Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 43206    https://doi.org/10.1007/s11467-023-1377-0
Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics
Zhexi He1, Yifan Zhao1(), Yujing Du1, Meng Zhao1, Yuxuan Jiang1, Ming Liu1(), Ziyao Zhou2()
1. State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, The International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi’an Jiaotong University, Xi’an 710049, China
2. School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China
 Download: PDF(7453 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Flexible electronics/spintronics attracts researchers’ attention for their application potential abroad in wearable devices, healthcare, and other areas. Those devices’ performance (speed, energy consumption) is highly dependent on manipulating information bits (spin-orientation in flexible spintronics). In this work, we established an organic photovoltaic (OPV)/ZnO/Pt/Co/Pt heterostructure on flexible PET substrates with perpendicular magnetic anisotropy (PMA). Under sunlight illumination, the photoelectrons generated from the OPV layer transfer into the PMA heterostructure, then they reduce the PMA strength by enhancing the interfacial Rashba field accordingly. The coercive field (Hc) reduces from 800 Oe to 500 Oe at its maximum, and the magnetization can be switched up and down reversibly. The stability of sunlight control of magnetization reversal under various bending conditions is also tested for flexible spintronic applications. Lastly, the voltage output of sunlight-driven PMA is achieved in our prototype device, exhibiting an excellent angular dependence and opening a door towards solar-driven flexible spintronics with much lower energy consumption.

Keywords interfacial magnetoelectric coupling      perpendicular magnetic anisotropy      deterministic magnetization reversal      photovoltaic control of magnetism     
Corresponding Author(s): Yifan Zhao,Ming Liu,Ziyao Zhou   
Issue Date: 19 January 2024
 Cite this article:   
Zhexi He,Yifan Zhao,Yujing Du, et al. Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics[J]. Front. Phys. , 2024, 19(4): 43206.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1377-0
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/43206
Fig.1  The schematic of sunlight photovoltaic gating control of perpendicular magnetic anisotropy heterostructure on flexible substrates and in situ VSM measurement of the PMA heterostructures on Mica and PET substrates. (a) The schematic of organic photovoltaic/ZnO/Pt/Co/Pt/Ta/PET flexible heterostructure. (b) The molecular nano-structure of the acceptor (PC71BM) and donor (PTB7-Th). (c) The in-plane (red) and out-of-plane (blue) magnetic hysteresis loops on the PET substrate correspondingly.
Fig.2  The sunlight control of magnetic hysteresis loops study in PV/PMA heterostructures on flat conditions. (a) The Hc dependence of the thickness of the Co layer with (red) and without (blue) sunlight illumination. (b) The angular dependence of Hc without sunlight illumination (dark, red), under 1 sun (blue), 2 suns illumination (green), and back to dark conditions (re-dark, black). (c) The VSM measured magnetic hysteresis loops with (red) and without (blue) sunlight illuminations on flat conditions. (d) The magnetization switching with sunlight illumination turn on and off with magnetic bias assistance.
Fig.3  The sunlight control of PMA on flexible substrates under different bending conditions. (a) The magnetic hysteresis loop test of PV/PMA heterostructure under flat (red), bending (curvature = 1/3, blue; 1/5, black) conditions. (b) The magnetic hysteresis loop of PV/PMA heterostructure with and without sunlight illumination (dark, blue; redark, black) at substrate bending curvature 1/3. The magnetization switches by turning the sunlight on and off with magnetic bias. (c) The magnetic hysteresis loop of PV/PMA heterostructure with and without sunlight illumination (dark, blue; redark, black) at substrate bending curvature of 1/5. The corresponding sunlight-induced magnetization switches at magnetic bias.
Fig.4  The prototype device of the solar-driven spintronic sensor. (a) The schematic and actual photo of the solar-driven rotating sensor on a human hand. (b) The schematic of electrodes on the PV/PMA heterostructures. (c) The angular dependence of voltage output with (blue) and without (red) sunlight illuminations. (d) The angular dependence of voltage output difference between light and dark conditions.
1 T. Zheng X. , Yang Z. , Sutarlie L. , Thangaveloo M. , Yu Y. , Salleh N. , S. Chin J. , Xiong Z. , L. Becker D. , J. Loh X. , C. K. Tee B. , Su X. . Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Sci. Adv., 2023, 9(24): eadg6670
https://doi.org/10.1126/sciadv.adg6670
2 Zhao Y. , Peng R. , Guo Y. , Liu Z. , Dong Y. , Zhao S. , Li Y. , Dong G. , Hu Y. , Zhang J. , Peng Y. , Yang T. , Tian B. , Zhao Y. , Zhou Z. , Jiang Z. , Luo Z. , Liu M. . Ultraflexible and malleable Fe/BaTiO3 multiferroic heterostructures for functional devices. Adv. Funct. Mater., 2021, 31(16): 2009376
https://doi.org/10.1002/adfm.202009376
3 Cao Y. , Wang N. , Tian H. , Guo J. , Wei Y. , Chen H. , Miao Y. , Zou W. , Pan K. , He Y. , Cao H. , Ke Y. , Xu M. , Wang Y. , Yang M. , Du K. , Fu Z. , Kong D. , Dai D. , Jin Y. , Li G. , Li H. , Peng Q. , Wang J. , Huang W. . Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249
https://doi.org/10.1038/s41586-018-0576-2
4 Ota S.Ando A.Chiba D., A flexible giant magnetoresistive device for sensing strain direction, Nat. Electron. 1(2), 124 (2018)
5 Park S. , W. Heo S. , Lee W. , Inoue D. , Jiang Z. , Yu K. , Jinno H. , Hashizume D. , Sekino M. , Yokota T. , Fukuda K. , Tajima K. , Someya T. . Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561(7724): 516
https://doi.org/10.1038/s41586-018-0536-x
6 Bauer S. . Flexible electronics: Sophisticated skin. Nat. Mater., 2013, 12(10): 871
https://doi.org/10.1038/nmat3759
7 Lei Y.Chen Y.Zhang R.Li Y.Yan Q.Lee S.Yu Y.Tsai H.Choi W.Wang K.Luo Y.Gu Y.Zheng X.Wang C.Wang C.Hu H.Li Y.Qi B.Lin M.Zhang Z.A. Dayeh S.Pharr M.P. Fenning D.H. Lo Y.Luo J.Yang K.Yoo J.Nie W.Xu S., A fabrication process for flexible single-crystal perovskite devices, Nature 583(7818), 790 (2020)
8 Viventi J. , H. Kim D. , Vigeland L. , S. Frechette E. , A. Blanco J. , S. Kim Y. , E. Avrin A. , R. Tiruvadi V. , W. Hwang S. , C. Vanleer A. , F. Wulsin D. , Davis K. , E. Gelber C. , Palmer L. , Van der Spiegel J. , Wu J. , Xiao J. , Huang Y. , Contreras D. , A. Rogers J. , Litt B. . Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci., 2011, 14(12): 1599
https://doi.org/10.1038/nn.2973
9 Cai X.Liu Y.Zha J.Tan F.Zhang B.Yan W.Zhao J.Lu B.Zhou J.Tan C., A flexible and safe planar zinc-ion micro-battery with ultrahigh energy density enabled by interfacial engineering for wearable sensing systems, Adv. Funct. Mater. 33(29), 2303009 (2023)
10 Zhang Y. , Wang Y. , Wang C. , Zhao Y. , Jing W. , Wang S. , Zhang Y. , Xu X. , Zhang F. , Yu K. , Mao Q. , Lin Q. , Han F. , Tian B. , Zhou Z. , Zhao L. , Ren W. , Liu M. , Jiang Z. . Superior performances via designed multiple embossments within interfaces for flexible pressure sensors. Chem. Eng. J., 2023, 454: 139990
https://doi.org/10.1016/j.cej.2022.139990
11 Dong G. , Zhou Z. , Xue X. , Zhang Y. , Peng B. , Guan M. , Zhao S. , Hu Z. , Ren W. , G. Ye Z. , Liu M. . Ferroelectric phase transition induced a large FMR tuning in self-assembled BaTiO3:Y3Fe5O12 multiferroic composites. ACS Appl. Mater. Interfaces, 2017, 9(36): 30733
https://doi.org/10.1021/acsami.7b06876
12 Wu C. , Pan X. , Lin F. , Cui Z. , He Y. , Chen G. , Zeng Y. , Liu X. , Chen Q. , Sun D. , Hai Z. . TiB2/SiCN thin-film strain gauges fabricated by direct writing for high-temperature application. IEEE Sens. J., 2022, 22(12): 11517
https://doi.org/10.1109/JSEN.2022.3172346
13 Zhu L. . Switching of perpendicular magnetization by spin−orbit torque. Adv. Mater., 2023, 35(48): 2300853
https://doi.org/10.1002/adma.202300853
14 Yang H. , Ormaza M. , Chi Z. , Dolan E. , Ingla-Aynes J. , K. Safeer C. , Herling F. , Ontoso N. , Gobbi M. , Martin-Garcia B. , Schiller F. , E. Hueso L. , Casanova F. . Gate-tunable spin hall effect in an all-light-element heterostructure: Graphene with copper oxide. Nano Lett., 2023, 23(10): 4406
https://doi.org/10.1021/acs.nanolett.3c00687
15 Han J. , Zhang P. , T. Hou J. , A. Siddiqui S. , Liu L. . Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science, 2019, 366(6469): 1121
https://doi.org/10.1126/science.aau2610
16 Fulara H. , Zahedinejad M. , Khymyn R. , A. Awad A. , Muralidhar S. , Dvornik M. , Akerman J. . Spin–orbit torque-driven propagating spin waves. Sci. Adv., 2019, 5(9): eaax8467
https://doi.org/10.1126/sciadv.aax8467
17 Shao X. , Zhu C. , Kumar P. , Wang Y. , Lu J. , Cha M. , Yao L. , Cao Y. , Mao X. , Heinz H. , A. Kotov N. . Voltage modulated untwist deformations and multispectral optical effects from ion intercalation into chiral ceramic nanoparticles. Adv. Mater., 2023, 35(16): 2370116
https://doi.org/10.1002/adma.202370116
18 J. Peng W. , Wang L. , J. Li Y. , J. Du Y. , X. He Z. , Y. Wang C. , F. Zhao Y. , D. Jiang Z. , Y. Zhou Z. , Liu M. . Voltage manipulation of synthetic antiferromagnetism in CoFeB/Ta/CoFeB heterostructure for spintronic application. Adv. Mater. Interfaces, 2022, 9(14): 2200007
https://doi.org/10.1002/admi.202200007
19 Peng B. , Lu Q. , Tang H. , Zhang Y. , Cheng Y. , Qiu R. , Guo Y. , Zhou Z. , Liu M. . Large in-plane piezo-strain enhanced voltage control of magnetic anisotropy in Si-compatible multiferroic thin films. Mater. Horiz., 2022, 9(12): 3013
https://doi.org/10.1039/D2MH01020H
20 Prasad B. , L. Huang Y. , V. Chopdekar R. , Chen Z. , Steffes J. , Das S. , Li Q. , Yang M. , C. Lin C. , Gosavi T. , E. Nikonov D. , Q. Qiu Z. , W. Martin L. , D. Huey B. , Young I. , Iniguez J. , Manipatruni S. , Ramesh R. . Ultralow voltage manipulation of ferromagnetism. Adv. Mater., 2020, 32(28): 2001943
https://doi.org/10.1002/adma.202001943
21 Song C. , Cui B. , Li F. , J. Zhou X. , Pan F. . Recent progress in voltage control of magnetism: Materials, mechanisms, and performance. Prog. Mater. Sci., 2017, 87: 33
https://doi.org/10.1016/j.pmatsci.2017.02.002
22 M. Hu J. , Li Z. , Q. Chen L. , W. Nan C. . High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun., 2011, 2(1): 553
https://doi.org/10.1038/ncomms1564
23 Yang S. , W. Son J. , S. Ju T. , M. Tran D. , S. Han H. , Park S. , H. Park B. , W. Moon K. , Hwang C. . Magnetic skyrmion transistor gated with voltage-controlled magnetic anisotropy. Adv. Mater., 2023, 35(9): 2208881
https://doi.org/10.1002/adma.202208881
24 J. Kim H. , W. Moon K. , X. Tran B. , Yoon S. , Kim C. , Yang S. , H. Ha J. , An K. , S. Ju T. , I. Hong J. , Hwang C. . Field-free switching of magnetization by tilting the perpendicular magnetic anisotropy of Gd/Co multilayers. Adv. Funct. Mater., 2022, 32(26): 2112561
https://doi.org/10.1002/adfm.202112561
25 Tan Z. , de Rojas J. , Martins S. , Lopeandia A. , Quintana A. , Cialone M. , Herrero-Martin J. , Meersschaut J. , Vantomme A. , L. Costa-Kramer J. , Sort J. , Menendez E. . Frequency-dependent stimulated and post-stimulated voltage control of magnetism in transition metal nitrides: Towards brain-inspired magneto-ionics. Mater. Horiz., 2023, 10: 88
https://doi.org/10.1039/D2MH01087A
26 Ameziane M. , Mansell R. , Havu V. , Rinke P. , van Dijken S. . Lithium-ion battery technology for voltage control of perpendicular magnetization. Adv. Funct. Mater., 2022, 32(29): 2113118
https://doi.org/10.1002/adfm.202113118
27 Huang M. , U. Hasan M. , Klyukin K. , Zhang D. , Lyu D. , Gargiani P. , Valvidares M. , Sheffels S. , Churikova A. , Buttner F. , Zehner J. , Caretta L. , Y. Lee K. , Chang J. , P. Wang J. , Leistner K. , Yildiz B. , S. D. Beach G. . Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures. Nat. Nanotechnol., 2021, 16(9): 981
https://doi.org/10.1038/s41565-021-00940-1
28 Zhao S. , Zhou Z. , Li C. , Peng B. , Hu Z. , Liu M. . Low-voltage control of (Co/Pt)x perpendicular magnetic anisotropy heterostructure for flexible spintronics. ACS Nano, 2018, 12(7): 7167
https://doi.org/10.1021/acsnano.8b03097
29 Zhao S. , Wang L. , Zhou Z. , Li C. , Dong G. , Zhang L. , Peng B. , Min T. , Hu Z. , Ma J. , Ren W. , G. Ye Z. , Chen W. , Yu P. , W. Nan C. , Liu M. . Ionic liquid gating control of spin reorientation transition and switching of perpendicular magnetic anisotropy. Adv. Mater., 2018, 30(30): 1801639
https://doi.org/10.1002/adma.201801639
30 Peng B. , Zhou Z. , Nan T. , Dong G. , Feng M. , Yang Q. , Wang X. , Zhao S. , Xian D. , D. Jiang Z. , Ren W. , G. Ye Z. , X. Sun N. , Liu M. . Deterministic switching of perpendicular magnetic anisotropy by voltage control of spin reorientation transition in (Co/Pt)3/Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures. ACS Nano, 2017, 11(4): 4337
https://doi.org/10.1021/acsnano.7b01547
31 Peng B. , Feng M. , Yang Q. , Zhao S. , Zhang Y. , Zhou Z. , Liu M. . Ferroelastic strain-mediated nonvolatile tuning of perpendicular magnetic anisotropy in (Co/Pt)3/(1 1 1) Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures. IEEE Magn. Lett., 2017, 8: 1
https://doi.org/10.1109/LMAG.2017.2721925
32 Yang Q. , Zhou Z. , Wang L. , Zhang H. , Cheng Y. , Hu Z. , Peng B. , Liu M. . Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices. Adv. Mater., 2018, 30(22): 1800449
https://doi.org/10.1002/adma.201800449
33 Yang Q. , Wang L. , Zhou Z. , Wang L. , Zhang Y. , Zhao S. , Dong G. , Cheng Y. , Min T. , Hu Z. , Chen W. , Xia K. , Liu M. . Ionic liquid gating control of RKKY interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 multilayers. Nat. Commun., 2018, 9(1): 991
https://doi.org/10.1038/s41467-018-03356-z
34 Wang X.Yang Q.Wang L.Zhou Z.Min T.Liu M.X. Sun N., E-field control of the RKKY interaction in FeCoB/Ru/FeCoB/PMN-PT (011) multiferroic heterostructures, Adv. Mater. 30(39), 1803612 (2018)
35 F. Zhao Y. , J. Du Y. , Wang L. , Chen K. , L. Luo Z. , S. Yan W. , Li Q. , D. Jiang Z. , Liu M. , Y. Zhou Z. . Sunlight-induced tri-state spin memory in photovoltaic/ferromagnetic heterostructure. Nano Today, 2022, 46: 101605
https://doi.org/10.1016/j.nantod.2022.101605
36 L. Li C. , J. Li Y. , F. Zhao Y. , J. Du Y. , Zhao M. , J. Peng W. , Y. Wu Y. , Liu M. , Y. Zhou Z. . Sunlight control of ferromagnetic damping in photovoltaic/ferromagnetic heterostructures. Adv. Funct. Mater., 2022, 32(16): 2111652
https://doi.org/10.1002/adfm.202111652
37 J. Du Y. , P. Wang S. , Wang L. , Y. Jin S. , F. Zhao Y. , Min T. , D. Jiang Z. , Y. Zhou Z. , Liu M. . Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping. Nano Res., 2022, 15(3): 2626
https://doi.org/10.1007/s12274-021-3841-x
38 Zhao Y. , Zhao S. , Wang L. , Wang S. , Du Y. , Zhao Y. , Jin S. , Min T. , Tian B. , Jiang Z. , Zhou Z. , Liu M. . Photovoltaic modulation of ferromagnetism within a FM metal/P–N junction Si heterostructure. Nanoscale, 2021, 13(1): 272
https://doi.org/10.1039/D0NR07911A
39 Zhao Y. , Zhao S. , Wang L. , Zhou Z. , Liu J. , Min T. , Peng B. , Hu Z. , Jin S. , Liu M. . Sunlight control of interfacial magnetism for solar driven spintronic applications. Adv. Sci. (Weinh.), 2019, 6(24): 1901994
https://doi.org/10.1002/advs.201901994
40 Zhao M. , Wang L. , Zhao Y. , Du Y. , He Z. , Chen K. , Luo Z. , Yan W. , Li Q. , Wang C. , Jiang Z. , Liu M. , Zhou Z. . Deterministic magnetic switching in perpendicular magnetic trilayers through sunlight-induced photoelectron injection. Small, 2023, 19(28): 2301955
https://doi.org/10.1002/smll.202301955
[1] fop-21377-OF-zhouziyao_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed