Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 53206    https://doi.org/10.1007/s11467-024-1404-9
Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications
Chang Lu1, Shunhui Zhang1, Meili Chen1, Haitao Chen2, Mengjian Zhu2, Zhengwei Zhang1, Jun He1, Lin Zhang1(), Xiaoming Yuan1()
1. Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
2. College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
 Download: PDF(11143 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Van der Waals epitaxy allows heterostructure formation without considering the lattice match requirement, thus is a promising method to form 2D/2D and 2D/3D heterojunction. Considering the unique optical properties of CsPbI3 and transition metal dichalcogenides (TMDCs), their heterostructure present potential applications in both photonics and optoelectronics fields. Here, we demonstrate selective growth of cubic phase CsPbI3 nanofilm with thickness as thin as 4.0 nm and Zigzag/armchair orientated nanowires (NWs) on monolayer WSe2. Furthermore, we show growth of CsPbI3 on both transferred WSe2 on copper grid and WSe2 based optoelectrical devices, providing a platform for structure analysis and device performance modification. Transmission electron microscopy (TEM) results reveal the epitaxial nature of cubic CsPbI3 phase. The revealed growth fundamental of CsPbI3 is universal valid for other two-dimensional substrates, offering a great advantage to fabricate CsPbI3 based van der Waals heterostructures (vdWHs). X-ray photoelectron spectroscopy (XPS) and optical characterization confirm the type-II band alignment, resulting in a fast charger transfer process and the occurrence of a broad emission peak with lower energy. The formation of WSe2/CsPbI3 heterostructure largely enhance the photocurrent from 2.38 nA to 38.59 nA. These findings are vital for bottom-up epitaxy of inorganic semiconductor on atomic thin 2D substrates for optoelectronic applications.

Keywords van der Waals epitaxy      band alignment      growth fundamental      charge transfer      photodetector     
Corresponding Author(s): Lin Zhang,Xiaoming Yuan   
Issue Date: 24 May 2024
 Cite this article:   
Chang Lu,Shunhui Zhang,Meili Chen, et al. Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications[J]. Front. Phys. , 2024, 19(5): 53206.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1404-9
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/53206
Fig.1  Formation of CsPbI3 nanostructure on monolayer WSe2. Temperature dependent morphology evolution of CsPbI3 at growth temperature of (a) 230 °C; (b) 260 °C; (c) 330 °C. (d) AFM image of a CsPbI3 film. Morphology evolution of CsPbI3 on monolayer WSe2 at different precursor weight under the standardized CsPbI3 film growth condition at 230 °C (e) 50%; (f) 200%; (g) 300%. (h) CsPbI3 film thickness under different precursor weight. Insets are corresponding EDX mapping of Pb element. (i) Schematic representation of CsPbI3 NWs on monolayer WSe2 with different orientations. AFM images of CsPbI3 NWs along Zigzag (j) and armchair (k) directions. (l) Statistics of CsPbI3 NW orientation preference along Zigzag and armchair directions. Scale bars are 20 μm in (a?c, e?g), 5 μm in insets (a?c), 5 μm in (k), 2 μm in (d), 10 μm in (h), 1 μm in (j).
Fig.2  Illustration of morphology evolution of CsPbI3 on WSe2 monolayer with different growth parameters.
Fig.3  Structure and band alignment of the CsPbI3/WSe2 heterostructure. (a) TEM image of a CsPbI3 NW. (b) corresponding HRTEM image, (c) SAED pattern and (d) EDX elemental mapping (e) EDX spectrum of CsPbI3 NW. (f) TEM image of CsPbI3 nanofilm. (g) Corresponding HRTEM image and (h) SAED pattern of CsPbI3. XPS of (i) W 4f core level and valence band spectra of the WSe2 substrate. (j) Pb 4f core level and valence band spectra of CsPbI3 nanostructure. (k) The Pb 4f and W 4f core levels in CsPbI3/WSe2 heterostructure. (l) Extracted band alignment in the CsPbI3/WSe2 heterostructure.
Fig.4  (a) Raman spectra of monolayer WSe2 before and after CsPbI3 growth. (b) PL and TRPL (c) comparison of CsPbI3/WSe2 heterojunction, CsPbI3 and WSe2. (d) Optical image of a partially removed CsPbI3 film on WSe2 together with the corresponding PL mapping at 1.64 eV. (e?g) Temperature-dependent PL spectra of CsPbI3 nanofilm/WSe2, Zigzag orientated NW/WSe2 and armchair orientated NW/WSe2. (h) Extracted emission energy in (e?g).
Fig.5  Growth demonstration of CsPbI3 nanofilm and NWs on monolayer WS2, MoS2 and MoSe2 monolayer at standard film growth conditions and NW growth conditions at triple precursor weight. Optical images of CsPbI3 nanofilms (a, e, i) and NWs (b, f, j) on monolayer TMDCs. Corresponding Raman (c, g, k) and PL (d, h, l) spectra of the as-grown CsPbI3/ TMDCs heterojunction.
Fig.6  (a, b) Temperature-dependent PL spectra of CsPbI3/WS2 heterojunction and monolayer WS2. (c, d) Temperature-dependent PL spectra of CsPbI3/MoSe2 heterojunction and monolayer MoSe2. (e, f) Extracted peak energy evolution with temperature for CsPbI3/WS2 and CsPbI3/MoSe2 heterojunction (g) Band alignments of between CsPbI3 and monolayer TMDC [19]. The arrows point out the possible charge transfer process at the heterojunction.
Fig.7  Dark and photocurrent comparison of the WSe2 based photodetector before and after CsPbI3 growth. The inset is optical image of the as-fabricated CsPbI3/WSe2 device.
1 Long M. , Wang P. , Fang H. , Hu W. . Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater., 2019, 29(19): 1803807
https://doi.org/10.1002/adfm.201803807
2 Huo N. , Konstantatos G. . Recent progress and future prospects of 2D‐based photodetectors. Adv. Mater., 2018, 30(51): 1801164
https://doi.org/10.1002/adma.201801164
3 B. Mitta S. , S. Choi M. , Nipane A. , Ali F. , Kim C. , T. Teherani J. , Hone J. , J. Yoo W. . Electrical characterization of 2D materials-based field-effect transistors. 2D Mater., 2021, 8(1): 012002
https://doi.org/10.1088/2053-1583/abc187
4 Wang Z. , Yang Y. , Hua B. , Ji Q. . Synthetic two-dimensional electronics for transistor scaling. Front. Phys., 2023, 18(6): 63601
https://doi.org/10.1007/s11467-023-1305-3
5 F. Gonzalez Marin J. , Unuchek D. , Sun Z. , Y. Cheon C. , Tagarelli F. , Watanabe K. , Taniguchi T. , Kis A. . Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun., 2022, 13(1): 4884
https://doi.org/10.1038/s41467-022-32292-2
6 F. Mak K. , Shan J. . Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
https://doi.org/10.1038/nphoton.2015.282
7 Wu S. , Buckley S. , R. Schaibley J. , Feng L. , Yan J. , G. Mandrus D. , Hatami F. , Yao W. , Vučković J. , Majumdar A. , Xu X. . Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69
https://doi.org/10.1038/nature14290
8 Ye Y. , J. Wong Z. , Lu X. , Ni X. , Zhu H. , Chen X. , Wang Y. , Zhang X. . Monolayer excitonic laser. Nat. Photonics, 2015, 9(11): 733
https://doi.org/10.1038/nphoton.2015.197
9 Bernardi M. , Palummo M. , C. Grossman J. . Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett., 2013, 13(8): 3664
https://doi.org/10.1021/nl401544y
10 K. Sumesh C. . Towards efficient photon management in nanostructured solar cells: Role of 2D layered transition metal dichalcogenide semiconductors. Sol. Energy Mater. Sol. Cells, 2019, 192: 16
https://doi.org/10.1016/j.solmat.2018.12.016
11 Wu D. , Wang Y. , Zeng L. , Jia C. , Wu E. , Xu T. , Shi Z. , Tian Y. , Li X. , H. Tsang Y. . Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics, 2018, 5(9): 3820
https://doi.org/10.1021/acsphotonics.8b00853
12 Zhang L. , Zhang Z. , Wu F. , Wang D. , Gogna R. , Hou S. , Watanabe K. , Taniguchi T. , Kulkarni K. , Kuo T. , R. Forrest S. , Deng H. . Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11(1): 5888
https://doi.org/10.1038/s41467-020-19466-6
13 Kozawa D. , Carvalho A. , Verzhbitskiy I. , Giustiniano F. , Miyauchi Y. , Mouri S. , Castro Neto A. , Matsuda K. , Eda G. . Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett., 2016, 16(7): 4087
https://doi.org/10.1021/acs.nanolett.6b00801
14 Liu A. , Zhu H. , Bai S. , Reo Y. , Zou T. , G. Kim M. , Y. Noh Y. . High-performance inorganic metal halide perovskite transistors. Nat. Electron., 2022, 5(2): 78
https://doi.org/10.1038/s41928-022-00712-2
15 Singh R. , Singh P. , Balasubramanian G. . Effect of heterostructure engineering on electronic structure and transport properties of two-dimensional halide perovskites. Comput. Mater. Sci., 2021, 200: 110823
https://doi.org/10.1016/j.commatsci.2021.110823
16 G. Ricciardulli A. , Yang S. , H. Smet J. , Saliba M. . Emerging perovskite monolayers. Nat. Mater., 2021, 20(10): 1325
https://doi.org/10.1038/s41563-021-01029-9
17 S. Lo S. , Mirkovic T. , H. Chuang C. , Burda C. , D. Scholes G. . Emergent properties resulting from type‐II band alignment in semiconductor nanoheterostructures. Adv. Mater., 2011, 23(2): 180
https://doi.org/10.1002/adma.201002290
18 Liu Y. , Li H. , Zheng X. , Cheng X. , Jiang T. . Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt. Mater. Express, 2017, 7(4): 1327
https://doi.org/10.1364/OME.7.001327
19 Fang Q. , Shang Q. , Zhao L. , Wang R. , Zhang Z. , Yang P. , Sui X. , Qiu X. , Liu X. , Zhang Q. , Zhang Y. . Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J. Phys. Chem. Lett., 2018, 9(7): 1655
https://doi.org/10.1021/acs.jpclett.8b00260
20 Zhong M. , Cui B. , Mo Z. , Yu Y. , Xia Q. , Zhang F. , Zhou Z. , Huang L. , Li B. , Yang J. . Gate controllable band alignment transition in 2D black-arsenic/WSe2 heterostructure. Appl. Phys. Rev., 2023, 10(2): 021416
https://doi.org/10.1063/5.0147499
21 Zhao F. , Wang D. , Zhang F. , Cui B. , Xia Q. , Zhong M. . Gate-controlled photoresponse improvement in b-AsP/WSe2 heterostructures with type-I band alignment. Appl. Phys. Lett., 2023, 122(15): 151105
https://doi.org/10.1063/5.0144982
22 Yuan L. , Xu Z. , Li J. , Zhang F. , Liu S. , Shi H. , Xia Q. , Zhong M. . Broad-spectrum and ultrasensitive photodetectors based on GeSe/SnS2 heterostructures with type-III band alignment. Appl. Phys. Lett., 2023, 122(24): 241106
https://doi.org/10.1063/5.0154429
23 Song X. , Liu X. , Yu D. , Huo C. , Ji J. , Li X. , Zhang S. , Zou Y. , Zhu G. , Wang Y. , Wu M. , Xie A. , Zeng H. . Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces, 2018, 10(3): 2801
https://doi.org/10.1021/acsami.7b14745
24 G. Saraswathy Vilasam A. , K. Prasanna P. , Yuan X. , Azimi Z. , Kremer F. , Jagadish C. , Chakraborty S. , H. Tan H. . Epitaxial growth of GaAs nanowires on synthetic mica by metal–organic chemical vapor deposition. ACS Appl. Mater. Interfaces, 2022, 14(2): 3395
https://doi.org/10.1021/acsami.1c19236
25 Britnell L. , M. Ribeiro R. , Eckmann A. , Jalil R. , D. Belle B. , Mishchenko A. , J. Kim Y. , V. Gorbachev R. , Georgiou T. , V. Morozov S. , N. Grigorenko A. , K. Geim A. , Casiraghi C. , H. C. Neto A. , S. Novoselov K. . Strong light−matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
https://doi.org/10.1126/science.1235547
26 Liu Z. , Song L. , Zhao S. , Huang J. , Ma L. , Zhang J. , Lou J. , M. Ajayan P. . Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett., 2011, 11(5): 2032
https://doi.org/10.1021/nl200464j
27 Yang W. , Chen G. , Shi Z. , C. Liu C. , Zhang L. , Xie G. , Cheng M. , Wang D. , Yang R. , Shi D. , Watanabe K. , Taniguchi T. , Yao Y. , Zhang Y. , Zhang G. . Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater., 2013, 12(9): 792
https://doi.org/10.1038/nmat3695
28 Wang M.K. Jang S.J. Jang W.Kim M.Y. Park S.W. Kim S.J. Kahng S.Y. Choi J.S. Ruoff R.J. Song Y.Lee S., A platform for large‐scale graphene electronics – CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride, Adv. Mater. 25(19), 2746 (2013)
29 Duan X. , Wang C. , C. Shaw J. , Cheng R. , Chen Y. , Li H. , Wu X. , Tang Y. , Zhang Q. , Pan A. , Jiang J. , Yu R. , Huang Y. , Duan X. . Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol., 2014, 9(12): 1024
https://doi.org/10.1038/nnano.2014.222
30 Huang C. , Wu S. , M. Sanchez A. , J. P. Peters J. , Beanland R. , S. Ross J. , Rivera P. , Yao W. , H. Cobden D. , Xu X. . Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater., 2014, 13(12): 1096
https://doi.org/10.1038/nmat4064
31 Chen M. , Chang R. , Yang X. , Lu C. , Zhang S. , Zhang Z. , He J. , Yuan X. . Van der Waals epitaxy of CsPbBr3/WSe2 heterostructure and dynamics study of exciton recombination. J. Phys. D Appl. Phys., 2024, 57(23): 235103
https://doi.org/10.1088/1361-6463/ad30ae
32 H. Mao Y. , Shan H. , R. Wu J. , J. Li Z. , Z. Wu C. , F. Zhai X. , D. Zhao A. , Wang B. . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
https://doi.org/10.1007/s11467-020-0977-1
33 Kim Y. , S. Cruz S. , Lee K. , O. Alawode B. , Choi C. , Song Y. , M. Johnson J. , Heidelberger C. , Kong W. , Choi S. , Qiao K. , Almansouri I. , A. Fitzgerald E. , Kong J. , M. Kolpak A. , Hwang J. , Kim J. . Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 2017, 544(7650): 340
https://doi.org/10.1038/nature22053
34 Chen J. , Fu Y. , Samad L. , Dang L. , Zhao Y. , Shen S. , Guo L. , Jin S. . Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 2017, 17(1): 460
https://doi.org/10.1021/acs.nanolett.6b04450
35 Ge S. , Huang F. , He J. , Xu Z. , Sun Z. , Han X. , Wang C. , B. Huang L. , Pan C. . Bidirectional photoresponse in perovskite‐ZnO heterostructure for fully optical-controlled artificial synapse. Adv. Opt. Mater., 2022, 10(11): 2200409
https://doi.org/10.1002/adom.202200409
36 R. Tak B. , Gupta V. , K. Kapoor A. , H. Chu Y. , Singh R. . Wearable gallium oxide solar-blind photodetectors on muscovite mica having ultrahigh photoresponsivity and detectivity with added high-temperature functionalities. ACS Appl. Electron. Mater., 2019, 1(11): 2463
https://doi.org/10.1021/acsaelm.9b00603
37 K. Mohseni P. , Behnam A. , D. Wood J. , D. English C. , W. Lyding J. , Pop E. , Li X. . InxGa1−xAs nanowire growth on graphene: van der Waals epitaxy induced phase segregation. Nano Lett., 2013, 13(3): 1153
https://doi.org/10.1021/nl304569d
38 Shin J. , Kim H. , Sundaram S. , Jeong J. , I. Park B. , S. Chang C. , Choi J. , Kim T. , Saravanapavanantham M. , Lu K. , Kim S. , M. Suh J. , S. Kim K. , K. Song M. , Liu Y. , Qiao K. , H. Kim J. , Kim Y. , H. Kang J. , Kim J. , Lee D. , Lee J. , S. Kim J. , E. Lee H. , Yeon H. , S. Kum H. , H. Bae S. , Bulovic V. , J. Yu K. , Lee K. , Chung K. , J. Hong Y. , Ougazzaden A. , Kim J. . Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature, 2023, 614(7946): 81
https://doi.org/10.1038/s41586-022-05612-1
39 Wang Y. , Shi Y. , Xin G. , Lian J. , Shi J. . Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des., 2015, 15(10): 4741
https://doi.org/10.1021/acs.cgd.5b00949
40 Zhang Z. , Chen P. , Yang X. , Liu Y. , Ma H. , Li J. , Zhao B. , Luo J. , Duan X. , Duan X. . Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev., 2020, 7(4): 737
https://doi.org/10.1093/nsr/nwz223
41 Gurarslan A. , Yu Y. , Su L. , Yu Y. , Suarez F. , Yao S. , Zhu Y. , Ozturk M. , Zhang Y. , Cao L. . Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano, 2014, 8(11): 11522
https://doi.org/10.1021/nn5057673
42 Yuan X. , Liu H. , Liu S. , Zhang R. , Wang Y. , He J. , H. Tan H. , Jagadish C. . Thermodynamic properties of metastable wurtzite InP nanosheets. J. Phys. D, 2021, 54(50): 505112
https://doi.org/10.1088/1361-6463/ac2449
43 Zhang K. , Ding C. , Pan B. , Wu Z. , Marga A. , Zhang L. , Zeng H. , Huang S. . Visualizing van der Waals epitaxial growth of 2D heterostructures. Adv. Mater., 2021, 33(45): 2105079
https://doi.org/10.1002/adma.202105079
44 Mukherjee S. , Nateghi N. , M. Jacobberger R. , Bouthillier E. , De La Mata M. , Arbiol J. , Coenen T. , Cardinal D. , Levesque P. , Desjardins P. , Martel R. , S. Arnold M. , Moutanabbir O. . Growth and luminescence of polytypic InP on epitaxial graphene. Adv. Funct. Mater., 2018, 28(8): 1705592
https://doi.org/10.1002/adfm.201705592
45 Sheng C. , Bu Y. , Li Y. , Su L. , Yu Y. , Cao D. , Zhou J. , Chen X. , Lu W. , Shu H. . Phase-controllable growth of air-stable SnS nanostructures for high-performance photodetectors with ultralow dark current. ACS Appl. Mater. Interfaces, 2023, 15(11): 14704
https://doi.org/10.1021/acsami.2c21958
46 Ryu H.Park H.H. Kim J.Ren F.Kim J.H. Lee G.J. Pearton S., Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth, Appl. Phys. Rev. 9(3), 031305 (2022)
47 Trots D. , Myagkota S. . High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids, 2008, 69(10): 2520
https://doi.org/10.1016/j.jpcs.2008.05.007
48 Liang J. , Han X. , H. Yang J. , Zhang B. , Fang Q. , Zhang J. , Ai Q. , M. Ogle M. , Terlier T. , A. Martí A. , Lou J. . Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells. Adv. Mater., 2019, 31(51): 1903448
https://doi.org/10.1002/adma.201903448
49 Cheng Y. , Tang P. , Liang P. , Liu X. , Cao D. , Chen X. , Shu H. . Sulfur-driven transition from vertical to lateral growth of 2D SnS–SnS2 heterostructures and their band alignments. J. Phys. Chem. C, 2020, 124(50): 27820
https://doi.org/10.1021/acs.jpcc.0c09101
50 Liu X. , Cao D. , Yao Y. , Tang P. , Zhang M. , Chen X. , Shu H. . Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI3/GaN heterojunction. J. Mater. Chem. C, 2022, 10(6): 1984
https://doi.org/10.1039/D1TC05533J
51 Yuan H. , Su J. , Zhang S. , Di J. , Lin Z. , Zhang J. , Zhang J. , Chang J. , Hao Y. . Interfacial transport modulation by intrinsic potential difference of Janus TMDs based on CsPbI3/J-TMDs heterojunctions. iScience, 2022, 25(3): 103872
https://doi.org/10.1016/j.isci.2022.103872
52 Guo D. , Bartesaghi D. , Wei H. , M. Hutter E. , Huang J. , J. Savenije T. . Photoluminescence from radiative surface states and excitons in methylammonium lead bromide perovskites. J. Phys. Chem. Lett., 2017, 8(17): 4258
https://doi.org/10.1021/acs.jpclett.7b01642
53 Asaithambi A. , Kazemi Tofighi N. , Curreli N. , De Franco M. , Patra A. , Petrini N. , Baranov D. , Manna L. , D. Stasio F. , Kriegel I. . Generation of free carriers in MoSe2 monolayers via energy transfer from CsPbBr3 nanocrystals. Adv. Opt. Mater., 2022, 10(14): 2200638
https://doi.org/10.1002/adom.202200638
54 Yang X. , Zhang S. , Zhang Z. , Lin J. , Liu X. , Huang Z. , Zhang L. , Luo W. , He J. , Yuan X. . Controlled fabrication of CsPbI2Br/transition metal dichalcogenide van der Waals heterostructure with fast carrier transfer process and interlayer exciton formation. Physica E, 2023, 153: 115788
https://doi.org/10.1016/j.physe.2023.115788
55 Drüppel M. , Deilmann T. , Krüger P. , Rohlfing M. . Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun., 2017, 8(1): 2117
https://doi.org/10.1038/s41467-017-02286-6
56 Ye T. , Li J. , Li D. . Charge-accumulation effect in transition metal dichalcogenide heterobilayers. Small, 2019, 15(42): 1902424
https://doi.org/10.1002/smll.201902424
57 M. Alexeev E. , A. Ruiz-Tijerina D. , Danovich M. , J. Hamer M. , J. Terry D. , K. Nayak P. , Ahn S. , Pak S. , Lee J. , I. Sohn J. , R. Molas M. , Koperski M. , Watanabe K. , Taniguchi T. , S. Novoselov K. , V. Gorbachev R. , S. Shin H. , I. Fal’ko V. , I. Tartakovskii A. . Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 2019, 567: 81
https://doi.org/10.1038/s41586-019-0986-9
58 Ludwiczak K. , K. Da̧browska A. , Binder J. , Tokarczyk M. , Iwański J. , Kurowska B. , Turczyński J. , Kowalski G. , Bożek R. , Stȩpniewski R. , Pacuski W. , Wysmołek A. . Heteroepitaxial growth of high optical quality, wafer-scale van der Waals heterostrucutres. ACS Appl. Mater. Interfaces, 2021, 13(40): 47904
https://doi.org/10.1021/acsami.1c11867
59 Li J. , Yuan X. , Jing P. , Li J. , Wei M. , Hua J. , Zhao J. , Tian L. . Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Advances, 2016, 6(82): 78311
https://doi.org/10.1039/C6RA17008K
60 Lu J. , Carvalho A. , Liu H. , X. Lim S. , H. Castro Neto A. , H. Sow C. . Hybrid bilayer WSe2–CH3NH3 PbI3 organolead halide perovskite as a high-performance photodetector. Angew. Chem., 2016, 128(39): 12124
https://doi.org/10.1002/ange.201603557
[1] fop-24404-of-yuanxiaoming_suppl_1 Download
[1] Hui Ding, Xiao-Hong Li, Rui-Zhou Zhang, Hong-Ling Cui. Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes[J]. Front. Phys. , 2025, 20(1): 14211-.
[2] Jiangtong Su, Xiaoqi Hou, Ning Dai, Yang Li. Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications[J]. Front. Phys. , 2024, 19(6): 63501-.
[3] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[4] Chaowei He, Jiantian Zhang, Li Gong, Peng Yu. Room-temperature ferroelectricity in van der Waals SnP2S6[J]. Front. Phys. , 2024, 19(4): 43202-.
[5] Kaiyue He, Jijie Zhu, Zishun Li, Zhe Chen, Hehe Zhang, Chao Liu, Xu Zhang, Shuo Wang, Peiyi Zhao, Yu Zhou, Shizheng Zhang, Yao Yin, Xiaorui Zheng, Wei Huang, Lin Wang. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel[J]. Front. Phys. , 2023, 18(6): 63305-.
[6] Mengting Song, Nan An, Yuke Zou, Yue Zhang, Wenjuan Huang, Huayi Hou, Xiangbai Chen. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection[J]. Front. Phys. , 2023, 18(5): 52302-.
[7] Yanyan Li, Mingjun Yang, Yanan Lu, Dan Cao, Xiaoshuang Chen, Haibo Shu. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures[J]. Front. Phys. , 2023, 18(3): 33307-.
[8] Xueping Li, Peize Yuan, Lin Li, Ting Liu, Chenhai Shen, Yurong Jiang, Xiaohui Song, Congxin Xia. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment[J]. Front. Phys. , 2023, 18(1): 13305-.
[9] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[10] Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang. Narrow-bandgap materials for optoelectronics applications[J]. Front. Phys. , 2022, 17(1): 13304-.
[11] Erjun Liang, Qiang Sun, Huanli Yuan, Jiaqi Wang, Gaojie Zeng, Qilong Gao. Negative thermal expansion: Mechanisms and materials[J]. Front. Phys. , 2021, 16(5): 53302-.
[12] Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Front. Phys. , 2021, 16(4): 43300-.
[13] Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng. Organic single crystal phototransistors: Recent approaches and achievements[J]. Front. Phys. , 2021, 16(4): 43202-.
[14] Qinye Li, Siyao Qiu, Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503-.
[15] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed