Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 43200    https://doi.org/10.1007/s11467-023-1387-y
Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2
Bocheng Lei1,3, Aolin Li1(), Wenzhe Zhou2, Yunpeng Wang2, Wei Xiong1, Yu Chen2, Fangping Ouyang1,2,4()
1. School of Physics Science and Technology, and Xinjiang Key Laboratory of Solid-State Physics and Devices, Xinjiang University, Urumqi 830046, China
2. School of Physics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, and Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China
3. School of Physics Science and Technology, and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, Yili Normal University, Yining 835000, China
4. Powder Metallurgy Research Institute and State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
 Download: PDF(8624 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS2 phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS2 is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS2 is an ideal candidate for future spintronics.

Keywords orthorhombic CrS2      Curie temperature      magnetic anisotropy energy      biaxial strain      first-principles calculations     
Corresponding Author(s): Aolin Li,Fangping Ouyang   
Issue Date: 19 March 2024
 Cite this article:   
Bocheng Lei,Aolin Li,Wenzhe Zhou, et al. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2[J]. Front. Phys. , 2024, 19(4): 43200.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1387-y
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/43200
Fig.1  (a) Top and Side views of a completely relaxed 4 × 4 supercell of ML O-CrS2. The primitive cell is shown in the red square, the blue (yellow) spheres indicate Cr (S) atoms. (b) Phonon spectrum without obviously imaginary frequencies. (c) Variation of total potential energy E0 during AIMD simulation at 400 K, and the inset shows the corresponding snapshots of structures at the end of 10 ps.
CrS2 a = b (Å) E100 E010 E001 ΔE MCr MS1 MS2
1O 3.660 0 0 −0.034 1.912 2.985 −0.371 −0.403
1T 3.290 0 0 −0.086 −0.013 2.588 −0.155 −0.234
3.280[29] −0.063 2.664 −0.042
1H 3.041 0 0 0 0
3.041[28] 0 0 0 0
Tab.1  Lattice constants a and b, MAE (meV) per Cr in different directions against the minimum energy spin orientation, exchange energy ΔE (eV), single-atom magnetic moment M (μB) in the FM state.
Fig.2  The electronic structure of ML O-CrS2 under FM with orange arrows indicating spin-up or spin-down channel.
Fig.3  The magnetic configurations of ML O-CrS2 within 4 × 4 supercell, as shown in (a) and (b). The blue (yellow) spheres represent the majority spin-up (-down) states. The lattice constants a and b are denoted by gray dashed lines, while the J between the nearest-neighbor Cr atoms is indicated by a red dashed line. (c) The energy variation of the magnetic anisotropy in the XZ plane. (d) The evolution of total magnetization and specific heat of ML O-CrS2, obtained from MC simulation, with the fitting results are represented by cyan lines.
Fig.4  The properties of ML O-CrS2 under biaxial strain. (a) The spin-flip gap. (b) The variation curves of J (blue line) and MAE (red line). (c) The atom-resolved MAE. (d) The change of TC.
Fig.5  The MAE mechanism analysis of ML O-CrS2. Orbital-resolved MAE of Cr atoms at (a) −5% compressive strain, (b) 0% unstrain, and (c) 5% tensile strain. Projected density of states of Cr atoms’ 3d orbit at (d) −5% compressive strain (e) 0% unstrain, and (f) 5% tensile strain.
1 S. Novoselov K., K. Geim A., V. Morozov S., Jiang D., I. Katsnelson M., V. Grigorieva I., V. Dubonos S., A. Firsov A.. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197
https://doi.org/10.1038/nature04233
2 Golberg D., Bando Y., Huang Y., Terao T., Mitome M., C. Tang C., Y. Zhi C.. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6): 2979
https://doi.org/10.1021/nn1006495
3 H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
4 S. Xu M., Liang T., M. Shi M., Z. Chen H.. Graphene-like two-dimensional materials. Chem. Rev., 2013, 113(5): 3766
https://doi.org/10.1021/cr300263a
5 Liu H., T. Neal A., Zhu Z., Luo Z., Xu X., Tománek D., D. Ye P.. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
https://doi.org/10.1021/nn501226z
6 C. Lei J., Zhang X., Zhou Z.. Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10(3): 276
https://doi.org/10.1007/s11467-015-0493-x
7 D. Mermin N., Wagner H.. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
https://doi.org/10.1103/PhysRevLett.17.1133
8 H. Kim H., W. Yang B., W. Li S., W. Jiang S., H. Jin C., Tao Z., Nichols G., Sfigakis F., Z. Zhong S., H. Li C., J. Tian S., G. Cory D., X. Miao G., Shan J., F. Mak K., C. Lei H., Sun K., Y. Zhao L., W. Tsen A.. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl. Acad. Sci. USA, 2019, 116(23): 11131
https://doi.org/10.1073/pnas.1902100116
9 Huang B., Clark G., R. Klein D., MacNeill D., Navarro-Moratalla E., L. Seyler K., Wilson N., A. McGuire M., H. Cobden D., Xiao D., Yao W., Jarillo-Herrero P., Xu X.. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol., 2018, 13(7): 544
https://doi.org/10.1038/s41565-018-0121-3
10 B. Wang H., R. Fan F., S. Zhu S., Wu H.. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. Europhys. Lett., 2016, 114(4): 47001
https://doi.org/10.1209/0295-5075/114/47001
11 J. Deng Y., J. Yu Y., C. Song Y., Z. Zhang J., Z. Wang N., Y. Sun Z., F. Yi Y., Z. Wu Y., W. Wu S., Y. Zhu J., Wang J., H. Chen X., B. Zhang Y.. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
https://doi.org/10.1038/s41586-018-0626-9
12 X. Shen Z., Y. Bo X., Cao K., G. Wan X., X. He L.. Magnetic ground state and electron-doping tuning of Curie temperature in Fe3GeTe2: First-principles studies. Phys. Rev. B, 2021, 103(8): 085102
https://doi.org/10.1103/PhysRevB.103.085102
13 Gong C., Li L., L. Li Z., W. Ji H., Stern A., Xia Y., Cao T., Bao W., Z. Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
14 O’Neill A., Rahman S., Zhang Z., Schoenherr P., Yildirim T., Gu B., Su G., R. Lu Y., Seidel J.. Enhanced room temperature ferromagnetism in highly strained 2D semiconductor Cr2Ge2Te6. ACS Nano, 2023, 17(1): 735
https://doi.org/10.1021/acsnano.2c10209
15 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
16 J. O’Hara D., Zhu T., H. Trout A., S. Ahmed A., K. Luo Y., H. Lee C., R. Brenner M., Rajan S., A. Gupta J., W. McComb D., K. Kawakami R.. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett., 2018, 18(5): 3125
https://doi.org/10.1021/acs.nanolett.8b00683
17 A. de Groot R., M. Mueller F., G. Engen P., H. J. Buschow K.. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett., 1983, 50(25): 2024
https://doi.org/10.1103/PhysRevLett.50.2024
18 Q. Zhang S., Z. Xu R., H. Duan W., L. Zou X.. Intrinsic half-metallicity in 2D ternary chalcogenides with high critical temperature and controllable magnetization direction. Adv. Funct. Mater., 2019, 29(14): 1808380
https://doi.org/10.1002/adfm.201808380
19 J. Zhang G., Guo F., Wu H., K. Wen X., Yang L., Jin W., F. Zhang W., X. Chang H.. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun., 2022, 13(1): 5067
https://doi.org/10.1038/s41467-022-32605-5
20 J. J. Han F., Yan X., Li F., Yu H., J. Li W., Zhong X., Bergara A., C. Yang G.. Prediction of monolayer FeP4 with intrinsic half-metal ferrimagnetism above room temperature. Phys. Rev. B, 2023, 107(2): 024414
https://doi.org/10.1103/PhysRevB.107.024414
21 R. Habib M., P. Wang S., J. Wang W., Xiao H., M. Obaidulla S., Gayen A., Khan Y., Z. Chen H., S. Xu M.. Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale, 2019, 11(42): 20123
https://doi.org/10.1039/C9NR04449C
22 Sun X., Li W., Wang X., Sui Q., Zhang T., Wang Z., Liu L., Li D., Feng S., Zhong S., Wang H., Bouchiat V., Nunez Regueiro M., Rougemaille N., Coraux J., Purbawati A., Hadj-Azzem A., Wang Z., Dong B., Wu X., Yang T., Yu G., Wang B., Han Z., Han X., Zhang Z.. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res., 2020, 13(12): 3358
https://doi.org/10.1007/s12274-020-3021-4
23 J. Meng L., Zhou Z., Q. Xu M., Q. Yang S., P. Si K., X. Liu L., G. Wang X., N. Jiang H., X. Li B., X. Qin P., Zhang P., L. Wang J., Q. Liu Z., Z. Tang P., Ye Y., Zhou W., H. Bao L., J. Gao H., J. Gong Y.. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun., 2021, 12(1): 809
https://doi.org/10.1038/s41467-021-21072-z
24 Z. Sun Y., F. Yan P., Ning J., Q. Zhang X., F. Zhao Y., W. Gao Q., Kanagaraj M., P. Zhang K., J. Li J., Y. Lu X., Yan Y., Li Y., B. Xu Y., He L.. Ferromagnetism in two-dimensional CrTe2 epitaxial films down to a few atomic layers. AIP Adv., 2021, 11(3): 035138
https://doi.org/10.1063/5.0041531
25 Q. Zhang X., S. Lu Q., Q. Liu W., Niu W., B. Sun J., Cook J., Vaninger M., F. Miceli P., J. Singh D., W. Lian S., R. Chang T., Q. He X., Du J., He L., Zhang R., Bian G., B. Xu Y.. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun., 2021, 12(1): 2492
https://doi.org/10.1038/s41467-021-22777-x
26 H. Deng X., Y. Li Z.. Intrinsic ultra-wide completely spin-polarized state realized in a new CrO2 monolayer. Phys. Chem. Chem. Phys., 2020, 22(30): 17038
https://doi.org/10.1039/D0CP02627A
27 W. Zhang B., Sun J., C. Leng J., Zhang C., Wang J.. Tunable two dimensional ferromagnetic topological half-metal CrO2 by electronic correction and spin direction. Appl. Phys. Lett., 2020, 117(22): 222407
https://doi.org/10.1063/5.0031443
28 H. Tian X., M. Zhang J.. The electronic, magnetic and optical properties of single-layer CrS2 with vacancy defects. J. Magn. Magn. Mater., 2019, 487: 165300
https://doi.org/10.1016/j.jmmm.2019.165300
29 Y. Chen K., K. Deng J., Yan Y., Shi Q., Y. Chang T., D. Ding X., Sun J., Yang S., Z. Liu J.. Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices. npj Comput. Mater., 2021, 7(1): 79
https://doi.org/10.1038/s41524-021-00547-z
30 Z. Liu M., L. Huang Y., Gou J., J. Liang Q., Chua R., S. Arramel S., Duan S., Zhang L., L. Cai L., Yu X., Zhong D., Zhang W., T. S. Wee A., Zhang Duan, L. Cai L., J. Yu L., Y. Zhong X., J. Zhang D., T. S. Wee W.. Diverse structures and magnetic properties in nonlayered monolayer chromium selenide. J. Phys. Chem. Lett., 2021, 12(32): 7752
https://doi.org/10.1021/acs.jpclett.1c01493
31 Alsubaie M., Tang C., Wijethunge D., C. Qi D., J. Du A.. First-principles study of the enhanced magnetic anisotropy and transition temperature in a CrSe2 monolayer via hydrogenation. ACS Appl. Electron. Mater., 2022, 4(7): 3240
https://doi.org/10.1021/acsaelm.2c00476
32 H. Liu Y., Kwon S., J. de Coster G., K. Lake R., R. Neupane M.. Structural, electronic, and magnetic properties of CrTe2. Phys. Rev. Mater., 2022, 6(8): 084004
https://doi.org/10.1103/PhysRevMaterials.6.084004
33 L. Wu L., W. Zhou L., Y. Zhou X., Wang C., Ji W.. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers. Phys. Rev. B, 2022, 106(8): L081401
https://doi.org/10.1103/PhysRevB.106.L081401
34 Li B., Wan Z., Wang C., Chen P., Huang B., Cheng X., Qian Q., Li J., W. Zhang Z., Z. Sun G., Zhao B., F. Ma H., X. Wu R., M. Wei Z., Liu Y., Liao L., Ye Y., Huang Y., D. Xu X., D. Duan X., Ji W., F. Duan X.. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
https://doi.org/10.1038/s41563-021-00927-2
35 L. Coughlin A., Y. Xie D., Zhan X., Yao Y., Z. Deng L., Hewa-Walpitage H., Bontke T., W. Chu C., Li Y., Wang J., A. Fertig H., X. Zhang S.. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett., 2021, 21(22): 9517
https://doi.org/10.1021/acs.nanolett.1c02940
36 H. Lee I., K. Choi B., J. Kim H., J. Kim M., Y. Jeong H., H. Lee J., Y. Park S., Jo Y., Lee C., W. Choi J., W. Cho S., Lee S., Kim Y., H. Kim B., J. Lee K., E. Heo J., H. Chang S., Li F., L. Chittari B., Jung J., J. Chang Y.. Modulating curie temperature and magnetic anisotropy in nanoscale-layered Cr2Te3 films: Implications for room-temperature spintronics. ACS Appl. Nano Mater., 2021, 4(5): 4810
https://doi.org/10.1021/acsanm.1c00391
37 Lasek K., M. Coelho P., Gargiani P., Valvidares M., Mohseni K., L. Meyerheim H., Kostanovskiy I., Zberecki K., Batzill M.. Van der Waals epitaxy growth of 2D ferromagnetic Cr1+δTe2 nanolayers with concentration-tunable magnetic anisotropy. Appl. Phys. Rev., 2022, 9(1): 011409
https://doi.org/10.1063/5.0070079
38 Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
39 Kresse G., Furthmuller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
40 E. Blöchl P.. Projected augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
https://doi.org/10.1103/PhysRevB.50.17953
41 J. Monkhorst H., D. Pack J.. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
42 Xiao G., Z. Xiao W., Chen Q., L. Wang L., Novel two-dimensional ferromagnetic materials CrX2 (X = O.Se) with high Curie temperature. J. Mater. Chem. C, 2022, 10(46): 17665
https://doi.org/10.1039/D2TC03711D
43 Togo A., Tanaka I.. First principles phonon calculations in materials science. Scr. Mater., 2015, 108: 1
https://doi.org/10.1016/j.scriptamat.2015.07.021
44 J. Martyna G., L. Klein M., Tuckerman M.. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4): 2635
https://doi.org/10.1063/1.463940
45 Mouhat F., X. Coudert F.. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B, 2014, 90(22): 224104
https://doi.org/10.1103/PhysRevB.90.224104
46 Xiong L., Yi L., Y. Gao G.. Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z = Al, Ga, Si, Ge, As, Sb). J. Magn. Magn. Mater., 2014, 360: 98
https://doi.org/10.1016/j.jmmm.2014.02.050
47 T. Wang X., X. Cheng Z., L. Wang J., Y. Wang L., Y. Yu Z., S. Fang C., T. Yang J., D. Liu G.. Origin of the half-metallic band-gap in newly designed quaternary Heusler compounds ZrVTiZ (Z = Al, Ga). RSC Advances, 2016, 6(62): 57041
https://doi.org/10.1039/C6RA08600D
48 Soriano D., I. Katsnelson M., Fernandez-Rossier J.. Magnetic two-dimensional chromium trihalides: A theoretical perspective. Nano Lett., 2020, 20(9): 6225
https://doi.org/10.1021/acs.nanolett.0c02381
49 Subramanian M., Ramirez A., Marshall W.. Structural tuning of ferromagnetism in a 3D cuprate perovskite. Phys. Rev. Lett., 1999, 82(7): 1558
https://doi.org/10.1103/PhysRevLett.82.1558
50 X. Li W., S. Guo C., Zang Q., Ding R., Zhao Y.. Magnetic phase transition in strained two-dimensional semiconductor MoTeI monolayer. Appl. Surf. Sci., 2021, 536: 147842
https://doi.org/10.1016/j.apsusc.2020.147842
51 Zhu Y., F. Pan Y., Ge L., Y. Fan J., N. Shi D., L. Ma C., Hu J., Q. Wu R.. Separating RKKY interaction from other exchange mechanisms in two-dimensional magnetic materials. Phys. Rev. B, 2023, 108(4): L041401
https://doi.org/10.1103/PhysRevB.108.L041401
52 X. Kang L., Ye C., X. Zhao X., Y. Zhou X., X. Hu J., Li Q., Liu D., M. Das C., F. Yang J., Y. Hu D., Q. Chen J., Cao X., Zhang Y., Z. Xu M., Di J., Tian D., Song P., Kutty G., S. Zeng Q., D. Fu Q., Deng Y., D. Zhou J., Ariando A., Miao F., Hong G., Z. Huang Y., J. Pennycook S., T. Yong K., Ji W., R. Wang X., Liu Z.. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun., 2020, 11(1): 3729
https://doi.org/10.1038/s41467-020-17253-x
53 Lan M., Xiang G., Nie Y., Y. Yang D., Zhang X.. The static and dynamic magnetic properties of monolayer iron dioxide and iron dichalcogenides. RSC Adv., 2016, 6(38): 31758
https://doi.org/10.1039/C6RA03480B
54 P. Müller G., Hoffmann M., Disselkamp C., Schurhoff D., Mavros S., Sallermann M., S. Kiselev N., Jonsson H., Blugel S.. Spirit: Multifunctional framework for atomistic spin simulations. Phys. Rev. B, 2019, 99(22): 224414
https://doi.org/10.1103/PhysRevB.99.224414
55 T. Fang X., Z. Zhou B., C. Wang X., B. Mi W.. High Curie temperature and large perpendicular magnetic anisotropy in two-dimensional half metallic OsI3 monolayer with quantum anomalous Hall effect. Mater. Today Phys., 2022, 28: 100847
https://doi.org/10.1016/j.mtphys.2022.100847
[1] fop-21387-OF-ouyangfangping_suppl_1 Download
[1] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[2] Bin Liu, Xiaolin Zhang, Jingxian Xiong, Xiuyang Pang, Sheng Liu, Zixin Yang, Qiang Yu, Honggen Li, Sicong Zhu, Jian Wu. Spin transport of half-metal Mn2X3 with high Curie temperature: An ideal giant magnetoresistance device from electrical and thermal drives[J]. Front. Phys. , 2024, 19(4): 43201-.
[3] Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202-.
[4] Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201-.
[5] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[6] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[7] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[8] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[9] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[10] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[11] Chong Xu, Qian-Jun Wang, Bin Xu, Jun Hu. Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3[J]. Front. Phys. , 2021, 16(5): 53502-.
[12] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
[13] Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie. Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3[J]. Front. Phys. , 2019, 14(1): 13604-.
[14] Qun Wei, Quan Zhang, Mei-Guang Zhang, Hai-Yan Yan, Li-Xin Guo, Bing Wei. A novel hybrid sp-sp2 metallic carbon allotrope[J]. Front. Phys. , 2018, 13(5): 136105-.
[15] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed