Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33301    https://doi.org/10.1007/s11467-023-1363-6
VIEW & PERSPECTIVE
Nonlinear optics of two-dimensional heterostructures
Xiangkun Zeng1, Chenyu Wan1, Zhichen Zhao1, Di Huang1(), Zhanshan Wang1,2, Xinbin Cheng1,2, Tao Jiang1()
1. MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
 Download: PDF(3764 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional (2D) materials exhibit exceptionally strong nonlinear optical responses, benefiting from their reduced dimensionality, relaxed phase-matching requirements, and enhanced light-matter interaction. With additional degrees of freedom in the modulation of the physical properties by stacking 2D layers together, nonlinear optics of 2D heterostructures becomes increasingly fascinating. In this perspective, we provide a brief overview of recent advances in the field of nonlinear optics of 2D heterostructures, with a particular focus on their remarkable capabilities in characterization and modulation. Given the recent advances and the emergence of novel heterostructures, combined with innovative tuning knobs and advanced nonlinear optical techniques, we anticipate deeper insights into the underlying mechanisms and more associated applications in this rapidly evolving field.

Keywords nonlinear optics      2D heterostructures     
Corresponding Author(s): Di Huang,Tao Jiang   
Issue Date: 07 December 2023
 Cite this article:   
Xiangkun Zeng,Chenyu Wan,Zhichen Zhao, et al. Nonlinear optics of two-dimensional heterostructures[J]. Front. Phys. , 2024, 19(3): 33301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1363-6
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33301
Fig.1  Publications and citations about the nonlinear optical research on 2D heterostructures since 2013. Certain data included herein are derived from Clarivate Web of Science. Copyright ? Clarivate 2023.
Fig.2  Recent progresses in the field of nonlinear optics of 2D heterostructures. Owing to their sensitivity to structure, energy, and phase, nonlinear optical responses are demonstrated offering unique insights into the abundant degrees of freedom of 2D heterostructures, such as twist angles, grain boundaries, band structure, external field, phase transition, and beyond, as well as their underlying physics. Conversely, modulations of nonlinear optics become feasible by tweaking these degrees of freedom in 2D heterostructures.
Fig.3  Directions for future research on the nonlinear optics of 2D heterostructures. We anticipate the future endeavors will mainly focus on three aspects: (a, b) exploration of nonlinear optics in novel heterostructures, like moiré superlattice (a) and phase change heterostructure (b); (c, d) unveiling of deeper physical insights by advanced techniques such as 2DCS (c) and adiabatic plasmonic nano-focusing technique (d); (e) modulation of nonlinear optics via tuning the properties of 2D heterostructures by various tuning knobs.
1 K. Geim A. , V. Grigorieva I. . Van der Waals heterostructures. Nature, 2013, 499(7459): 419
https://doi.org/10.1038/nature12385
2 Radisavljevic B. , Radenovic A. , Brivio J. , Giacometti V. , Kis A. . Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6(3): 147
https://doi.org/10.1038/nnano.2010.279
3 Wu S. , T. Liu W. , Liang X. , J. Schuck P. , Wang F. , R. Shen Y. , Salmeron M. . Hot phonon dynamics in graphene. Nano Lett., 2012, 12(11): 5495
https://doi.org/10.1021/nl301997r
4 Zhou Q. , Hou Y. , Lai T. . Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure. Front. Phys., 2023, 18(2): 23301
https://doi.org/10.1007/s11467-022-1224-8
5 Autere A. , Jussila H. , Dai Y. , Wang Y. , Lipsanen H. , Sun Z. . Nonlinear optics with 2D layered materials. Adv. Mater., 2018, 30(24): 1705963
https://doi.org/10.1002/adma.201705963
6 Song M. , An N. , Zou Y. , Zhang Y. , Huang W. , Hou H. , Chen X. . Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection. Front. Phys., 2023, 18(5): 52302
https://doi.org/10.1007/s11467-023-1277-3
7 Wang K. , Zhang X. , M. Kislyakov I. , Dong N. , Zhang S. , Wang G. , Fan J. , Zou X. , Du J. , Leng Y. , Zhao Q. , Wu K. , Chen J. , M. Baesman S. , S. Liao K. , Maharjan S. , Zhang H. , Zhang L. , A. Curran S. , S. Oremland R. , J. Blau W. , Wang J. . Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun., 2019, 10(1): 3985
https://doi.org/10.1038/s41467-019-11898-z
8 Basiri A. , Z. E. Rafique M. , Bai J. , Choi S. , Yao Y. . Ultrafast low-pump fluence all-optical modulation based on graphene−metal hybrid metasurfaces. Light Sci. Appl., 2022, 11(1): 102
https://doi.org/10.1038/s41377-022-00787-8
9 Yin P.Jiang X.Huang R.Wang X.Ge Y.Ma C.Zhang H., 2D materials for nonlinear photonics and electro‐optical applications, Adv. Mater. Interfaces 8(14), 2100367 (2021)
10 Chen H. , Corboliou V. , S. Solntsev A. , Y. Choi D. , A. Vincenti M. , de Ceglia D. , de Angelis C. , Lu Y. , N. Neshev D. . Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci. Appl., 2017, 6(10): e17060
https://doi.org/10.1038/lsa.2017.60
11 S. Novoselov K.Mishchenko A.Carvalho A.H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
12 Yang R. , Fan J. , Sun M. . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
https://doi.org/10.1007/s11467-022-1176-z
13 Huang D. , Choi J. , K. Shih C. , Li X. . Excitons in semiconductor moiré superlattices. Nat. Nanotechnol., 2022, 17(3): 227
https://doi.org/10.1038/s41565-021-01068-y
14 Tran K. , Moody G. , Wu F. , Lu X. , Choi J. , Kim K. , Rai A. , A. Sanchez D. , Quan J. , Singh A. , Embley J. , Zepeda A. , Campbell M. , Autry T. , Taniguchi T. , Watanabe K. , Lu N. , K. Banerjee S. , L. Silverman K. , Kim S. , Tutuc E. , Yang L. , H. MacDonald A. , Li X. . Evidence for moire excitons in van der Waals heterostructures. Nature, 2019, 567(7746): 71
https://doi.org/10.1038/s41586-019-0975-z
15 J. Chen Y. , D. Cain J. , K. Stanev T. , P. Dravid V. , P. Stern N. . Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photonics, 2017, 11(7): 431
https://doi.org/10.1038/nphoton.2017.86
16 R. Schaibley J. , Rivera P. , Yu H. , L. Seyler K. , Yan J. , G. Mandrus D. , Taniguchi T. , Watanabe K. , Yao W. , Xu X. . Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nat. Commun., 2016, 7(1): 13747
https://doi.org/10.1038/ncomms13747
17 L. Seyler K. , Rivera P. , Yu H. , P. Wilson N. , L. Ray E. , G. Mandrus D. , Yan J. , Yao W. , Xu X. . Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66
https://doi.org/10.1038/s41586-019-0957-1
18 Zhou L. , Fu H. , Lv T. , Wang C. , Gao H. , Li D. , Deng L. , Xiong W. . Nonlinear optical characterization of 2D materials. Nanomaterials (Basel), 2020, 10(11): 2263
https://doi.org/10.3390/nano10112263
19 M. Malard L.V. Alencar T.P. M. Barboza A.F. Mak K.M. de Paula A., Observation of intense second harmonic generation from MoS2 atomic crystals, Phys. Rev. B 87, 201401(R) (2013)
20 Y. Li M. , H. Chen C. , Shi Y. , J. Li L. . Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today, 2016, 19(6): 322
https://doi.org/10.1016/j.mattod.2015.11.003
21 Zeng H. , Wen Y. , Yin L. , Cheng R. , Wang H. , Liu C. , He J. . Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
22 Yang W. , Chen G. , Shi Z. , C. Liu C. , Zhang L. , Xie G. , Cheng M. , Wang D. , Yang R. , Shi D. , Watanabe K. , Taniguchi T. , Yao Y. , Zhang Y. , Zhang G. . Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater., 2013, 12(9): 792
https://doi.org/10.1038/nmat3695
23 C. Lin Y. , K. Ghosh R. , Addou R. , Lu N. , M. Eichfeld S. , Zhu H. , Y. Li M. , Peng X. , J. Kim M. , J. Li L. , M. Wallace R. , Datta S. , A. Robinson J. . Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun., 2015, 6(1): 7311
https://doi.org/10.1038/ncomms8311
24 Kim J. , Ko E. , Jo J. , Kim M. , Yoo H. , W. Son Y. , Cheong H. . Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices. Nat. Mater., 2022, 21(8): 890
https://doi.org/10.1038/s41563-022-01240-2
25 T. Hsu W. , Zhao Z. , J. Li L. , H. Chen C. , H. Chiu M. , S. Chang P. , C. Chou Y. , H. Chang W. . Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano, 2014, 8(3): 2951
https://doi.org/10.1021/nn500228r
26 Du L. , Dai Y. , Sun Z. . Twisting for tunable nonlinear optics. Matter, 2020, 3(4): 987
https://doi.org/10.1016/j.matt.2020.09.013
27 Y. Yao K. , R. Finney N. , L. Moore S. , T. Dejean N. , Liu F. , Ardelean J. , Xu X. , Halbertal D. , Taniguchi T. , Ochoa H. , A. Garcia A. , Y. Zhu X. , N. Basov D. , Rubio A. , R. Dean C. , Hone J. , J. Schuck P. . Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv., 2021, 7(10): eabe8691
https://doi.org/10.1126/sciadv.abe8691
28 Q. Lin K. , M. Faria J. , Bauer B. , Peng B. , Monserrat M. , Gmitra J. , Fabian S. , M. Lupton Bange . Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun., 2021, 12(1): 1553
https://doi.org/10.1038/s41467-021-21547-z
29 Ciarrocchi A. , Tagarelli F. , Avsar A. , Kis A. . Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics. Nat. Rev. Mater., 2022, 7(6): 449
https://doi.org/10.1038/s41578-021-00408-7
30 Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
31 L. Sharpe A. , J. Fox E. , W. Barnard A. , Finney J. , Watanabe K. , Taniguchi T. , A. Kastner M. , Goldhaber-Gordon D. . Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453): 605
https://doi.org/10.1126/science.aaw3780
32 R. Rosenberger M. , J. Chuang H. , Phillips M. , P. Oleshko V. , M. McCreary K. , V. Sivaram S. , S. Hellberg C. , T. Jonker B. . Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(4): 4550
https://doi.org/10.1021/acsnano.0c00088
33 F. Mak K. , He K. , Shan J. , F. Heinz T. . Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
https://doi.org/10.1038/nnano.2012.96
34 Liao M. , W. Wu Z. , Du L. , Zhang T. , Wei Z. , Zhu J. , Yu H. , Tang J. , Gu L. , Xing Y. , Yang R. , Shi D. , Yao Y. , Zhang G. . Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun., 2018, 9(1): 4068
https://doi.org/10.1038/s41467-018-06555-w
35 F. Pereira M. . Harmonic generation in biased semiconductor superlattices. Nanomaterials (Basel), 2022, 12(9): 1504
https://doi.org/10.3390/nano12091504
36 Y. Li M. , Shi Y. , C. Cheng C. , S. Lu L. , C. Lin Y. , L. Tang H. , L. Tsai M. , W. Chu C. , H. Wei K. , H. He J. , H. Chang W. , Suenaga K. , J. Li L. . Epitaxial growth of a monolayer WSe2−MoS2 lateral p‒n junction with an atomically sharp interface. Science, 2015, 349(6247): 524
https://doi.org/10.1126/science.aab4097
37 Zhou J. , Tang B. , Lin J. , Lv D. , Shi J. , Sun L. , Zeng Q. , Niu L. , Liu F. , Wang X. , Liu X. , Suenaga K. , Jin C. , Liu Z. . Morphology engineering in monolayer MoS2‒WS2 lateral heterostructures. Adv. Funct. Mater., 2018, 28(31): 1801568
https://doi.org/10.1002/adfm.201801568
38 Cheng J. , Jiang T. , Ji Q. , Zhang Y. , Li Z. , Shan Y. , Zhang Y. , Gong X. , Liu W. , Wu S. . Kinetic nature of grain boundary formation in As-grown MoS2 monolayers. Adv. Mater., 2015, 27(27): 4069
https://doi.org/10.1002/adma.201501354
39 Q. Zhang X. , H. Lin C. , W. Tseng Y. , H. Huang K. , H. Lee Y. . Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett., 2015, 15(1): 410
https://doi.org/10.1021/nl503744f
40 Paradisanos I. , Shree S. , George A. , Leisgang N. , Robert C. , Watanabe K. , Taniguchi T. , J. Warburton R. , Turchanin A. , Marie X. , C. Gerber I. , Urbaszek B. . Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun., 2020, 11(1): 2391
https://doi.org/10.1038/s41467-020-16023-z
41 Shree S. , Lagarde D. , Lombez L. , Robert C. , Balocchi A. , Watanabe K. , Taniguchi T. , Marie X. , C. Gerber I. , M. Glazov M. , E. Golub L. , Urbaszek B. , Paradisanos I. . Interlayer exciton mediated second harmonic generation in bilayer MoS2. Nat. Commun., 2021, 12(1): 6894
https://doi.org/10.1038/s41467-021-27213-8
42 Hong X. , Kim J. , F. Shi S. , Zhang Y. , Jin C. , Sun Y. , Tongay S. , Wu J. , Zhang Y. , Wang F. . Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 2014, 9(9): 682
https://doi.org/10.1038/nnano.2014.167
43 Cheng Y. , Hong H. , Zhao H. , Wu C. , Pan Y. , Liu C. , Zuo Y. , Zhang Z. , Xie J. , Wang J. , Yu D. , Ye Y. , Meng S. , Liu K. . Ultrafast optical modulation of harmonic generation in two-dimensional materials. Nano Lett., 2020, 20(11): 8053
https://doi.org/10.1021/acs.nanolett.0c02972
44 Yao P. , He D. , Zereshki P. , Wang Y. , Zhao H. . Nonlinear optical effect of interlayer charge transfer in a van der Waals heterostructure. Appl. Phys. Lett., 2019, 115(26): 263103
https://doi.org/10.1063/1.5131165
45 Wang J. , Zhang M. , Han N. , D. Luo Z. , Chen X. , Liu Y. , Zhao J. , Gan X. . Second harmonic generation in van der Waals heterostructure of centrosymmetric ReS2 and graphene. Adv. Opt. Mater., 2023, 11(10): 2202495
https://doi.org/10.1002/adom.202202495
46 W. Zhang M. , N. Han N. , C. Zhang J. , Wang J. , Q. Chen X. , L. Zhao J. , T. Gan X. . Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS2 and monolayer graphene. Sci. Adv., 2023, 9: eadf4571
https://doi.org/10.1126/sciadv.adf4571
47 Jiang T. , Huang D. , Cheng J. , Fan X. , Zhang Z. , Shan Y. , Yi Y. , Dai Y. , Shi L. , Liu K. , Zeng C. , Zi J. , E. Sipe J. , R. Shen Y. , T. Liu W. , Wu S. . Gate-tunable third-order nonlinear optical response of massless Dirac fermions in graphene. Nat. Photonics, 2018, 12(7): 430
https://doi.org/10.1038/s41566-018-0175-7
48 Li D. , Wei C. , Song J. , Huang X. , Wang F. , Liu K. , Xiong W. , Hong X. , Cui B. , Feng A. , Jiang L. , Lu Y. . Anisotropic enhancement of second-harmonic generation in monolayer and bilayer MoS2 by integrating with TiO2 nanowires. Nano Lett., 2019, 19(6): 4195
https://doi.org/10.1021/acs.nanolett.9b01933
49 Zheng X. , Wei Y. , Zhang X. , Wei Z. , Luo W. , Guo X. , Liu J. , Peng G. , Cai W. , Huang H. , Lv T. , Deng C. , Zhang X. . Symmetry engineering induced in‐plane polarization in MoS2 through van der Waals interlayer coupling. Adv. Funct. Mater., 2022, 32(28): 2202658
https://doi.org/10.1002/adfm.202202658
50 Mennel L. , Paur M. , Mueller T. . Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics, 2019, 4(3): 034404
https://doi.org/10.1063/1.5051965
51 Kobayashi Y. , Heide C. , C. Johnson A. , Tiwari V. , Liu F. , A. Reis D. , F. Heinz T. , Ghimire S. . Floquet engineering of strongly driven excitons in monolayer tungsten disulfide. Nat. Phys., 2023, 19: 171
https://doi.org/10.1038/s41567-022-01849-9
52 Hu G. , Hong X. , Wang K. , Wu J. , X. Xu H. , Zhao W. , Liu W. , Zhang S. , Garcia-Vidal F. , Wang B. , Lu P. , W. Qiu C. . Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photonics, 2019, 13(7): 467
https://doi.org/10.1038/s41566-019-0399-1
53 Alonso Calafell I. , A. Rozema L. , Alcaraz Iranzo D. , Trenti A. , K. Jenke P. , D. Cox J. , Kumar A. , Bieliaiev H. , Nanot S. , Peng C. , K. Efetov D. , Y. Hong J. , Kong J. , R. Englund D. , J. García de Abajo F. , H. L. Koppens F. , Walther P. . Giant enhancement of third-harmonic generation in graphene−metal heterostructures. Nat. Nanotechnol., 2021, 16(3): 318
https://doi.org/10.1038/s41565-020-00808-w
54 Hong H. , Wu C. , Zhao Z. , Zuo Y. , Wang J. , Liu C. , Zhang J. , Wang F. , Feng J. , Shen H. , Yin J. , Wu Y. , Zhao Y. , Liu K. , Gao P. , Meng S. , Wu S. , Sun Z. , Liu K. , Xiong J. . Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton‒excitation resonance energy transfer from quantum dots. Nat. Photonics, 2021, 15(7): 510
https://doi.org/10.1038/s41566-021-00801-2
55 M. Shafi A. , Das S. , Khayrudinov V. , X. Ding E. , G. Uddin M. , Ahmed F. , Sun Z. , Lipsanen H. . Direct epitaxial growth of InP nanowires on MoS2 with strong nonlinear optical response. Chem. Mater., 2022, 34(20): 9055
https://doi.org/10.1021/acs.chemmater.2c01602
56 G. Uddin M. , Das S. , M. Shafi A. , Khayrudinov V. , Ahmed F. , Fernandez H. , Du L. , Lipsanen H. , Sun Z. . Engineering the dipole orientation and symmetry breaking with mixed-dimensional heterostructures. Adv. Sci. (Weinh.), 2022, 9(20): 2200082
https://doi.org/10.1002/advs.202200082
57 Liu X.C. Hersam M., 2D materials for quantum information science, Nat. Rev. Mater. 4(10), 669 (2019)
58 Li W. , Qian X. , Li J. . Phase transitions in 2D materials. Nat. Rev. Mater., 2021, 6(9): 829
https://doi.org/10.1038/s41578-021-00304-0
59 Song Y. , Tian R. , Yang J. , Yin R. , Zhao J. , Gan X. . Second harmonic generation in atomically thin MoTe2. Adv. Opt. Mater., 2018, 6(17): 1701334
https://doi.org/10.1002/adom.201701334
60 Cho S. , Kim S. , H. Kim J. , Zhao J. , Seok J. , H. Keum D. , Baik J. , H. Choe D. , J. Chang K. , Suenaga K. , W. Kim S. , H. Lee Y. , Yang H. . Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349(6248): 625
https://doi.org/10.1126/science.aab3175
61 Ni Z. , Huang N. , V. Haglund A. , G. Mandrus D. , Wu L. . Observation of giant surface second-harmonic generation coupled to nematic orders in the van der Waals Antiferromagnet FePS3. Nano Lett., 2022, 22(8): 3283
https://doi.org/10.1021/acs.nanolett.2c00212
62 Li D. , Xiong W. , Jiang L. , Xiao Z. , Rabiee Golgir H. , Wang M. , Huang X. , Zhou Y. , Lin Z. , Song J. , Ducharme S. , Jiang L. , F. Silvain J. , Lu Y. . Multimodal nonlinear optical imaging of MoS2 and MoS2-based van der Waals heterostructures. ACS Nano, 2016, 10(3): 3766
https://doi.org/10.1021/acsnano.6b00371
63 M. Bauer J. , Chen L. , Wilhelm P. , Watanabe K. , Taniguchi T. , Bange S. , M. Lupton J. , Q. Lin K. . Excitonic resonances control the temporal dynamics of nonlinear optical wave mixing in monolayer semiconductors. Nat. Photonics, 2022, 16(11): 777
https://doi.org/10.1038/s41566-022-01080-1
64 Q. Lin K. , Bange S. , M. Lupton J. . Quantum interference in second-harmonic generation from monolayer WSe2. Nat. Phys., 2019, 15(3): 242
https://doi.org/10.1038/s41567-018-0384-5
65 L. Purz T. , W. Martin E. , Rivera P. , G. Holtzmann W. , Xu X. , T. Cundiff S. . Coherent exciton‒exciton interactions and exciton dynamics in a MoSe2/WSe2 heterostructure. Phys. Rev. B, 2021, 104(24): L241302
https://doi.org/10.1103/PhysRevB.104.L241302
66 R. Policht V. , Russo M. , Liu F. , Trovatello C. , Maiuri M. , Bai Y. , Zhu X. , Dal Conte S. , Cerullo G. . Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Lett., 2021, 21(11): 4738
https://doi.org/10.1021/acs.nanolett.1c01098
67 Kasprzak J. , Patton B. , Savona V. , Langbein W. . Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging. Nat. Photonics, 2011, 5(1): 57
https://doi.org/10.1038/nphoton.2010.284
68 R. Wilson N. , V. Nguyen P. , J. Marsden A. , P. L. Laker Z. , C. Constantinescu G. , Kandyba V. , Barinov A. , D. M. Hine N. , D. Xu X. , H. Cobden D. . Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv., 2017, 3(2): e1601832
https://doi.org/10.1126/sciadv.1601832
69 Jiang T. , Kravtsov V. , Tokman M. , Belyanin A. , B. Raschke M. . Ultrafast coherent nonlinear nanooptics and nanoimaging of graphene. Nat. Nanotechnol., 2019, 14(9): 838
https://doi.org/10.1038/s41565-019-0515-x
70 Luo W. , G. Whetten B. , Kravtsov V. , Singh A. , Yang Y. , Huang D. , Cheng X. , Jiang T. , Belyanin A. , B. Raschke M. . Ultrafast nanoimaging of electronic coherence of monolayer WSe2. Nano Lett., 2023, 23(5): 1767
https://doi.org/10.1021/acs.nanolett.2c04536
[1] Aviv Karnieli, Yongyao Li, Ady Arie. The geometric phase in nonlinear frequency conversion[J]. Front. Phys. , 2022, 17(1): 12301-.
[2] Xiao-Ming Huang, Li-Zhao Liu, Si Zhou, Ji-Jun Zhao. Physical properties and device applications of graphene oxide[J]. Front. Phys. , 2020, 15(3): 33301-.
[3] Lian-Zhong Deng, Yun-Hua Yao, Li Deng, Huai-Yuan Jia, Ye Zheng, Cheng Xu, Jian-Ping Li, Tian-Qing Jia, Jian-Rong Qiu, Zhen-Rong Sun, Shi-An Zhang. Tuning up-conversion luminescence in Er3+-doped glass ceramic by phase-shaped femtosecond laser field with optimal feedback control[J]. Front. Phys. , 2019, 14(1): 13602-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed