|
|
|
Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED |
Chui-Ping Yang1, Jia-Heng Ni1, Liang Bin1, Yu Zhang2, Yang Yu2, Qi-Ping Su1,3( ) |
1. Department of Physics, Hangzhou Normal University, Hangzhou 311121, China 2. School of Physics, Nanjing University, Nanjing 210093, China 3. Institute for Quantum Science and Technology, University of Calgary, Alberta T2N 1N4, Canada |
|
|
|
|
Abstract In recent years, cat-state encoding and high-dimensional entanglement have attracted much attention. However, previous works are limited to generation of entangled states of cat-state qubits (two-dimensional entanglement with cat-state encoding), while how to prepare entangled states of cat-state qutrits or qudits (high-dimensional entanglement with cat-state encoding) has not been investigated. We here propose to generate a maximally-entangled state of multiple cat-state qutrits (three-dimensional entanglement by cat-state encoding) in circuit QED. The entangled state is prepared with multiple microwave cavities coupled to a superconducting flux ququart (a four-level quantum system). This proposal operates essentially by the cavity-qutrit dispersive interaction. The circuit hardware resource is minimized because only a coupler ququart is employed. The higher intermediate level of the ququart is occupied only for a short time, thereby decoherence from this level is greatly suppressed during the state preparation. Remarkably, the state preparation time does not depend on the number of the qutrits, thus it does not increase with the number of the qutrits. As an example, our numerical simulations demonstrate that, with the present circuit QED technology, the high-fidelity preparation is feasible for a maximally-entangled state of two cat-state qutrits. Furthermore, we numerically analyze the effect of the inter-cavity crosstalk on the scalability of this proposal. This proposal is universal and can be extended to accomplish the same task with multiple microwave or optical cavities coupled to a natural or artificial four-level atom.
|
| Keywords
maximally-entangled states
cat state
qutrit
circuit QED
|
|
Corresponding Author(s):
Qi-Ping Su
|
|
Issue Date: 04 December 2023
|
|
| 1 |
W. Show P., in: S. Goldwasser (Ed.), Proceedings of the 35th Annual Symposium on FOCS, IEEE Comput. Soc. Press, Los Alamitos, 1994, p. 124
|
| 2 |
K. Grover L.. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
https://doi.org/10.1103/PhysRevLett.79.325
|
| 3 |
Steane A.. Quantum computing. Rep. Prog. Phys., 1998, 61(2): 117
https://doi.org/10.1088/0034-4885/61/2/002
|
| 4 |
J. Cerf N., Bourennane M., Karlsson A., Gisin N.. Security of quantum key distribution using D-level systems. Phys. Rev. Lett., 2002, 88(12): 127902
https://doi.org/10.1103/PhysRevLett.88.127902
|
| 5 |
P. Lanyon B., Barbieri M., P. Almeida M., Jennewein T., C. Ralph T., J. Resch K., J. Pryde G., L. O’Brien J., Gilchrist A., G. White A.. Simplifying quantum logic using higher dimensional Hilbert spaces. Nat. Phys., 2009, 5(2): 134
https://doi.org/10.1038/nphys1150
|
| 6 |
Xu F., H. Shapiro J., N. C. Wong F.. Experimental fast quantum random number generation using high dimensional entanglement with entropy monitoring. Optica, 2016, 3(11): 1266
https://doi.org/10.1364/OPTICA.3.001266
|
| 7 |
M. Hu X., S. Chen J., H. Liu B., Guo Y., F. Huang Y., Q. Zhou Z., J. Han Y., F. Li C., C. Guo G.. Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits. Phys. Rev. Lett., 2016, 117(17): 170403
https://doi.org/10.1103/PhysRevLett.117.170403
|
| 8 |
C. Dada A., Leach J., S. Buller G., J. Padgett M., Andersson E.. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys., 2011, 7(9): 677
https://doi.org/10.1038/nphys1996
|
| 9 |
Krenn M., Huber M., Fickler R., Lapkiewicz R., Ramelow S., Zeilinger A.. Generation and confirmation of a (100×100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. USA, 2014, 111(17): 6243
https://doi.org/10.1073/pnas.1402365111
|
| 10 |
Zhang Y., S. Roux F., Konrad T., Agnew M., Leach J., Forbes A.. Engineering two-photon high-dimensional states through quantum interference. Sci. Adv., 2016, 2(2): e1501165
https://doi.org/10.1126/sciadv.1501165
|
| 11 |
de Riedmatten H., Marcikic I., Zbinden H., Gisin N.. Creating high-dimensional time-bin entanglement using mode locked lasers. Quantum Inf. Comput., 2002, 2(6): 425
https://doi.org/10.26421/QIC2.6-1
|
| 12 |
Ikuta T., Takesue H.. Enhanced violation of the Collins–Gisin–Linden–Massar–Popescu inequality with optimized time-bin-entangled ququarts. Phys. Rev. A, 2016, 93(2): 022307
https://doi.org/10.1103/PhysRevA.93.022307
|
| 13 |
Xie Z., Zhong T., Shrestha S., Xu X., Liang J., X. Gong Y., C. Bienfang J., Restelli A., H. Shapiro J., N. C. Wong F., W. Wong C.. Harnessing high-dimensional hyper-entanglement through a biphoton frequency comb. Nat. Photonics, 2015, 9(8): 536
https://doi.org/10.1038/nphoton.2015.110
|
| 14 |
Kues M., Reimer C., Roztocki P., R. Cort’es L., Sciara S., Wetzel B., Zhang Y., Cino A., T. Chu S., E. Little B., J. Moss D., Caspani L., Azaña J., Morandotti R.. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546(7660): 622
https://doi.org/10.1038/nature22986
|
| 15 |
Imany P.A. Jaramillo-Villegas J.D. Odele O. Han K.E. Leaird D.M. Lukens J.Lougovski P.Qi M. M. Weiner A., 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator., Opt. Express 26(2), 1825 (2018)
|
| 16 |
Schaeff C., Polster R., Lapkiewicz R., Fickler R., Ramelow S., Zeilinger A.. Scalable fiber integrated source for higher dimensional path-entangled photonic quNits. Opt. Express, 2012, 20(15): 16145
https://doi.org/10.1364/OE.20.016145
|
| 17 |
Schaeff C., Polster R., Huber M., Ramelow S., Zeilinger A.. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica, 2015, 2(6): 523
https://doi.org/10.1364/OPTICA.2.000523
|
| 18 |
Ofek N., Petrenko A., Heeres R., Reinhold P., Leghtas Z., Vlastakis B., Liu Y., Frunzio L., M. Girvin S., Jiang L., Mirrahimi M., H. Devoret M., J. Schoelkopf R.. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 2016, 536(7617): 441
https://doi.org/10.1038/nature18949
|
| 19 |
Q. Liao J., F. Huang J., Tian L.. Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems. Phys. Rev. A, 2016, 93(3): 033853
https://doi.org/10.1103/PhysRevA.93.033853
|
| 20 |
Hatomura T.. Shortcuts to adiabatic cat-state generation in bosonic Josephson junctions. New J. Phys., 2018, 20(1): 015010
https://doi.org/10.1088/1367-2630/aaa117
|
| 21 |
H. Chen Y., Qin W., Wang X., Miranowicz A., Nori F.. Shortcuts to adiabaticity for the quantum Rabi model: Efficient generation of giant entangled cat states via parametric amplification. Phys. Rev. Lett., 2021, 126(2): 023602
https://doi.org/10.1103/PhysRevLett.126.023602
|
| 22 |
Liu S., H. Chen Y., Wang Y., H. Kang Y., C. Shi Z., Song J., Xia Y.. Generation of cat states by a weak parametric drive and a transitionless tracking algorithm. Phys. Rev. A, 2022, 106(4): 042430
https://doi.org/10.1103/PhysRevA.106.042430
|
| 23 |
P. Yang C., F. Zheng Z.. Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED. Opt. Lett., 2018, 43(20): 5126
https://doi.org/10.1364/OL.43.005126
|
| 24 |
Zhang Y., Liu T., Yu Y., P. Yang C.. Preparation of entangled W states with cat-state qubits in circuit QED. Quantum Inform. Process., 2020, 19(8): 218
https://doi.org/10.1007/s11128-020-02715-4
|
| 25 |
Chen Y.-H., Qin W., Wang X., Miranowicz A., Nori F.. Shortcuts to adiabaticity for the quantum Rabi model: Efficient generation of giant entangled cat states via parametric amplification. Phys. Rev. Lett., 2021, 126: 023602
https://doi.org/10.1103/PhysRevLett.126.023602
|
| 26 |
Chen Y.-H., Stassi R., Qin W., Miranowicz A., Nori F.. Fault-tolerant multiqubit geometric entangling gates using photonic cat-state qubits. Phys. Rev. Applied, 2022, 18: 024076
https://doi.org/10.1103/PhysRevApplied.18.024076
|
| 27 |
Mirrahimi M., Leghtas Z., V. Albert V., Touzard S., J. Schoelkopf R., Jiang L., H. Devoret M.. Dynamically protected cat-qubits: A new paradigm for universal quantum compuation. New J. Phys., 2014, 16(4): 045014
https://doi.org/10.1088/1367-2630/16/4/045014
|
| 28 |
E. Nigg S.. Deterministic Hadamard gate for microwave cat-state qubits in circuit QED. Phys. Rev. A, 2014, 89(2): 022340
https://doi.org/10.1103/PhysRevA.89.022340
|
| 29 |
H. Kang Y., H. Chen Y., Wang X., Song J., Xia Y., Miranowicz A., B. Zheng S., Nori F.. Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering. Phys. Rev. Res., 2022, 4(1): 013233
https://doi.org/10.1103/PhysRevResearch.4.013233
|
| 30 |
P. Yang C., P. Su Q., B. Zheng S., Nori F., Han S.. Entangling two oscillators with arbitrary asymmetric initial states. Phys. Rev. A, 2017, 95(5): 052341
https://doi.org/10.1103/PhysRevA.95.052341
|
| 31 |
Zhang Y., Zhao X., F. Zheng Z., Yu L., P. Su Q., P. Yang C.. Universal controlled-phase gate with cat-state qubits in circuit QED. Phys. Rev. A, 2017, 96(5): 052317
https://doi.org/10.1103/PhysRevA.96.052317
|
| 32 |
J. Fan Y., F. Zheng Z., Zhang Y., M. Lu D., P. Yang C.. One step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Front. Phys., 2019, 14(2): 21602
https://doi.org/10.1007/s11467-018-0875-y
|
| 33 |
W. Heeres R., Reinhold P., Ofek N., Frunzio L., Jiang L., H. Devoret M., J. Schoelkopf R.. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun., 2017, 8(1): 94
https://doi.org/10.1038/s41467-017-00045-1
|
| 34 |
Grimm A., E. Frattini N., Puri S., O. Mundhada S., Touzard S., Mirrahimi M., M. Girvin S., Shankar S., H. Devoret M.. Stabilization and operation of a Kerr-cat qubit. Nature, 2020, 584(7820): 205
https://doi.org/10.1038/s41586-020-2587-z
|
| 35 |
Wang C.Y. Gao Y.Reinhold P.W. Heeres R.Ofek N. Chou K.Axline C.Reagor M.Blumoff J.M. Sliwa K. Frunzio L.M. Girvin S.Jiang L.Mirrahimi M.H. Devoret M.J. Schoelkopf R., A Schrodinger cat living in two boxes, Science 352(6289), 1087 (2016)
|
| 36 |
Wang Z.Bao Z.Wu Y.Li Y.Cai W. Wang W.Ma Y.Cai T.Han X.Wang J. Song Y.Sun L.Zhang H.Duan L., A flying Schrödinger’s cat in multipartite entangled states, Sci. Adv. 8, eabn1778 (2022)
|
| 37 |
P. Yang C., I. Chu S., Han S.. Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A, 2003, 67(4): 042311
https://doi.org/10.1103/PhysRevA.67.042311
|
| 38 |
Q. You J., Nori F.. Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B, 2003, 68(6): 064509
https://doi.org/10.1103/PhysRevB.68.064509
|
| 39 |
Blais A., S. Huang R., Wallraff A., M. Girvin S., J. Schoelkopf R.. Cavity quantum electro-dynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
|
| 40 |
Q. You J., Nori F.. Atomic physics and quantum optics using superconducting circuits. Nature, 2011, 474(7353): 589
https://doi.org/10.1038/nature10122
|
| 41 |
Buluta I., Ashhab S., Nori F.. Natural and artificial atoms for quantum computation. Rep. Prog. Phys., 2011, 74(10): 104401
https://doi.org/10.1088/0034-4885/74/10/104401
|
| 42 |
L. Xiang Z., Ashhab S., Q. You J., Nori F.. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
https://doi.org/10.1103/RevModPhys.85.623
|
| 43 |
Gu X.F. Kockum A.Miranowicz A.X. Liu Y.Nori F., Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
|
| 44 |
P. M. Place A., V. H. Rodgers L., Mundada P., M. Smitham B., Fitzpatrick M., Leng Z., Premkumar A., Bryon J., Vrajitoarea A., Sussman S., Cheng G., Madhavan T., K. Babla H., H. Le X., Gang Y., Jäck B., Gyenis A., Yao N., J. Cava R., P. de Leon N., A. Houck A.. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun., 2021, 12(1): 1779
https://doi.org/10.1038/s41467-021-22030-5
|
| 45 |
Kono S.Pan J.Chegnizadeh M.Wang X.Youssefifi A.Scigliuzzo M.J. Kippenberg T., Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 milliseconds, arXiv: 2305.02591 (2023)
|
| 46 |
Wang C., Li X., Xu H., Li Z., Wang J., Yang Z., Mi Z., Liang X., Su T., Yang C.. et al.. Towards practical quantum computers transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf., 2022, 8: 3
https://doi.org/10.1038/s41534-021-00510-2
|
| 47 |
Yan F., Gustavsson S., Kamal A., Birenbaum J., P. Sears A., Hover D., J. Gudmundsen T., Rosenberg D., Samach G., Weber S., L. Yoder J., P. Orlando T., Clarke J., J. Kerman A., D. Oliver W.. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun., 2016, 7(1): 12964
https://doi.org/10.1038/ncomms12964
|
| 48 |
Somoroff A.Ficheux Q.A. Mencia R.N. Xiong H.Kuzmin R. E. Manucharyan V., Millisecond coherence in a superconducting qubit, Phys. Rev. Lett. 130, 267001 (2023)
|
| 49 |
Hofheinz M., Wang H., Ansmann M., C. Bialczak R., Lucero E., Neeley M., D. O’Connell A., Sank D., Wenner J., M. Martinis J., N. Cleland A.. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 2009, 459(7246): 546
https://doi.org/10.1038/nature08005
|
| 50 |
Wang H., Hofheinz M., Wenner J., Ansmann M., C. Bialczak R., Lenander M., Lucero E., Neeley M., D. O’Connell A., Sank D., Weides M., N. Cleland A., M. Martinis J.. Improving the coherence time of superconducting coplanar resonators. Appl. Phys. Lett., 2009, 95(23): 233508
https://doi.org/10.1063/1.3273372
|
| 51 |
H. Devoret M., J. Schoelkopf R.. Superconducting circuits for quantum information: An outlook. Science, 2013, 339(6124): 1169
https://doi.org/10.1126/science.1231930
|
| 52 |
J. Leek P., Filipp S., Maurer P., Baur M., Bianchetti R., M. Fink J., Goppl M., Steffen L., Wallraff A.. Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B, 2009, 79(18): 180511
https://doi.org/10.1103/PhysRevB.79.180511
|
| 53 |
Neeley M., Ansmann M., C. Bialczak R., Hofheinz M., Katz N., Lucero E., O’Connell A., Wang H., N. Cleland A., M. Martinis J.. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys., 2008, 4(7): 523
https://doi.org/10.1038/nphys972
|
| 54 |
B. Zheng S., C. Guo G.. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett., 2000, 85(11): 2392
https://doi.org/10.1103/PhysRevLett.85.2392
|
| 55 |
Sørensen A., Mølmer K.. Quantum computation with ions in thermal motion. Phys. Rev. Lett., 1999, 82(9): 1971
https://doi.org/10.1103/PhysRevLett.82.1971
|
| 56 |
F. V. James D., Jerke J.. Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys., 2007, 85(6): 625
https://doi.org/10.1139/p07-060
|
| 57 |
Kirchmair G., Vlastakis B., Leghtas Z., E. Nigg S., Paik H., Ginossar E., Mirrahimi M., Frunzio L., M. Girvin S., J. Schoelkopf R.. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature, 2013, 495(7440): 205
https://doi.org/10.1038/nature11902
|
| 58 |
Vlastakis B., Kirchmair G., Leghtas Z., E. Nigg S., Frunzio L., M. Girvin S., Mirrahimi M., H. Devoret M., J. Schoelkopf R.. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science, 2013, 342(6158): 607
https://doi.org/10.1126/science.1243289
|
| 59 |
Sun L., Petrenko A., Leghtas Z., Vlastakis B., Kirchmair G., M. Sliwa K., Narla A., Hatridge M., Shankar S., Blumoff J., Frunzio L., Mirrahimi M., H. Devoret M., J. Schoelkopf R.. Tracking photon jumps with repeated quantum non demolition parity measurements. Nature, 2014, 511(7510): 444
https://doi.org/10.1038/nature13436
|
| 60 |
Vlastakis B., Petrenko A., Ofek N., Sun L., Leghtas Z., Sliwa K., Liu Y., Hatridge M., Blumoff J., Frunzio L., Mirrahimi M., Jiang L., H. Devoret M., J. Schoelkopf R.. Characterizing entanglement of an artificial atom and a cavity cat state with Bell’s inequality. Nat. Commun., 2015, 6(1): 8970
https://doi.org/10.1038/ncomms9970
|
| 61 |
Milul O.Guttel B.Goldblatt U.Hazanov S.M. Joshi L. Chausovsky D.Kahn N.Çiftyürek E.Lafont F.Rosenblum S., A superconducting quantum memory with tens of milliseconds coherence time, arXiv: 2302.06442 (2023)
|
| 62 |
Sandberg M., M. Wilson C., Persson F., Bauch T., Johansson G., Shumeiko V., Duty T., Delsing P.. Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett., 2008, 92(20): 203501
https://doi.org/10.1063/1.2929367
|
| 63 |
L. Wang Z., P. Zhong Y., J. He L., Wang H., M. Martinis J., N. Cleland A., W. Xie Q.. Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett., 2013, 102(16): 163503
https://doi.org/10.1063/1.4802893
|
| 64 |
Jeffrey E., Sank D., Y. Mutus J., C. White T., Kelly J., Barends R., Chen Y., Chen Z., Chiaro B., Dunsworth A., Megrant A., J. J. O’Malley P., Neill C., Roushan P., Vainsencher A., Wenner J., N. Cleland A., M. Martinis J.. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett., 2014, 112(19): 190504
https://doi.org/10.1103/PhysRevLett.112.190504
|
| 65 |
Heinsoo J., K. Andersen C., Remm A., Krinner S., Walter T., Salathé Y., Gasparinetti S., C. Besse J., Potŏcnik A., Wallraff A., Eichler C.. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl., 2018, 10(3): 034040
https://doi.org/10.1103/PhysRevApplied.10.034040
|
| 66 |
R. Johansson J., D. Nation P., Nori F.. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
https://doi.org/10.1016/j.cpc.2012.02.021
|
| 67 |
R. Johansson J., D. Nation P., Nori F.. QuTiP2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2013, 184(4): 1234
https://doi.org/10.1016/j.cpc.2012.11.019
|
| 68 |
X. Liu Y., Q. You J., F. Wei L., P. Sun C., Nori F.. Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett., 2005, 95(8): 087001
https://doi.org/10.1103/PhysRevLett.95.087001
|
| 69 |
X. Liu Y., X. Yang C., C. Sun H., B. Wang X.. Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields. New J. Phys., 2014, 16(1): 015031
https://doi.org/10.1088/1367-2630/16/1/015031
|
| 70 |
Niemczyk T., Deppe F., Huebl H., P. Menzel E., Hocke F., J. Schwarz M., J. Garcia-Ripoll J., Zueco D., Hümmer T., Solano E., Marx A., Gross R.. Circuit quantum electrodynamics in the ultrastrong coupling regime. Nat. Phys., 2010, 6(10): 772
https://doi.org/10.1038/nphys1730
|
| 71 |
Yoshihara F., Fuse T., Ashhab S., Kakuyanagi K., Saito S., Semba K.. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys., 2017, 13(1): 44
https://doi.org/10.1038/nphys3906
|
| 72 |
Yoshihara F., Fuse T., Ao Z., Ashhab S., Kakuyanagi K., Saito S., Aoki T., Koshino K., Semba K.. Inversion of qubit energy levels in qubit-oscillator circuits in the deep-strong-coupling regime. Phys. Rev. Lett., 2018, 120(18): 183601
https://doi.org/10.1103/PhysRevLett.120.183601
|
| 73 |
Q. You J.Hu X.Ashhab S.Nori F., Low-decoherence flux qubit, Phys. Rev. B 75, 140515(R) (2007)
|
| 74 |
V. Abdurakhimov L.Mahboob I.Toida H. Kakuyanagi K.Saito S., A long-lived capacitively shunted flux qubit embedded in a 3D cavity, Appl. Phys. Lett. 115(26), 262601 (2019)
|
| 75 |
P. Yang C., P. Su Q., Han S.. Generation of Greenberger Horne‒Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A, 2012, 86(2): 022329
https://doi.org/10.1103/PhysRevA.86.022329
|
| 76 |
Baur M., Filipp S., Bianchetti R., M. Fink J., Göppl M., Steffen L., J. Leek P., Blais A., Wallraff A.. Measurement of Autler‒Townes and mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett., 2009, 102(24): 243602
https://doi.org/10.1103/PhysRevLett.102.243602
|
| 77 |
Woods W., Calusine G., Melville A., Sevi A., Golden E., K. Kim D., Rosenberg D., L. Yoder J., D. Oliver W.. Determining interface dielectric losses in superconducting coplanar-waveguide resonators. Phys. Rev. Appl., 2019, 12(1): 014012
https://doi.org/10.1103/PhysRevApplied.12.014012
|
| 78 |
Melville A., Calusine G., Woods W., Serniak K., Golden E., M. Niedzielski B., K. Kim D., Sevi A., L. Yoder J., A. Dauler E., D. Oliver W.. Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators. Appl. Phys. Lett., 2020, 117(12): 124004
https://doi.org/10.1063/5.0021950
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|