Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 31201    https://doi.org/10.1007/s11467-023-1357-4
RESEARCH ARTICLE
Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED
Chui-Ping Yang1, Jia-Heng Ni1, Liang Bin1, Yu Zhang2, Yang Yu2, Qi-Ping Su1,3()
1. Department of Physics, Hangzhou Normal University, Hangzhou 311121, China
2. School of Physics, Nanjing University, Nanjing 210093, China
3. Institute for Quantum Science and Technology, University of Calgary, Alberta T2N 1N4, Canada
 Download: PDF(4538 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, cat-state encoding and high-dimensional entanglement have attracted much attention. However, previous works are limited to generation of entangled states of cat-state qubits (two-dimensional entanglement with cat-state encoding), while how to prepare entangled states of cat-state qutrits or qudits (high-dimensional entanglement with cat-state encoding) has not been investigated. We here propose to generate a maximally-entangled state of multiple cat-state qutrits (three-dimensional entanglement by cat-state encoding) in circuit QED. The entangled state is prepared with multiple microwave cavities coupled to a superconducting flux ququart (a four-level quantum system). This proposal operates essentially by the cavity-qutrit dispersive interaction. The circuit hardware resource is minimized because only a coupler ququart is employed. The higher intermediate level of the ququart is occupied only for a short time, thereby decoherence from this level is greatly suppressed during the state preparation. Remarkably, the state preparation time does not depend on the number of the qutrits, thus it does not increase with the number of the qutrits. As an example, our numerical simulations demonstrate that, with the present circuit QED technology, the high-fidelity preparation is feasible for a maximally-entangled state of two cat-state qutrits. Furthermore, we numerically analyze the effect of the inter-cavity crosstalk on the scalability of this proposal. This proposal is universal and can be extended to accomplish the same task with multiple microwave or optical cavities coupled to a natural or artificial four-level atom.

Keywords maximally-entangled states      cat state      qutrit      circuit QED     
Corresponding Author(s): Qi-Ping Su   
Issue Date: 04 December 2023
 Cite this article:   
Chui-Ping Yang,Jia-Heng Ni,Liang Bin, et al. Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED[J]. Front. Phys. , 2024, 19(3): 31201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1357-4
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/31201
Fig.1  (a) Schematic diagram of n microwave cavities coupled to a flux ququart. Each square represents a one-dimensional (1D) or three-dimensional (3D) cavity. The circle A in the middle represents the flux ququart, which is capacitively or inductively coupled to each cavity. (b) Cavity j (j=1,2,?,n) is dispersively coupled to the |f?|h? transition with coupling constant g j and detuning Δ j, while highly detuned (decoupled) from the transitions between any other two levels. It is noted that the transition between the two lowest levels |g? and |e? can be made weak by increasing the barrier between the two potential wells.
Fig.2  Setup for two 1D microwave cavities and a SC flux ququart (the circle A in the middle). Each cavity is a transmission line resonator. The flux ququart consists of three Josephson junctions and a superconducting loop, which is linked to each cavity via a capacitor.
Fig.3  Illustration of the unwanted coupling between cavity j (j=1,2) and the |e? |h? transition with coupling constant gj and detuning Δj . Illustration of cavity j ( j=1,2) and the |g? |f? transition with coupling constant gj and detuning Δj . Illustration of cavity j ( j=1,2) and the |e? |f? transition with coupling constant gj and detuning Δj . Red lines correspond to cavity 1, while green lines correspond to cavity 2.
ωeg /(2π)=3GHz ωfg /(2π)=11GHz ωhe /(2π)=17GHz
ωhf /(2π)=9GHz ωhg /(2π)=20GHz ωc1/(2π)=7.5GHz
ωc2/(2π)=6.5GHz 1/(2π)=1.5GHz 1 /(2π) =9.5GHz
1 /(2π) =3.5GHz 1 /(2π) =0.5GHz 2/(2π)=2.5GHz
2 /(2π) =10.5GHz 2 /(2π) =4.5GHz 2 /(2π) =1.5GHz
12/(2π)=1.0GHz g1/(2π) =75MHz g1 /(2 π)=75 M Hz
g1/(2π )=53.04MHz g1 / (2π)=7.5MHz g2/(2π) =96.82MHz
g2 /(2 π)=96.82MHz g2/(2π )=68.47MHz g2 / (2π)=9.682MHz
Tab.1  Parameters used in the numerical simulation. For the definitions of the parameters, please refer to the text.
Fig.4  Fidelity versus κ1 for g12/g max=0,0.01,0.05. Here, κ is the cavity decay rate, and g12 is the inter-cavity crosstalk strength between cavities 1 and 2. The parameters used in the numerical simulation are referred to the text and Tab.1.
Fig.5  Fidelity versus gc r for three cavities (n=3), four cavities (n=4), and five cavities (n=5). Here, assume that the crosstalk strength gcr between any two cavities is identical. The system dissipation and the unwanted cavity-ququart couplings are not considered in the numerical simulation.
1 W. Show P., in: S. Goldwasser (Ed.), Proceedings of the 35th Annual Symposium on FOCS, IEEE Comput. Soc. Press, Los Alamitos, 1994, p. 124
2 K. Grover L.. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
https://doi.org/10.1103/PhysRevLett.79.325
3 Steane A.. Quantum computing. Rep. Prog. Phys., 1998, 61(2): 117
https://doi.org/10.1088/0034-4885/61/2/002
4 J. Cerf N., Bourennane M., Karlsson A., Gisin N.. Security of quantum key distribution using D-level systems. Phys. Rev. Lett., 2002, 88(12): 127902
https://doi.org/10.1103/PhysRevLett.88.127902
5 P. Lanyon B., Barbieri M., P. Almeida M., Jennewein T., C. Ralph T., J. Resch K., J. Pryde G., L. O’Brien J., Gilchrist A., G. White A.. Simplifying quantum logic using higher dimensional Hilbert spaces. Nat. Phys., 2009, 5(2): 134
https://doi.org/10.1038/nphys1150
6 Xu F., H. Shapiro J., N. C. Wong F.. Experimental fast quantum random number generation using high dimensional entanglement with entropy monitoring. Optica, 2016, 3(11): 1266
https://doi.org/10.1364/OPTICA.3.001266
7 M. Hu X., S. Chen J., H. Liu B., Guo Y., F. Huang Y., Q. Zhou Z., J. Han Y., F. Li C., C. Guo G.. Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits. Phys. Rev. Lett., 2016, 117(17): 170403
https://doi.org/10.1103/PhysRevLett.117.170403
8 C. Dada A., Leach J., S. Buller G., J. Padgett M., Andersson E.. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys., 2011, 7(9): 677
https://doi.org/10.1038/nphys1996
9 Krenn M., Huber M., Fickler R., Lapkiewicz R., Ramelow S., Zeilinger A.. Generation and confirmation of a (100×100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. USA, 2014, 111(17): 6243
https://doi.org/10.1073/pnas.1402365111
10 Zhang Y., S. Roux F., Konrad T., Agnew M., Leach J., Forbes A.. Engineering two-photon high-dimensional states through quantum interference. Sci. Adv., 2016, 2(2): e1501165
https://doi.org/10.1126/sciadv.1501165
11 de Riedmatten H., Marcikic I., Zbinden H., Gisin N.. Creating high-dimensional time-bin entanglement using mode locked lasers. Quantum Inf. Comput., 2002, 2(6): 425
https://doi.org/10.26421/QIC2.6-1
12 Ikuta T., Takesue H.. Enhanced violation of the Collins–Gisin–Linden–Massar–Popescu inequality with optimized time-bin-entangled ququarts. Phys. Rev. A, 2016, 93(2): 022307
https://doi.org/10.1103/PhysRevA.93.022307
13 Xie Z., Zhong T., Shrestha S., Xu X., Liang J., X. Gong Y., C. Bienfang J., Restelli A., H. Shapiro J., N. C. Wong F., W. Wong C.. Harnessing high-dimensional hyper-entanglement through a biphoton frequency comb. Nat. Photonics, 2015, 9(8): 536
https://doi.org/10.1038/nphoton.2015.110
14 Kues M., Reimer C., Roztocki P., R. Cort’es L., Sciara S., Wetzel B., Zhang Y., Cino A., T. Chu S., E. Little B., J. Moss D., Caspani L., Azaña J., Morandotti R.. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546(7660): 622
https://doi.org/10.1038/nature22986
15 Imany P.A. Jaramillo-Villegas J.D. Odele O. Han K.E. Leaird D.M. Lukens J.Lougovski P.Qi M. M. Weiner A., 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator., Opt. Express 26(2), 1825 (2018)
16 Schaeff C., Polster R., Lapkiewicz R., Fickler R., Ramelow S., Zeilinger A.. Scalable fiber integrated source for higher dimensional path-entangled photonic quNits. Opt. Express, 2012, 20(15): 16145
https://doi.org/10.1364/OE.20.016145
17 Schaeff C., Polster R., Huber M., Ramelow S., Zeilinger A.. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica, 2015, 2(6): 523
https://doi.org/10.1364/OPTICA.2.000523
18 Ofek N., Petrenko A., Heeres R., Reinhold P., Leghtas Z., Vlastakis B., Liu Y., Frunzio L., M. Girvin S., Jiang L., Mirrahimi M., H. Devoret M., J. Schoelkopf R.. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 2016, 536(7617): 441
https://doi.org/10.1038/nature18949
19 Q. Liao J., F. Huang J., Tian L.. Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems. Phys. Rev. A, 2016, 93(3): 033853
https://doi.org/10.1103/PhysRevA.93.033853
20 Hatomura T.. Shortcuts to adiabatic cat-state generation in bosonic Josephson junctions. New J. Phys., 2018, 20(1): 015010
https://doi.org/10.1088/1367-2630/aaa117
21 H. Chen Y., Qin W., Wang X., Miranowicz A., Nori F.. Shortcuts to adiabaticity for the quantum Rabi model: Efficient generation of giant entangled cat states via parametric amplification. Phys. Rev. Lett., 2021, 126(2): 023602
https://doi.org/10.1103/PhysRevLett.126.023602
22 Liu S., H. Chen Y., Wang Y., H. Kang Y., C. Shi Z., Song J., Xia Y.. Generation of cat states by a weak parametric drive and a transitionless tracking algorithm. Phys. Rev. A, 2022, 106(4): 042430
https://doi.org/10.1103/PhysRevA.106.042430
23 P. Yang C., F. Zheng Z.. Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED. Opt. Lett., 2018, 43(20): 5126
https://doi.org/10.1364/OL.43.005126
24 Zhang Y., Liu T., Yu Y., P. Yang C.. Preparation of entangled W states with cat-state qubits in circuit QED. Quantum Inform. Process., 2020, 19(8): 218
https://doi.org/10.1007/s11128-020-02715-4
25 Chen Y.-H., Qin W., Wang X., Miranowicz A., Nori F.. Shortcuts to adiabaticity for the quantum Rabi model: Efficient generation of giant entangled cat states via parametric amplification. Phys. Rev. Lett., 2021, 126: 023602
https://doi.org/10.1103/PhysRevLett.126.023602
26 Chen Y.-H., Stassi R., Qin W., Miranowicz A., Nori F.. Fault-tolerant multiqubit geometric entangling gates using photonic cat-state qubits. Phys. Rev. Applied, 2022, 18: 024076
https://doi.org/10.1103/PhysRevApplied.18.024076
27 Mirrahimi M., Leghtas Z., V. Albert V., Touzard S., J. Schoelkopf R., Jiang L., H. Devoret M.. Dynamically protected cat-qubits: A new paradigm for universal quantum compuation. New J. Phys., 2014, 16(4): 045014
https://doi.org/10.1088/1367-2630/16/4/045014
28 E. Nigg S.. Deterministic Hadamard gate for microwave cat-state qubits in circuit QED. Phys. Rev. A, 2014, 89(2): 022340
https://doi.org/10.1103/PhysRevA.89.022340
29 H. Kang Y., H. Chen Y., Wang X., Song J., Xia Y., Miranowicz A., B. Zheng S., Nori F.. Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering. Phys. Rev. Res., 2022, 4(1): 013233
https://doi.org/10.1103/PhysRevResearch.4.013233
30 P. Yang C., P. Su Q., B. Zheng S., Nori F., Han S.. Entangling two oscillators with arbitrary asymmetric initial states. Phys. Rev. A, 2017, 95(5): 052341
https://doi.org/10.1103/PhysRevA.95.052341
31 Zhang Y., Zhao X., F. Zheng Z., Yu L., P. Su Q., P. Yang C.. Universal controlled-phase gate with cat-state qubits in circuit QED. Phys. Rev. A, 2017, 96(5): 052317
https://doi.org/10.1103/PhysRevA.96.052317
32 J. Fan Y., F. Zheng Z., Zhang Y., M. Lu D., P. Yang C.. One step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Front. Phys., 2019, 14(2): 21602
https://doi.org/10.1007/s11467-018-0875-y
33 W. Heeres R., Reinhold P., Ofek N., Frunzio L., Jiang L., H. Devoret M., J. Schoelkopf R.. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun., 2017, 8(1): 94
https://doi.org/10.1038/s41467-017-00045-1
34 Grimm A., E. Frattini N., Puri S., O. Mundhada S., Touzard S., Mirrahimi M., M. Girvin S., Shankar S., H. Devoret M.. Stabilization and operation of a Kerr-cat qubit. Nature, 2020, 584(7820): 205
https://doi.org/10.1038/s41586-020-2587-z
35 Wang C.Y. Gao Y.Reinhold P.W. Heeres R.Ofek N. Chou K.Axline C.Reagor M.Blumoff J.M. Sliwa K. Frunzio L.M. Girvin S.Jiang L.Mirrahimi M.H. Devoret M.J. Schoelkopf R., A Schrodinger cat living in two boxes, Science 352(6289), 1087 (2016)
36 Wang Z.Bao Z.Wu Y.Li Y.Cai W. Wang W.Ma Y.Cai T.Han X.Wang J. Song Y.Sun L.Zhang H.Duan L., A flying Schrödinger’s cat in multipartite entangled states, Sci. Adv. 8, eabn1778 (2022)
37 P. Yang C., I. Chu S., Han S.. Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A, 2003, 67(4): 042311
https://doi.org/10.1103/PhysRevA.67.042311
38 Q. You J., Nori F.. Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B, 2003, 68(6): 064509
https://doi.org/10.1103/PhysRevB.68.064509
39 Blais A., S. Huang R., Wallraff A., M. Girvin S., J. Schoelkopf R.. Cavity quantum electro-dynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
40 Q. You J., Nori F.. Atomic physics and quantum optics using superconducting circuits. Nature, 2011, 474(7353): 589
https://doi.org/10.1038/nature10122
41 Buluta I., Ashhab S., Nori F.. Natural and artificial atoms for quantum computation. Rep. Prog. Phys., 2011, 74(10): 104401
https://doi.org/10.1088/0034-4885/74/10/104401
42 L. Xiang Z., Ashhab S., Q. You J., Nori F.. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
https://doi.org/10.1103/RevModPhys.85.623
43 Gu X.F. Kockum A.Miranowicz A.X. Liu Y.Nori F., Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
44 P. M. Place A., V. H. Rodgers L., Mundada P., M. Smitham B., Fitzpatrick M., Leng Z., Premkumar A., Bryon J., Vrajitoarea A., Sussman S., Cheng G., Madhavan T., K. Babla H., H. Le X., Gang Y., Jäck B., Gyenis A., Yao N., J. Cava R., P. de Leon N., A. Houck A.. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun., 2021, 12(1): 1779
https://doi.org/10.1038/s41467-021-22030-5
45 Kono S.Pan J.Chegnizadeh M.Wang X.Youssefifi A.Scigliuzzo M.J. Kippenberg T., Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 milliseconds, arXiv: 2305.02591 (2023)
46 Wang C., Li X., Xu H., Li Z., Wang J., Yang Z., Mi Z., Liang X., Su T., Yang C.. et al.. Towards practical quantum computers transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf., 2022, 8: 3
https://doi.org/10.1038/s41534-021-00510-2
47 Yan F., Gustavsson S., Kamal A., Birenbaum J., P. Sears A., Hover D., J. Gudmundsen T., Rosenberg D., Samach G., Weber S., L. Yoder J., P. Orlando T., Clarke J., J. Kerman A., D. Oliver W.. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun., 2016, 7(1): 12964
https://doi.org/10.1038/ncomms12964
48 Somoroff A.Ficheux Q.A. Mencia R.N. Xiong H.Kuzmin R. E. Manucharyan V., Millisecond coherence in a superconducting qubit, Phys. Rev. Lett. 130, 267001 (2023)
49 Hofheinz M., Wang H., Ansmann M., C. Bialczak R., Lucero E., Neeley M., D. O’Connell A., Sank D., Wenner J., M. Martinis J., N. Cleland A.. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 2009, 459(7246): 546
https://doi.org/10.1038/nature08005
50 Wang H., Hofheinz M., Wenner J., Ansmann M., C. Bialczak R., Lenander M., Lucero E., Neeley M., D. O’Connell A., Sank D., Weides M., N. Cleland A., M. Martinis J.. Improving the coherence time of superconducting coplanar resonators. Appl. Phys. Lett., 2009, 95(23): 233508
https://doi.org/10.1063/1.3273372
51 H. Devoret M., J. Schoelkopf R.. Superconducting circuits for quantum information: An outlook. Science, 2013, 339(6124): 1169
https://doi.org/10.1126/science.1231930
52 J. Leek P., Filipp S., Maurer P., Baur M., Bianchetti R., M. Fink J., Goppl M., Steffen L., Wallraff A.. Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B, 2009, 79(18): 180511
https://doi.org/10.1103/PhysRevB.79.180511
53 Neeley M., Ansmann M., C. Bialczak R., Hofheinz M., Katz N., Lucero E., O’Connell A., Wang H., N. Cleland A., M. Martinis J.. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys., 2008, 4(7): 523
https://doi.org/10.1038/nphys972
54 B. Zheng S., C. Guo G.. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett., 2000, 85(11): 2392
https://doi.org/10.1103/PhysRevLett.85.2392
55 Sørensen A., Mølmer K.. Quantum computation with ions in thermal motion. Phys. Rev. Lett., 1999, 82(9): 1971
https://doi.org/10.1103/PhysRevLett.82.1971
56 F. V. James D., Jerke J.. Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys., 2007, 85(6): 625
https://doi.org/10.1139/p07-060
57 Kirchmair G., Vlastakis B., Leghtas Z., E. Nigg S., Paik H., Ginossar E., Mirrahimi M., Frunzio L., M. Girvin S., J. Schoelkopf R.. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature, 2013, 495(7440): 205
https://doi.org/10.1038/nature11902
58 Vlastakis B., Kirchmair G., Leghtas Z., E. Nigg S., Frunzio L., M. Girvin S., Mirrahimi M., H. Devoret M., J. Schoelkopf R.. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science, 2013, 342(6158): 607
https://doi.org/10.1126/science.1243289
59 Sun L., Petrenko A., Leghtas Z., Vlastakis B., Kirchmair G., M. Sliwa K., Narla A., Hatridge M., Shankar S., Blumoff J., Frunzio L., Mirrahimi M., H. Devoret M., J. Schoelkopf R.. Tracking photon jumps with repeated quantum non demolition parity measurements. Nature, 2014, 511(7510): 444
https://doi.org/10.1038/nature13436
60 Vlastakis B., Petrenko A., Ofek N., Sun L., Leghtas Z., Sliwa K., Liu Y., Hatridge M., Blumoff J., Frunzio L., Mirrahimi M., Jiang L., H. Devoret M., J. Schoelkopf R.. Characterizing entanglement of an artificial atom and a cavity cat state with Bell’s inequality. Nat. Commun., 2015, 6(1): 8970
https://doi.org/10.1038/ncomms9970
61 Milul O.Guttel B.Goldblatt U.Hazanov S.M. Joshi L. Chausovsky D.Kahn N.Çiftyürek E.Lafont F.Rosenblum S., A superconducting quantum memory with tens of milliseconds coherence time, arXiv: 2302.06442 (2023)
62 Sandberg M., M. Wilson C., Persson F., Bauch T., Johansson G., Shumeiko V., Duty T., Delsing P.. Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett., 2008, 92(20): 203501
https://doi.org/10.1063/1.2929367
63 L. Wang Z., P. Zhong Y., J. He L., Wang H., M. Martinis J., N. Cleland A., W. Xie Q.. Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett., 2013, 102(16): 163503
https://doi.org/10.1063/1.4802893
64 Jeffrey E., Sank D., Y. Mutus J., C. White T., Kelly J., Barends R., Chen Y., Chen Z., Chiaro B., Dunsworth A., Megrant A., J. J. O’Malley P., Neill C., Roushan P., Vainsencher A., Wenner J., N. Cleland A., M. Martinis J.. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett., 2014, 112(19): 190504
https://doi.org/10.1103/PhysRevLett.112.190504
65 Heinsoo J., K. Andersen C., Remm A., Krinner S., Walter T., Salathé Y., Gasparinetti S., C. Besse J., Potŏcnik A., Wallraff A., Eichler C.. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl., 2018, 10(3): 034040
https://doi.org/10.1103/PhysRevApplied.10.034040
66 R. Johansson J., D. Nation P., Nori F.. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
https://doi.org/10.1016/j.cpc.2012.02.021
67 R. Johansson J., D. Nation P., Nori F.. QuTiP2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2013, 184(4): 1234
https://doi.org/10.1016/j.cpc.2012.11.019
68 X. Liu Y., Q. You J., F. Wei L., P. Sun C., Nori F.. Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett., 2005, 95(8): 087001
https://doi.org/10.1103/PhysRevLett.95.087001
69 X. Liu Y., X. Yang C., C. Sun H., B. Wang X.. Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields. New J. Phys., 2014, 16(1): 015031
https://doi.org/10.1088/1367-2630/16/1/015031
70 Niemczyk T., Deppe F., Huebl H., P. Menzel E., Hocke F., J. Schwarz M., J. Garcia-Ripoll J., Zueco D., Hümmer T., Solano E., Marx A., Gross R.. Circuit quantum electrodynamics in the ultrastrong coupling regime. Nat. Phys., 2010, 6(10): 772
https://doi.org/10.1038/nphys1730
71 Yoshihara F., Fuse T., Ashhab S., Kakuyanagi K., Saito S., Semba K.. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys., 2017, 13(1): 44
https://doi.org/10.1038/nphys3906
72 Yoshihara F., Fuse T., Ao Z., Ashhab S., Kakuyanagi K., Saito S., Aoki T., Koshino K., Semba K.. Inversion of qubit energy levels in qubit-oscillator circuits in the deep-strong-coupling regime. Phys. Rev. Lett., 2018, 120(18): 183601
https://doi.org/10.1103/PhysRevLett.120.183601
73 Q. You J.Hu X.Ashhab S.Nori F., Low-decoherence flux qubit, Phys. Rev. B 75, 140515(R) (2007)
74 V. Abdurakhimov L.Mahboob I.Toida H. Kakuyanagi K.Saito S., A long-lived capacitively shunted flux qubit embedded in a 3D cavity, Appl. Phys. Lett. 115(26), 262601 (2019)
75 P. Yang C., P. Su Q., Han S.. Generation of Greenberger Horne‒Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A, 2012, 86(2): 022329
https://doi.org/10.1103/PhysRevA.86.022329
76 Baur M., Filipp S., Bianchetti R., M. Fink J., Göppl M., Steffen L., J. Leek P., Blais A., Wallraff A.. Measurement of Autler‒Townes and mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett., 2009, 102(24): 243602
https://doi.org/10.1103/PhysRevLett.102.243602
77 Woods W., Calusine G., Melville A., Sevi A., Golden E., K. Kim D., Rosenberg D., L. Yoder J., D. Oliver W.. Determining interface dielectric losses in superconducting coplanar-waveguide resonators. Phys. Rev. Appl., 2019, 12(1): 014012
https://doi.org/10.1103/PhysRevApplied.12.014012
78 Melville A., Calusine G., Woods W., Serniak K., Golden E., M. Niedzielski B., K. Kim D., Sevi A., L. Yoder J., A. Dauler E., D. Oliver W.. Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators. Appl. Phys. Lett., 2020, 117(12): 124004
https://doi.org/10.1063/5.0021950
[1] Tong Liu, Bao-Qing Guo, Yan-Hui Zhou, Jun-Long Zhao, Yu-Liang Fang, Qi-Cheng Wu, Chui-Ping Yang. Transfer of quantum entangled states between superconducting qubits and microwave field qubits[J]. Front. Phys. , 2022, 17(6): 61502-.
[2] Qi-Ping Su, Yu Zhang, Liang Bin, Chui-Ping Yang. Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics[J]. Front. Phys. , 2022, 17(5): 53505-.
[3] Qi-Ping Su, Hanyu Zhang, Chui-Ping Yang. Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED[J]. Front. Phys. , 2021, 16(6): 61501-.
[4] You-Ji Fan, Zhen-Fei Zheng, Yu Zhang, Dao-Ming Lu, Chui-Ping Yang. One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED[J]. Front. Phys. , 2019, 14(2): 21602-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed