|
|
Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications |
Chang Lu1, Shunhui Zhang1, Meili Chen1, Haitao Chen2, Mengjian Zhu2, Zhengwei Zhang1, Jun He1, Lin Zhang1( ), Xiaoming Yuan1( ) |
1. Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China 2. College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Van der Waals epitaxy allows heterostructure formation without considering the lattice match requirement, thus is a promising method to form 2D/2D and 2D/3D heterojunction. Considering the unique optical properties of CsPbI3 and transition metal dichalcogenides (TMDCs), their heterostructure present potential applications in both photonics and optoelectronics fields. Here, we demonstrate selective growth of cubic phase CsPbI3 nanofilm with thickness as thin as 4.0 nm and Zigzag/armchair orientated nanowires (NWs) on monolayer WSe2. Furthermore, we show growth of CsPbI3 on both transferred WSe2 on copper grid and WSe2 based optoelectrical devices, providing a platform for structure analysis and device performance modification. Transmission electron microscopy (TEM) results reveal the epitaxial nature of cubic CsPbI3 phase. The revealed growth fundamental of CsPbI3 is universal valid for other two-dimensional substrates, offering a great advantage to fabricate CsPbI3 based van der Waals heterostructures (vdWHs). X-ray photoelectron spectroscopy (XPS) and optical characterization confirm the type-II band alignment, resulting in a fast charger transfer process and the occurrence of a broad emission peak with lower energy. The formation of WSe2/CsPbI3 heterostructure largely enhance the photocurrent from 2.38 nA to 38.59 nA. These findings are vital for bottom-up epitaxy of inorganic semiconductor on atomic thin 2D substrates for optoelectronic applications.
|
Keywords
van der Waals epitaxy
band alignment
growth fundamental
charge transfer
photodetector
|
Corresponding Author(s):
Lin Zhang,Xiaoming Yuan
|
Issue Date: 24 May 2024
|
|
1 |
Long M. , Wang P. , Fang H. , Hu W. . Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater., 2019, 29(19): 1803807
https://doi.org/10.1002/adfm.201803807
|
2 |
Huo N. , Konstantatos G. . Recent progress and future prospects of 2D‐based photodetectors. Adv. Mater., 2018, 30(51): 1801164
https://doi.org/10.1002/adma.201801164
|
3 |
B. Mitta S. , S. Choi M. , Nipane A. , Ali F. , Kim C. , T. Teherani J. , Hone J. , J. Yoo W. . Electrical characterization of 2D materials-based field-effect transistors. 2D Mater., 2021, 8(1): 012002
https://doi.org/10.1088/2053-1583/abc187
|
4 |
Wang Z. , Yang Y. , Hua B. , Ji Q. . Synthetic two-dimensional electronics for transistor scaling. Front. Phys., 2023, 18(6): 63601
https://doi.org/10.1007/s11467-023-1305-3
|
5 |
F. Gonzalez Marin J. , Unuchek D. , Sun Z. , Y. Cheon C. , Tagarelli F. , Watanabe K. , Taniguchi T. , Kis A. . Room-temperature electrical control of polarization and emission angle in a cavity-integrated 2D pulsed LED. Nat. Commun., 2022, 13(1): 4884
https://doi.org/10.1038/s41467-022-32292-2
|
6 |
F. Mak K. , Shan J. . Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
https://doi.org/10.1038/nphoton.2015.282
|
7 |
Wu S. , Buckley S. , R. Schaibley J. , Feng L. , Yan J. , G. Mandrus D. , Hatami F. , Yao W. , Vučković J. , Majumdar A. , Xu X. . Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69
https://doi.org/10.1038/nature14290
|
8 |
Ye Y. , J. Wong Z. , Lu X. , Ni X. , Zhu H. , Chen X. , Wang Y. , Zhang X. . Monolayer excitonic laser. Nat. Photonics, 2015, 9(11): 733
https://doi.org/10.1038/nphoton.2015.197
|
9 |
Bernardi M. , Palummo M. , C. Grossman J. . Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett., 2013, 13(8): 3664
https://doi.org/10.1021/nl401544y
|
10 |
K. Sumesh C. . Towards efficient photon management in nanostructured solar cells: Role of 2D layered transition metal dichalcogenide semiconductors. Sol. Energy Mater. Sol. Cells, 2019, 192: 16
https://doi.org/10.1016/j.solmat.2018.12.016
|
11 |
Wu D. , Wang Y. , Zeng L. , Jia C. , Wu E. , Xu T. , Shi Z. , Tian Y. , Li X. , H. Tsang Y. . Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics, 2018, 5(9): 3820
https://doi.org/10.1021/acsphotonics.8b00853
|
12 |
Zhang L. , Zhang Z. , Wu F. , Wang D. , Gogna R. , Hou S. , Watanabe K. , Taniguchi T. , Kulkarni K. , Kuo T. , R. Forrest S. , Deng H. . Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11(1): 5888
https://doi.org/10.1038/s41467-020-19466-6
|
13 |
Kozawa D. , Carvalho A. , Verzhbitskiy I. , Giustiniano F. , Miyauchi Y. , Mouri S. , Castro Neto A. , Matsuda K. , Eda G. . Evidence for fast interlayer energy transfer in MoSe2/WS2 heterostructures. Nano Lett., 2016, 16(7): 4087
https://doi.org/10.1021/acs.nanolett.6b00801
|
14 |
Liu A. , Zhu H. , Bai S. , Reo Y. , Zou T. , G. Kim M. , Y. Noh Y. . High-performance inorganic metal halide perovskite transistors. Nat. Electron., 2022, 5(2): 78
https://doi.org/10.1038/s41928-022-00712-2
|
15 |
Singh R. , Singh P. , Balasubramanian G. . Effect of heterostructure engineering on electronic structure and transport properties of two-dimensional halide perovskites. Comput. Mater. Sci., 2021, 200: 110823
https://doi.org/10.1016/j.commatsci.2021.110823
|
16 |
G. Ricciardulli A. , Yang S. , H. Smet J. , Saliba M. . Emerging perovskite monolayers. Nat. Mater., 2021, 20(10): 1325
https://doi.org/10.1038/s41563-021-01029-9
|
17 |
S. Lo S. , Mirkovic T. , H. Chuang C. , Burda C. , D. Scholes G. . Emergent properties resulting from type‐II band alignment in semiconductor nanoheterostructures. Adv. Mater., 2011, 23(2): 180
https://doi.org/10.1002/adma.201002290
|
18 |
Liu Y. , Li H. , Zheng X. , Cheng X. , Jiang T. . Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt. Mater. Express, 2017, 7(4): 1327
https://doi.org/10.1364/OME.7.001327
|
19 |
Fang Q. , Shang Q. , Zhao L. , Wang R. , Zhang Z. , Yang P. , Sui X. , Qiu X. , Liu X. , Zhang Q. , Zhang Y. . Ultrafast charge transfer in perovskite nanowire/2D transition metal dichalcogenide heterostructures. J. Phys. Chem. Lett., 2018, 9(7): 1655
https://doi.org/10.1021/acs.jpclett.8b00260
|
20 |
Zhong M. , Cui B. , Mo Z. , Yu Y. , Xia Q. , Zhang F. , Zhou Z. , Huang L. , Li B. , Yang J. . Gate controllable band alignment transition in 2D black-arsenic/WSe2 heterostructure. Appl. Phys. Rev., 2023, 10(2): 021416
https://doi.org/10.1063/5.0147499
|
21 |
Zhao F. , Wang D. , Zhang F. , Cui B. , Xia Q. , Zhong M. . Gate-controlled photoresponse improvement in b-AsP/WSe2 heterostructures with type-I band alignment. Appl. Phys. Lett., 2023, 122(15): 151105
https://doi.org/10.1063/5.0144982
|
22 |
Yuan L. , Xu Z. , Li J. , Zhang F. , Liu S. , Shi H. , Xia Q. , Zhong M. . Broad-spectrum and ultrasensitive photodetectors based on GeSe/SnS2 heterostructures with type-III band alignment. Appl. Phys. Lett., 2023, 122(24): 241106
https://doi.org/10.1063/5.0154429
|
23 |
Song X. , Liu X. , Yu D. , Huo C. , Ji J. , Li X. , Zhang S. , Zou Y. , Zhu G. , Wang Y. , Wu M. , Xie A. , Zeng H. . Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces, 2018, 10(3): 2801
https://doi.org/10.1021/acsami.7b14745
|
24 |
G. Saraswathy Vilasam A. , K. Prasanna P. , Yuan X. , Azimi Z. , Kremer F. , Jagadish C. , Chakraborty S. , H. Tan H. . Epitaxial growth of GaAs nanowires on synthetic mica by metal–organic chemical vapor deposition. ACS Appl. Mater. Interfaces, 2022, 14(2): 3395
https://doi.org/10.1021/acsami.1c19236
|
25 |
Britnell L. , M. Ribeiro R. , Eckmann A. , Jalil R. , D. Belle B. , Mishchenko A. , J. Kim Y. , V. Gorbachev R. , Georgiou T. , V. Morozov S. , N. Grigorenko A. , K. Geim A. , Casiraghi C. , H. C. Neto A. , S. Novoselov K. . Strong light−matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
https://doi.org/10.1126/science.1235547
|
26 |
Liu Z. , Song L. , Zhao S. , Huang J. , Ma L. , Zhang J. , Lou J. , M. Ajayan P. . Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett., 2011, 11(5): 2032
https://doi.org/10.1021/nl200464j
|
27 |
Yang W. , Chen G. , Shi Z. , C. Liu C. , Zhang L. , Xie G. , Cheng M. , Wang D. , Yang R. , Shi D. , Watanabe K. , Taniguchi T. , Yao Y. , Zhang Y. , Zhang G. . Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater., 2013, 12(9): 792
https://doi.org/10.1038/nmat3695
|
28 |
Wang M.K. Jang S.J. Jang W.Kim M.Y. Park S.W. Kim S.J. Kahng S.Y. Choi J.S. Ruoff R.J. Song Y.Lee S., A platform for large‐scale graphene electronics – CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride, Adv. Mater. 25(19), 2746 (2013)
|
29 |
Duan X. , Wang C. , C. Shaw J. , Cheng R. , Chen Y. , Li H. , Wu X. , Tang Y. , Zhang Q. , Pan A. , Jiang J. , Yu R. , Huang Y. , Duan X. . Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol., 2014, 9(12): 1024
https://doi.org/10.1038/nnano.2014.222
|
30 |
Huang C. , Wu S. , M. Sanchez A. , J. P. Peters J. , Beanland R. , S. Ross J. , Rivera P. , Yao W. , H. Cobden D. , Xu X. . Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater., 2014, 13(12): 1096
https://doi.org/10.1038/nmat4064
|
31 |
Chen M. , Chang R. , Yang X. , Lu C. , Zhang S. , Zhang Z. , He J. , Yuan X. . Van der Waals epitaxy of CsPbBr3/WSe2 heterostructure and dynamics study of exciton recombination. J. Phys. D Appl. Phys., 2024, 57(23): 235103
https://doi.org/10.1088/1361-6463/ad30ae
|
32 |
H. Mao Y. , Shan H. , R. Wu J. , J. Li Z. , Z. Wu C. , F. Zhai X. , D. Zhao A. , Wang B. . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
https://doi.org/10.1007/s11467-020-0977-1
|
33 |
Kim Y. , S. Cruz S. , Lee K. , O. Alawode B. , Choi C. , Song Y. , M. Johnson J. , Heidelberger C. , Kong W. , Choi S. , Qiao K. , Almansouri I. , A. Fitzgerald E. , Kong J. , M. Kolpak A. , Hwang J. , Kim J. . Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 2017, 544(7650): 340
https://doi.org/10.1038/nature22053
|
34 |
Chen J. , Fu Y. , Samad L. , Dang L. , Zhao Y. , Shen S. , Guo L. , Jin S. . Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 2017, 17(1): 460
https://doi.org/10.1021/acs.nanolett.6b04450
|
35 |
Ge S. , Huang F. , He J. , Xu Z. , Sun Z. , Han X. , Wang C. , B. Huang L. , Pan C. . Bidirectional photoresponse in perovskite‐ZnO heterostructure for fully optical-controlled artificial synapse. Adv. Opt. Mater., 2022, 10(11): 2200409
https://doi.org/10.1002/adom.202200409
|
36 |
R. Tak B. , Gupta V. , K. Kapoor A. , H. Chu Y. , Singh R. . Wearable gallium oxide solar-blind photodetectors on muscovite mica having ultrahigh photoresponsivity and detectivity with added high-temperature functionalities. ACS Appl. Electron. Mater., 2019, 1(11): 2463
https://doi.org/10.1021/acsaelm.9b00603
|
37 |
K. Mohseni P. , Behnam A. , D. Wood J. , D. English C. , W. Lyding J. , Pop E. , Li X. . InxGa1−xAs nanowire growth on graphene: van der Waals epitaxy induced phase segregation. Nano Lett., 2013, 13(3): 1153
https://doi.org/10.1021/nl304569d
|
38 |
Shin J. , Kim H. , Sundaram S. , Jeong J. , I. Park B. , S. Chang C. , Choi J. , Kim T. , Saravanapavanantham M. , Lu K. , Kim S. , M. Suh J. , S. Kim K. , K. Song M. , Liu Y. , Qiao K. , H. Kim J. , Kim Y. , H. Kang J. , Kim J. , Lee D. , Lee J. , S. Kim J. , E. Lee H. , Yeon H. , S. Kum H. , H. Bae S. , Bulovic V. , J. Yu K. , Lee K. , Chung K. , J. Hong Y. , Ougazzaden A. , Kim J. . Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature, 2023, 614(7946): 81
https://doi.org/10.1038/s41586-022-05612-1
|
39 |
Wang Y. , Shi Y. , Xin G. , Lian J. , Shi J. . Two-dimensional van der Waals epitaxy kinetics in a three-dimensional perovskite halide. Cryst. Growth Des., 2015, 15(10): 4741
https://doi.org/10.1021/acs.cgd.5b00949
|
40 |
Zhang Z. , Chen P. , Yang X. , Liu Y. , Ma H. , Li J. , Zhao B. , Luo J. , Duan X. , Duan X. . Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev., 2020, 7(4): 737
https://doi.org/10.1093/nsr/nwz223
|
41 |
Gurarslan A. , Yu Y. , Su L. , Yu Y. , Suarez F. , Yao S. , Zhu Y. , Ozturk M. , Zhang Y. , Cao L. . Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano, 2014, 8(11): 11522
https://doi.org/10.1021/nn5057673
|
42 |
Yuan X. , Liu H. , Liu S. , Zhang R. , Wang Y. , He J. , H. Tan H. , Jagadish C. . Thermodynamic properties of metastable wurtzite InP nanosheets. J. Phys. D, 2021, 54(50): 505112
https://doi.org/10.1088/1361-6463/ac2449
|
43 |
Zhang K. , Ding C. , Pan B. , Wu Z. , Marga A. , Zhang L. , Zeng H. , Huang S. . Visualizing van der Waals epitaxial growth of 2D heterostructures. Adv. Mater., 2021, 33(45): 2105079
https://doi.org/10.1002/adma.202105079
|
44 |
Mukherjee S. , Nateghi N. , M. Jacobberger R. , Bouthillier E. , De La Mata M. , Arbiol J. , Coenen T. , Cardinal D. , Levesque P. , Desjardins P. , Martel R. , S. Arnold M. , Moutanabbir O. . Growth and luminescence of polytypic InP on epitaxial graphene. Adv. Funct. Mater., 2018, 28(8): 1705592
https://doi.org/10.1002/adfm.201705592
|
45 |
Sheng C. , Bu Y. , Li Y. , Su L. , Yu Y. , Cao D. , Zhou J. , Chen X. , Lu W. , Shu H. . Phase-controllable growth of air-stable SnS nanostructures for high-performance photodetectors with ultralow dark current. ACS Appl. Mater. Interfaces, 2023, 15(11): 14704
https://doi.org/10.1021/acsami.2c21958
|
46 |
Ryu H.Park H.H. Kim J.Ren F.Kim J.H. Lee G.J. Pearton S., Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth, Appl. Phys. Rev. 9(3), 031305 (2022)
|
47 |
Trots D. , Myagkota S. . High-temperature structural evolution of caesium and rubidium triiodoplumbates. J. Phys. Chem. Solids, 2008, 69(10): 2520
https://doi.org/10.1016/j.jpcs.2008.05.007
|
48 |
Liang J. , Han X. , H. Yang J. , Zhang B. , Fang Q. , Zhang J. , Ai Q. , M. Ogle M. , Terlier T. , A. Martí A. , Lou J. . Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells. Adv. Mater., 2019, 31(51): 1903448
https://doi.org/10.1002/adma.201903448
|
49 |
Cheng Y. , Tang P. , Liang P. , Liu X. , Cao D. , Chen X. , Shu H. . Sulfur-driven transition from vertical to lateral growth of 2D SnS–SnS2 heterostructures and their band alignments. J. Phys. Chem. C, 2020, 124(50): 27820
https://doi.org/10.1021/acs.jpcc.0c09101
|
50 |
Liu X. , Cao D. , Yao Y. , Tang P. , Zhang M. , Chen X. , Shu H. . Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI3/GaN heterojunction. J. Mater. Chem. C, 2022, 10(6): 1984
https://doi.org/10.1039/D1TC05533J
|
51 |
Yuan H. , Su J. , Zhang S. , Di J. , Lin Z. , Zhang J. , Zhang J. , Chang J. , Hao Y. . Interfacial transport modulation by intrinsic potential difference of Janus TMDs based on CsPbI3/J-TMDs heterojunctions. iScience, 2022, 25(3): 103872
https://doi.org/10.1016/j.isci.2022.103872
|
52 |
Guo D. , Bartesaghi D. , Wei H. , M. Hutter E. , Huang J. , J. Savenije T. . Photoluminescence from radiative surface states and excitons in methylammonium lead bromide perovskites. J. Phys. Chem. Lett., 2017, 8(17): 4258
https://doi.org/10.1021/acs.jpclett.7b01642
|
53 |
Asaithambi A. , Kazemi Tofighi N. , Curreli N. , De Franco M. , Patra A. , Petrini N. , Baranov D. , Manna L. , D. Stasio F. , Kriegel I. . Generation of free carriers in MoSe2 monolayers via energy transfer from CsPbBr3 nanocrystals. Adv. Opt. Mater., 2022, 10(14): 2200638
https://doi.org/10.1002/adom.202200638
|
54 |
Yang X. , Zhang S. , Zhang Z. , Lin J. , Liu X. , Huang Z. , Zhang L. , Luo W. , He J. , Yuan X. . Controlled fabrication of CsPbI2Br/transition metal dichalcogenide van der Waals heterostructure with fast carrier transfer process and interlayer exciton formation. Physica E, 2023, 153: 115788
https://doi.org/10.1016/j.physe.2023.115788
|
55 |
Drüppel M. , Deilmann T. , Krüger P. , Rohlfing M. . Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun., 2017, 8(1): 2117
https://doi.org/10.1038/s41467-017-02286-6
|
56 |
Ye T. , Li J. , Li D. . Charge-accumulation effect in transition metal dichalcogenide heterobilayers. Small, 2019, 15(42): 1902424
https://doi.org/10.1002/smll.201902424
|
57 |
M. Alexeev E. , A. Ruiz-Tijerina D. , Danovich M. , J. Hamer M. , J. Terry D. , K. Nayak P. , Ahn S. , Pak S. , Lee J. , I. Sohn J. , R. Molas M. , Koperski M. , Watanabe K. , Taniguchi T. , S. Novoselov K. , V. Gorbachev R. , S. Shin H. , I. Fal’ko V. , I. Tartakovskii A. . Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 2019, 567: 81
https://doi.org/10.1038/s41586-019-0986-9
|
58 |
Ludwiczak K. , K. Da̧browska A. , Binder J. , Tokarczyk M. , Iwański J. , Kurowska B. , Turczyński J. , Kowalski G. , Bożek R. , Stȩpniewski R. , Pacuski W. , Wysmołek A. . Heteroepitaxial growth of high optical quality, wafer-scale van der Waals heterostrucutres. ACS Appl. Mater. Interfaces, 2021, 13(40): 47904
https://doi.org/10.1021/acsami.1c11867
|
59 |
Li J. , Yuan X. , Jing P. , Li J. , Wei M. , Hua J. , Zhao J. , Tian L. . Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Advances, 2016, 6(82): 78311
https://doi.org/10.1039/C6RA17008K
|
60 |
Lu J. , Carvalho A. , Liu H. , X. Lim S. , H. Castro Neto A. , H. Sow C. . Hybrid bilayer WSe2–CH3NH3 PbI3 organolead halide perovskite as a high-performance photodetector. Angew. Chem., 2016, 128(39): 12124
https://doi.org/10.1002/ange.201603557
|
[1] |
fop-24404-of-yuanxiaoming_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|