.96
|
96 |
Sallen G. , Bouet L. , Marie X. , Wang G. , R. Zhu C. , P. Han W. , Lu Y. , H. Tan P. , Amand T. , L. Liu B. , Urbaszek B. . Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B., 2012, 86(8): 081301
https://doi.org/10.1103/PhysRevB.86.081301
|
97 |
F. Mak K. , L. McGill K. , Park J. , L. McEuen P. . The valley Hall effect in MoS2 transistors. Science, 2014, 344: 1489
https://doi.org/10.1126/science.1250140
|
98 |
Lee J. , Wang Z. , Xie H. , F. Mak K. , Shan J. . Valley magnetoelectricity in single-layer MoS2. Nat. Mater., 2017, 16: 887
https://doi.org/10.1038/nmat4931
|
99 |
Srivastava A. , Sidler M. , V. Allain A. , S. Lembke D. , Kis A. , Imamoğlu A. . Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
https://doi.org/10.1038/nphys3203
|
100 |
Gong Z. , B. Liu G. , Yu H. , Xiao D. , Cui X. , Xu X. , Yao W. . Magnetoelectric effects and valley- controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun., 2013, 4(1): 2053
https://doi.org/10.1038/ncomms3053
|
101 |
Ebnonnasir A. , Narayanan B. , Kodambaka S. , V. Ciobanu C. . Tunable MoS2 bandgap in MoS2-graphene heterostructures. Appl. Phys. Lett., 2014, 105: 031603
https://doi.org/10.1063/1.4891430
|
102 |
Rivera P. , R. Schaibley J. , M. Jones A. , S. Ross J. , Wu S. , Aivazian G. , Klement P. , Seyler K. , Clark G. , J. Ghimire N. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun., 2015, 6(1): 6242
https://doi.org/10.1038/ncomms7242
|
103 |
Rivera P. , Yu H. , L. Seyler K. , P. Wilson N. , Yao W. , Xu X. . Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2018, 13(11): 1004
https://doi.org/10.1038/s41565-018-0193-0
|
104 |
R. Schaibley J. , Yu H. , Clark G. , Rivera P. , S. Ross J. , L. Seyler K. , Yao W. , Xu X. . Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
|
105 |
F. Mak K. , Xiao D. , Shan J. . Light–valley interactions in 2D semiconductors. Nat. Photonics, 2018, 12(8): 451
https://doi.org/10.1038/s41566-018-0204-6
|
106 |
Singh A. , Tran K. , Kolarczik M. , Seifert J. , Wang Y. , Hao K. , Pleskot D. , M. Gabor N. , Helmrich S. , Owschimikow N. , Woggon U. , Li X. . Long-lived valley polarization of intravalley trions in monolayer WSe2. Phys. Rev. Lett., 2016, 117(25): 257402
https://doi.org/10.1103/PhysRevLett.117.257402
|
107 |
Ge M. , Wang H. , Wu J. , Si C. , Zhang J. , Zhang S. . Enhanced valley splitting of WSe2 in twisted van der Waals WSe2/CrI3 heterostructures. npj Comput. Mater., 2022, 8: 32
https://doi.org/10.1038/s41524-022-00715-9
|
108 |
Hu W. , Yang J. . Two-dimensional van der Waals heterojunctions for functional materials and devices. J. Mater. Chem. C, 2017, 5(47): 12289
https://doi.org/10.1039/C7TC04697A
|
109 |
O. Özçelik V. , G. Azadani J. , Yang C. , J. Koester S. , Low T. . Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B, 2016, 94(3): 035125
https://doi.org/10.1103/PhysRevB.94.035125
|
110 |
Hong X. , Kim J. , F. Shi S. , Zhang Y. , Jin C. , Sun Y. , Tongay S. , Wu J. , Zhang Y. , Wang F. . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 2014, 9(9): 682
https://doi.org/10.1038/nnano.2014.167
|
111 |
Zhu H. , Wang J. , Gong Z. , D. Kim Y. , Hone J. , Y. Zhu X. . Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett., 2017, 17(6): 3591
https://doi.org/10.1021/acs.nanolett.7b00748
|
112 |
F. Rigosi A. , M. Hill H. , Li Y. , Chernikov A. , F. Heinz T. . Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
https://doi.org/10.1021/acs.nanolett.5b01055
|
113 |
Yu Y. , Hu S. , Su L. , Huang L. , Liu Y. , Jin Z. , A. Purezky A. , B. Geohegan D. , W. Kim K. , Zhang Y. , Cao L. . Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett., 2015, 15(1): 486
https://doi.org/10.1021/nl5038177
|
114 |
Liu F. , Li Q. , Y. Zhu X. . Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B, 2020, 101(20): 201405
https://doi.org/10.1103/PhysRevB.101.201405
|
115 |
Merkl P. , Mooshammer F. , Steinleitner P. , Girnghuber A. , Q. Lin K. , Nagler P. , Holler J. , Schüller C. , M. Lupton J. , Korn T. , Ovesen S. , Brem S. , Malic E. , Huber R. . Ultrafast transition between exciton phases in van der Waals heterostructures. Nat. Mater., 2019, 18(7): 691
https://doi.org/10.1038/s41563-019-0337-0
|
116 |
Wang H. , Bang J. , Sun Y. , Liang L. , West D. , Meunier V. , Zhang S. . The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures. Nat. Commun., 2016, 7(1): 11504
https://doi.org/10.1038/ncomms11504
|
117 |
K. Behura S. , Miranda A. , Nayak S. , Johnson K. , Das P. , R. Pradhan N. . Moiré physics in twisted van der Waals heterostructures of 2D materials. Emergent Mater., 2021, 4(4): 813
https://doi.org/10.1007/s42247-021-00270-x
|
118 |
Wu F. , Lovorn T. , Tutuc E. , H. MacDonald A. . Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
https://doi.org/10.1103/PhysRevLett.121.026402
|
119 |
Wang H. , Ma S. , Zhang S. , Lei D. . Intrinsic superflat bands in general twisted bilayer systems. Light Sci. Appl., 2022, 11(1): 159
https://doi.org/10.1038/s41377-022-00838-0
|
120 |
Ma Z. , Li S. , M. Xiao M. , W. Zheng Y. , Lu M. , Liu H. , H. Gao J. , C. Xie X. . Moiré flat bands of twisted few-layer graphite. Front. Phys., 2023, 18(1): 13307
https://doi.org/10.1007/s11467-022-1220-z
|
121 |
Zhang N. , Surrente A. , Baranowski M. , K. Maude D. , Gant P. , Castellanos-Gomez A. , Plochocka P. . Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett., 2018, 18(12): 7651
https://doi.org/10.1021/acs.nanolett.8b03266
|
122 |
Remez B. , R. Cooper N. . Leaky exciton condensates in transition metal dichalcogenide moiré bilayers. Phys. Rev. Mater., 2022, 4: L022042
https://doi.org/10.1103/PhysRevResearch.4.L022042
|
123 |
Bistritzer R. , H. MacDonald A. . Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12233
https://doi.org/10.1073/pnas.1108174108
|
124 |
Chen G. , Jiang L. , Wu S. , Lyu B. , Li H. , L. Chittari B. , Watanabe K. , Taniguchi T. , Shi Z. , Jung J. , Zhang Y. , Wang F. . Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
https://doi.org/10.1038/s41567-018-0387-2
|
125 |
Chen G. , L. Sharpe A. , Gallagher P. , T. Rosen I. , J. Fox E. , Jiang L. , Lyu B. , Li H. , Watanabe K. , Taniguchi T. , Jung J. , Shi Z. , Goldhaber-Gordon D. , Zhang Y. , Wang F. . Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
https://doi.org/10.1038/s41586-019-1393-y
|
126 |
Chen G. , L. Sharpe A. , J. Fox E. , H. Zhang Y. , Wang S. , Jiang L. , Lyu B. , Li H. , Watanabe K. , Taniguchi T. , Shi Z. , Senthil T. , Goldhaber-Gordon D. , Zhang Y. , Wang F. . Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579(7797): 56
https://doi.org/10.1038/s41586-020-2049-7
|
127 |
Su R. , Kuiri M. , Watanabe K. , Taniguchi T. , Folk J. . Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nat. Mater., 2023, 22(11): 1332
https://doi.org/10.1038/s41563-023-01653-7
|
128 |
Wang L. , M. Shih E. , Ghiotto A. , Xian L. , A. Rhodes D. , Tan C. , Claassen M. , M. Kennes D. , Bai Y. , Kim B. , Watanabe K. , Taniguchi T. , Zhu X. , Hone J. , Rubio A. , N. Pasupathy A. , R. Dean C. . Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater., 2020, 19(8): 861
https://doi.org/10.1038/s41563-020-0708-6
|
129 |
Tang Y. , Li L. , Li T. , Xu Y. , Liu S. , Barmak K. , Watanabe K. , Taniguchi T. , H. MacDonald A. , Shan J. , F. Mak K. . Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 353
https://doi.org/10.1038/s41586-020-2085-3
|
130 |
Xu Y. , Liu S. , A. Rhodes D. , Watanabe K. , Taniguchi T. , Hone J. , Elser V. , F. Mak K. , Shan J. . Correlated insulating states at fractional fillings of moiré superlattices. Nature, 2020, 587(7833): 214
https://doi.org/10.1038/s41586-020-2868-6
|
131 |
Shimazaki Y. , Schwartz I. , Watanabe K. , Taniguchi T. , Kroner M. , Imamoğlu A. . Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804): 472
https://doi.org/10.1038/s41586-020-2191-2
|
132 |
Liu Y. , Zeng C. , Yu J. , Zhong J. , Li B. , Zhang Z. , Liu Z. , M. Wang Z. , Pan A. , Duan X. . Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem. Soc. Rev., 2021, 50(11): 6401
https://doi.org/10.1039/D0CS01002B
|
133 |
H. Naik M. , Kundu S. , Maity I. , Jain M. . Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots. Phys. Rev. B, 2020, 102(7): 075413
https://doi.org/10.1103/PhysRevB.102.075413
|
134 |
Yuan L. , Zheng B. , Kunstmann J. , Brumme T. , B. Kuc A. , Ma C. , Deng S. , Blach D. , Pan A. , Huang L. . Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater., 2020, 19(6): 617
https://doi.org/10.1038/s41563-020-0670-3
|
135 |
Zhang L. , Zhang Z. , Wu F. , Wang D. , Gogna R. , Hou S. , Watanabe K. , Taniguchi T. , Kulkarni K. , Kuo T. , R. Forrest S. , Deng H. . Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11(1): 5888
https://doi.org/10.1038/s41467-020-19466-6
|
136 |
Li Z. , Lu X. , F. Cordovilla Leon D. , Lyu Z. , Xie H. , Hou J. , Lu Y. , Guo X. , Kaczmarek A. , Taniguchi T. , Watanabe K. , Zhao L. , Yang L. , B. Deotare P. . Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano, 2021, 15(1): 1539
https://doi.org/10.1021/acsnano.0c08981
|
137 |
Zhao X. , Qiao J. , Zhou X. , Chen H. , Y. Tan J. , Yu H. , M. Chan S. , Li J. , Zhang H. , Zhou J. , Dan J. , Liu Z. , Zhou W. , Liu Z. , Peng B. , Deng L. , J. Pennycook S. , Y. Quek S. , P. Loh K. . Strong moiré excitons in high-angle twisted transition metal dichalcogenide homobilayers with robust commensuration. Nano Lett., 2022, 22(1): 203
https://doi.org/10.1021/acs.nanolett.1c03622
|
138 |
Ribeiro-Palau R. , Zhang C. , Watanabe K. , Taniguchi T. , Hone J. , R. Dean C. . Twistable electronics with dynamically rotatable heterostructures. Science, 2018, 361(6403): 690
https://doi.org/10.1126/science.aat6981
|
139 |
Weston A. , Zou Y. , Enaldiev V. , Summerfield A. , Clark N. , Zólyomi V. , Graham A. , Yelgel C. , Magorrian S. , Zhou M. , Zultak J. , Hopkinson D. , Barinov A. , H. Bointon T. , Kretinin A. , R. Wilson N. , H. Beton P. , I. Fal’ko V. , J. Haigh S. , Gorbachev R. . Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2020, 15(7): 592
https://doi.org/10.1038/s41565-020-0682-9
|
140 |
R. Rosenberger M. , J. Chuang H. , Phillips M. , P. Oleshko V. , M. McCreary K. , V. Sivaram S. , S. Hellberg C. , T. Jonker B. . Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(4): 4550
https://doi.org/10.1021/acsnano.0c00088
|
141 |
I. Andersen T. , Scuri G. , Sushko A. , De Greve K. , Sung J. , Zhou Y. , S. Wild D. , J. Gelly R. , Heo H. , Bérubé D. , Y. Joe A. , A. Jauregui L. , Watanabe K. , Taniguchi T. , Kim P. , Park H. , D. Lukin M. . Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater., 2021, 20(4): 480
https://doi.org/10.1038/s41563-020-00873-5
|
142 |
Quan J. , Linhart L. , L. Lin M. , Lee D. , Zhu J. , Y. Wang C. , T. Hsu W. , Choi J. , Embley J. , Young C. , Taniguchi T. , Watanabe K. , K. Shih C. , Lai K. , H. MacDonald A. , H. Tan P. , Libisch F. , Li X. . Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater., 2021, 20(8): 1100
https://doi.org/10.1038/s41563-021-00960-1
|
143 |
H. Lin B. , C. Chao Y. , T. Hsieh I. , P. Chuu C. , J. Lee C. , H. Chu F. , S. Lu L. , T. Hsu W. , W. Pao C. , K. Shih C. , J. Su J. , H. Chang W. . Remarkably deep moiré potential for intralayer excitons in MoSe2/MoS2 twisted heterobilayers. Nano Lett., 2023, 23(4): 1306
https://doi.org/10.1021/acs.nanolett.2c04524
|
144 |
Li S. , Zheng H. , Ding J. , Wu B. , He J. , Liu Z. , Liu Y. . Dynamic control of moiré potential in twisted WS2‒WSe2 heterostructures. Nano Res., 2022, 15(8): 7688
https://doi.org/10.1007/s12274-022-4579-9
|
145 |
Wu B. , Zheng H. , Li S. , Ding J. , Zeng Y. , Liu Z. , Liu Y. . Observation of moiré excitons in the twisted WS2/WS2 homostructure. Nanoscale, 2022, 14(34): 12447
https://doi.org/10.1039/D2NR02450K
|
146 |
M. Alexeev E. , A. Ruiz-Tijerina D. , Danovich M. , J. Hamer M. , J. Terry D. , K. Nayak P. , Ahn S. , Pak S. , Lee J. , I. Sohn J. , R. Molas M. , Koperski M. , Watanabe K. , Taniguchi T. , S. Novoselov K. , V. Gorbachev R. , S. Shin H. , I. Fal’ko V. , I. Tartakovskii A. . Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 2019, 567(7746): 81
https://doi.org/10.1038/s41586-019-0986-9
|
147 |
Tran K. , Moody G. , Wu F. , Lu X. , Choi J. , Kim K. , Rai A. , A. Sanchez D. , Quan J. , Singh A. , Embley J. , Zepeda A. , Campbell M. , Autry T. , Taniguchi T. , Watanabe K. , Lu N. , K. Banerjee S. , L. Silverman K. , Kim S. , Tutuc E. , Yang L. , H. MacDonald A. , Li X. . Evidence for moiré excitons in van der Waals heterostructures. Nature, 2019, 567(7746): 71
https://doi.org/10.1038/s41586-019-0975-z
|
148 |
Tang Y. , Gu J. , Liu S. , Watanabe K. , Taniguchi T. , Hone J. , F. Mak K. , Shan J. . Tuning layer- hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol., 2021, 16(1): 52
https://doi.org/10.1038/s41565-020-00783-2
|
149 |
Brem S. , Q. Lin K. , Gillen R. , M. Bauer J. , Maultzsch J. , M. Lupton J. , Malic E. . Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale, 2020, 12: 11088
https://doi.org/10.1039/D0NR02160A
|
150 |
A. Ruiz-Tijerina D. , I. Fal’ko V. . Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B, 2019, 99(12): 125424
https://doi.org/10.1103/PhysRevB.99.125424
|
151 |
Jin C. , C. Regan E. , Yan A. , Iqbal Bakti Utama M. , Wang D. , Zhao S. , Qin Y. , Yang S. , Zheng Z. , Shi S. , Watanabe K. , Taniguchi T. , Tongay S. , Zettl A. , Wang F. . Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76
https://doi.org/10.1038/s41586-019-0976-y
|
152 |
Zheng H.Wu B.Li S.He J.Chen K.Liu Z.Liu Y.. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 16(2), 3429 (2023)
|
153 |
Karni O. , Barré E. , Pareek V. , D. Georgaras J. , K. L. Man M. , Sahoo C. , R. Bacon D. , Zhu X. , B. Ribeiro H. , L. O’Beirne A. , Hu J. , Al-Mahboob A. , M. M. Abdelrasoul M. , S. Chan N. , Karmakar A. , J. Winchester A. , Kim B. , Watanabe K. , Taniguchi T. , Barmak K. , Madéo J. , H. da Jornada F. , F. Heinz T. , M. Dani K. . Structure of the moiré exciton captured by imaging its electron and hole. Nature, 2022, 603(7900): 247
https://doi.org/10.1038/s41586-021-04360-y
|
154 |
Dandu M. , Gupta G. , Dasika P. , Watanabe K. , Taniguchi T. , Majumdar K. . Electrically tunable localized versus delocalized intralayer moiré excitons and trions in a twisted MoS2 bilayer. ACS Nano, 2022, 16(6): 8983
https://doi.org/10.1021/acsnano.2c00145
|
155 |
Brem S. , Malic E. . Bosonic delocalization of dipolar moiré excitons. Nano Lett., 2023, 23(10): 4627
https://doi.org/10.1021/acs.nanolett.3c01160
|
156 |
Lagoin C. , Dubin F. . Key role of the moiré potential for the quasicondensation of interlayer excitons in van der Waals heterostructures. Phys. Rev. B, 2021, 103(4): L041406
https://doi.org/10.1103/PhysRevB.103.L041406
|
157 |
Götting N. , Lohof F. , Gies C. . Moiré-Bose-Hubbard model for interlayer excitons in twisted transition metal dichalcogenide heterostructures. Phys. Rev. B, 2022, 105(16): 165419
https://doi.org/10.1103/PhysRevB.105.165419
|
158 |
Choi J. , T. Hsu W. , S. Lu L. , Sun L. , Y. Cheng H. , H. Lee M. , Quan J. , Tran K. , Y. Wang C. , Staab M. , Jones K. , Taniguchi T. , Watanabe K. , W. Chu M. , Gwo S. , Kim S. , K. Shih C. , Li X. , H. Chang W. . Moiré potential impedes interlayer exciton diffusion in van der Waals heterostructures. Sci. Adv., 2020, 6(39): eaba8866
https://doi.org/10.1126/sciadv.aba8866
|
159 |
Mahdikhanysarvejahany F. , N. Shanks D. , Muccianti C. , H. Badada B. , Idi I. , Alfrey A. , Raglow S. , R. Koehler M. , G. Mandrus D. , Taniguchi T. , Watanabe K. , L. A. Monti O. , Yu H. , J. LeRoy B. , R. Schaibley J. . Temperature dependent moiré trapping of interlayer excitons in MoSe2‒WSe2 heterostructures. npj 2D Mater. Appl., 2021, 5: 67
https://doi.org/10.1038/s41699-021-00248-7
|
160 |
Choi J. , Florian M. , Steinhoff A. , Erben D. , Tran K. , S. Kim D. , Sun L. , Quan J. , Claassen R. , Majumder S. , A. Hollingsworth J. , Taniguchi T. , Watanabe K. , Ueno K. , Singh A. , Moody G. , Jahnke F. , Li X. . Twist angle-dependent interlayer exciton lifetimes in van der Waals heterostructures. Phys. Rev. Lett., 2021, 126(4): 047401
https://doi.org/10.1103/PhysRevLett.126.047401
|
161 |
Cai H. , Rasmita A. , Tan Q. , M. Lai J. , He R. , Cai X. , Zhao Y. , Chen D. , Wang N. , Mu Z. , Huang Z. , Zhang Z. , J. H. Eng J. , Liu Y. , She Y. , Pan N. , Miao Y. , Wang X. , Liu X. , Zhang J. , Gao W. . Interlayer donor-acceptor pair excitons in MoSe2/WSe2 moiré heterobilayer. Nat. Commun., 2023, 14(1): 5766
https://doi.org/10.1038/s41467-023-41330-6
|
162 |
Zheng H. , Wu B. , T. Wang C. , Li S. , He J. , Liu Z. , T. Wang J. , Duan J. , Liu Y. . Exploring the regulatory effect of stacked layers on moiré excitons in twisted WSe2/WSe2/WSe2 homotrilayer. Nano Res., 2023, 16(7): 10573
https://doi.org/10.1007/s12274-023-5822-8
|
163 |
Zheng H. , Wu B. , Li S. , Ding J. , He J. , Liu Z. , T. Wang C. , T. Wang J. , Pan A. , Liu Y. . Localization- enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. Light Sci. Appl., 2023, 12(1): 117
https://doi.org/10.1038/s41377-023-01171-w
|
164 |
Zhang L. , Gogna R. , W. Burg G. , Horng J. , Paik E. , H. Chou Y. , Kim K. , Tutuc E. , Deng H. . Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B, 2019, 100(4): 041402
https://doi.org/10.1103/PhysRevB.100.041402
|
165 |
Brotons-Gisbert M. , Baek H. , Molina-Sánchez A. , Campbell A. , Scerri E. , White D. , Watanabe K. , Taniguchi T. , Bonato C. , D. Gerardot B. . Spin-layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater., 2020, 19(6): 630
https://doi.org/10.1038/s41563-020-0687-7
|
166 |
Wang X. , Zhu J. , L. Seyler K. , Rivera P. , Zheng H. , Wang Y. , He M. , Taniguchi T. , Watanabe K. , Yan J. , G. Mandrus D. , R. Gamelin D. , Yao W. , Xu X. . Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol., 2021, 16(11): 1208
https://doi.org/10.1038/s41565-021-00969-2
|
167 |
Bai Y. , Zhou L. , Wang J. , Wu W. , J. McGilly L. , Halbertal D. , F. B. Lo C. , Liu F. , Ardelean J. , Rivera P. , R. Finney N. , C. Yang X. , N. Basov D. , Yao W. , Xu X. , Hone J. , N. Pasupathy A. , Y. Zhu X. . Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater., 2020, 19(10): 1068
https://doi.org/10.1038/s41563-020-0730-8
|
168 |
Zhao W. , C. Regan E. , Wang D. , Jin C. , Hsieh S. , Wang Z. , Wang J. , Wang Z. , Yumigeta K. , Blei M. , Watanabe K. , Taniguchi T. , Tongay S. , Y. Yao N. , Wang F. . Dynamic tuning of moiré excitons in a WSe2/WS2 heterostructure via mechanical deformation. Nano Lett., 2021, 21(20): 8910
https://doi.org/10.1021/acs.nanolett.1c03611
|
169 |
Anđelković M. , P. Milovanović S. , Covaci L. , M. Peeters F. . Double moiré with a twist: Supermoiré in encapsulated graphene. Nano Lett., 2020, 20(2): 979
https://doi.org/10.1021/acs.nanolett.9b04058
|
170 |
Tagarelli F. , Lopriore E. , Erkensten D. , Perea-Causín R. , Brem S. , Hagel J. , Sun Z. , Pasquale G. , Watanabe K. , Taniguchi T. , Malic E. , Kis A. . Electrical control of hybrid exciton transport in a van der Waals heterostructure. Nat. Photonics, 2023, 17(7): 615
https://doi.org/10.1038/s41566-023-01198-w
|
171 |
Lian Z. , Chen D. , Meng Y. , Chen X. , Su Y. , Banerjee R. , Taniguchi T. , Watanabe K. , Tongay S. , Zhang C. , T. Cui Y. , F. Shi S. . Exciton superposition across moiré states in a semiconducting moiré superlattice. Nat. Commun., 2023, 14(1): 5042
https://doi.org/10.1038/s41467-023-40783-z
|
172 |
Li L. , Wu M. . Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382
https://doi.org/10.1021/acsnano.7b02756
|
173 |
Li F. , Fu J. , Xue M. , Li Y. , Zeng H. , Kan E. , Hu T. , Wan Y. . Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding. Front. Phys., 2023, 18(5): 53305
https://doi.org/10.1007/s11467-023-1304-4
|
174 |
Wang Y. , Cong C. , Yang W. , Shang J. , Peimyoo N. , Chen Y. , Kang J. , Wang J. , Huang W. , Yu T. . Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res., 2015, 8(8): 2562
https://doi.org/10.1007/s12274-015-0762-6
|
175 |
He X. , Li H. , Zhu Z. , Dai Z. , Yang Y. , Yang P. , Zhang Q. , Li P. , Schwingenschlogl U. , Zhang X. . Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett., 2016, 109(17): 173105
https://doi.org/10.1063/1.4966218
|
176 |
Feng J. , Qian X. , W. Huang C. , Li J. . Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics, 2012, 6(12): 866
https://doi.org/10.1038/nphoton.2012.285
|
177 |
Castellanos-Gomez A. , Roldán R. , Cappelluti E. , Buscema M. , Guinea F. , S. J. van der Zant H. , A. Steele G. . Local strain engineering in atomically thin MoS2. Nano Lett., 2013, 13(11): 5361
https://doi.org/10.1021/nl402875m
|
178 |
Wang W. , Ma X. . Strain-induced trapping of indirect excitons in MoSe2/WSe2 heterostructures. ACS Photon., 2020, 7: 2460
https://doi.org/10.1021/acsphotonics.0c00567
|
179 |
Liu X. , Zeng J. . Gap solitons in parity–time symmetric moiré optical lattices. Photon. Res., 2023, 11(2): 196
https://doi.org/10.1364/PRJ.474527
|
180 |
Liu Y. , Ouyang C. , Xu Q. , Su X. , Yang Q. , Ma J. , Li Y. , Tian Z. , Gu J. , Liu L. , Han J. , Shi Y. , Zhang W. . Moiré-driven electromagnetic responses and magic angles in a sandwiched hyperbolic metasurface. Photon. Res., 2022, 10(9): 2056
https://doi.org/10.1364/PRJ.462119
|
181 |
C. Regan E. , Wang D. , Jin C. , I. Bakti Utama M. , Gao B. , Wei X. , Zhao S. , Zhao W. , Zhang Z. , Yumigeta K. , Blei M. , D. Carlström J. , Watanabe K. , Taniguchi T. , Tongay S. , Crommie M. , Zettl A. , Wang F. . Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 359
https://doi.org/10.1038/s41586-020-2092-4
|
182 |
G. Bednorz J. , A. Müller K. . Possible high Tc superconductivity in the Ba−La−Cu−O system. Zeitschrift für Physik B Condensed Matter, 1986, 64: 189
https://doi.org/10.1007/BF01303701
|
183 |
Li T. , Jiang S. , Li L. , Zhang Y. , Kang K. , Zhu J. , Watanabe K. , Taniguchi T. , Chowdhury D. , Fu L. , Shan J. , F. Mak K. . Continuous Mott transition in semiconductor moiré superlattices. Nature, 2021, 597(7876): 350
https://doi.org/10.1038/s41586-021-03853-0
|
184 |
Miao S. , Wang T. , Huang X. , Chen D. , Lian Z. , Wang C. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Wang Z. , Xiao D. , T. Cui Y. , F. Shi S. . Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice. Nat. Commun., 2021, 12(1): 3608
https://doi.org/10.1038/s41467-021-23732-6
|
185 |
Chen D. , Lian Z. , Huang X. , Su Y. , Rashetnia M. , Yan L. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Wang Z. , Zhang C. , T. Cui Y. , F. Shi S. . Tuning moiré excitons and correlated electronic states through layer degree of freedom. Nat. Commun., 2022, 13(1): 4810
https://doi.org/10.1038/s41467-022-32493-9
|
186 |
H. Naik M. , C. Regan E. , Zhang Z. , H. Chan Y. , Li Z. , Wang D. , Yoon Y. , S. Ong C. , Zhao W. , Zhao S. , I. B. Utama M. , Gao B. , Wei X. , Sayyad M. , Yumigeta K. , Watanabe K. , Taniguchi T. , Tongay S. , H. da Jornada F. , Wang F. , G. Louie S. . Intralayer charge-transfer moiré excitons in van der Waals superlattices. Nature, 2022, 609(7925): 52
https://doi.org/10.1038/s41586-022-04991-9
|
187 |
Wang X. , Xiao C. , Park H. , Zhu J. , Wang C. , Taniguchi T. , Watanabe K. , Yan J. , Xiao D. , R. Gamelin D. , Yao W. , Xu X. . Light-induced ferromagnetism in moiré superlattices. Nature, 2022, 604(7906): 468
https://doi.org/10.1038/s41586-022-04472-z
|
188 |
Zhang Z. , C. Regan E. , Wang D. , Zhao W. , Wang S. , Sayyad M. , Yumigeta K. , Watanabe K. , Taniguchi T. , Tongay S. , Crommie M. , Zettl A. , P. Zaletel M. , Wang F. . Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys., 2022, 18(10): 1214
https://doi.org/10.1038/s41567-022-01702-z
|
189 |
Rohringer G. , Hafermann H. , Toschi A. , A. Katanin A. , E. Antipov A. , I. Katsnelson M. , I. Lichtenstein A. , N. Rubtsov A. , Held K. . Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys., 2018, 90(2): 025003
https://doi.org/10.1103/RevModPhys.90.025003
|
190 |
Quintanilla J. , A. Hooley C. . The strong-correlations puzzle. Physics World, 2009, 22(06): 32
https://doi.org/10.1088/2058-7058/22/06/38
|
191 |
Ghiotto A. , M. Shih E. , S. S. G. Pereira G. , A. Rhodes D. , Kim B. , Zang J. , J. Millis A. , Watanabe K. , Taniguchi T. , C. Hone J. , Wang L. , R. Dean C. , N. Pasupathy A. . Quantum criticality in twisted transition metal dichalcogenides. Nature, 2021, 597(7876): 345
https://doi.org/10.1038/s41586-021-03815-6
|
192 |
Szasz A. , Motruk J. , P. Zaletel M. , E. Moore J. . Chiral spin liquid phase of the triangular lattice Hubbard model: A density matrix renormalization group study. Phys. Rev. X, 2020, 10(2): 021042
https://doi.org/10.1103/PhysRevX.10.021042
|
193 |
Senthil T. . Theory of a continuous Mott transition in two dimensions. Phys. Rev. B, 2008, 78(4): 045109
https://doi.org/10.1103/PhysRevB.78.045109
|
194 |
Imada M. , Fujimori A. , Tokura Y. . Metal−insulator transitions. Rev. Mod. Phys., 1998, 70(4): 1039
https://doi.org/10.1103/RevModPhys.70.1039
|
195 |
M. Jones A. , Yu H. , S. Ross J. , Klement P. , J. Ghimire N. , Yan J. , G. Mandrus D. , Yao W. , Xu X. . Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys., 2014, 10(2): 130
https://doi.org/10.1038/nphys2848
|
196 |
Xiong R. , Nie J. , Brantly S. , Hays P. , Sailus R. , Watanabe K. , Taniguchi T. , Tongay S. , Jin C. . Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science, 2023, 380(6647): 860
https://doi.org/10.1126/science.add5574
|
197 |
Brem S. , Linderälv C. , Erhart P. , Malic E. . Tunable phases of moiré excitons in van der Waals heterostructures. Nano Lett., 2020, 20(12): 8534
https://doi.org/10.1021/acs.nanolett.0c03019
|
198 |
Zhang Z. , Wang Y. , Watanabe K. , Taniguchi T. , Ueno K. , Tutuc E. , J. LeRoy B. . Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys., 2020, 16(11): 1093
https://doi.org/10.1038/s41567-020-0958-x
|
199 |
Hu Q. , Zhan Z. , Cui H. , Zhang Y. , Jin F. , Zhao X. , Zhang M. , Wang Z. , Zhang Q. , Watanabe K. , Taniguchi T. , Cao X. , M. Liu W. , Wu F. , Yuan S. , Xu Y. . Observation of Rydberg moiré excitons. Science, 2023, 380(6652): 1367
https://doi.org/10.1126/science.adh1506
|
200 |
Tan Q. , Rasmita A. , Zhang Z. , S. Novoselov K. , Gao W. . Signature of cascade transitions between interlayer excitons in a moiré superlattice. Phys. Rev. Lett., 2022, 129(24): 247401
https://doi.org/10.1103/PhysRevLett.129.247401
|
201 |
Halbertal D. , R. Finney N. , S. Sunku S. , Kerelsky A. , Rubio-Verdú C. , Shabani S. , Xian L. , Carr S. , Chen S. , Zhang C. , Wang L. , Gonzalez-Acevedo D. , S. McLeod A. , Rhodes D. , Watanabe K. , Taniguchi T. , Kaxiras E. , R. Dean C. , C. Hone J. , N. Pasupathy A. , M. Kennes D. , Rubio A. , N. Basov D. . Moiré metrology of energy landscapes in van der Waals heterostructures. Nat. Commun., 2021, 12(1): 242
https://doi.org/10.1038/s41467-020-20428-1
|
202 |
Li H. , Li S. , C. Regan E. , Wang D. , Zhao W. , Kahn S. , Yumigeta K. , Blei M. , Taniguchi T. , Watanabe K. , Tongay S. , Zettl A. , F. Crommie M. , Wang F. . Imaging two-dimensional generalized Wigner crystals. Nature, 2021, 597(7878): 650
https://doi.org/10.1038/s41586-021-03874-9
|
203 |
H. Stansbury C. , I. B. Utama M. , G. Fatuzzo C. , C. Regan E. , Wang D. , Xiang Z. , Ding M. , Watanabe K. , Taniguchi T. , Blei M. , Shen Y. , Lorcy S. , Bostwick A. , Jozwiak C. , Koch R. , Tongay S. , Avila J. , Rotenberg E. , Wang F. , Lanzara A. . Visualizing electron localization of WS2/WSe2 moiré superlattices in momentum space. Sci. Adv., 2021, 7(37): eabf4387
https://doi.org/10.1126/sciadv.abf4387
|
204 |
Z. Chen Y. , G. Yu S. , Jiang T. , J. Liu X. , B. Cheng X. , Huang D. . Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides. Front. Phys., 2024, 19: 23301
https://doi.org/10.1007/s11467-023-1345-8
|
205 |
V. Enaldiev V. , Ferreira F. , J. Magorrian S. , I. Fal’ko V. . Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater., 2021, 8: 025030
https://doi.org/10.1088/2053-1583/abdd92
|
206 |
Xiao F. , Chen K. , Tong Q. . Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Research., 2021, 3: 013027
https://doi.org/10.1103/PhysRevResearch.3.013027
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|