|
|
Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy |
Haoyu Dong1,2, Songyang Li1,2, Shuo Mi1,2, Jianfeng Guo1,2, Zhaxi Suonan1,2, Hanxiang Wu1,2, Yanyan Geng1,2, Manyu Wang1,2, Huiwen Xu1,2, Li Guan3, Fei Pang1,2, Wei Ji1,2, Rui Xu1,2( ), Zhihai Cheng1,2( ) |
1. Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China 2. Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China 3. Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China |
|
|
Abstract The van der Waals interface structures and behaviors are of great importance in determining the physical properties of two-dimensional atomic crystals and their heterostructures. The delicate interfacial properties are sensitively dependent on the mechanical behaviors of atomically thin films under external strain. Here, we investigated the strain-engineered rippling structures at the CVD-grown bilayer-MoS2 interface with advanced atomic force microscopy (AFM). The in-plane compressive strain is sequentially introduced into the 1L-substrate and 2L-1L interface of bilayer-MoS2 flakes via a fast-cooling process. The thermal strain-engineered rippling structures were directly visualized at the central 2H- and 3R-MoS2 bilayer regions with friction force microscopy (FFM) and bimodal AFM techniques. These rippling structures can be further artificially manipulated into the beating-like rippling features and fully erased via the contact mode AFM scanning. Our results shed lights on the strain-engineered interfacial structures of two-dimensional materials and also inspire the further investigation on the interface engineering of their electronic and optical properties.
|
Keywords
rippling
interface
strain-engineered
atomic force microscopy
transition metal dichalcogenides
|
Corresponding Author(s):
Rui Xu,Zhihai Cheng
|
Issue Date: 22 May 2024
|
|
1 |
T. Yuan H., T. Wang H., Cui Y.. Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling. Acc. Chem. Res., 2015, 48(1): 81
https://doi.org/10.1021/ar5003297
|
2 |
Hussain S., Q. Xu K., L. Ye S., Lei L., M. Liu X., Xu R., M. Xie L., H. Cheng Z.. Local electrical characterization of two-dimensional materials with functional atomic force microscopy. Front. Phys., 2019, 14(3): 33401
https://doi.org/10.1007/s11467-018-0879-7
|
3 |
Lin Z.McCreary A.Briggs N.Subramanian S.H. Zhang K. F. Sun Y.F. Li X.J. Borys N.T. Yuan H.K. Fullerton-Shirey S.Chernikov A.Zhao H.McDonnell S.M. Lindenberg A.Xiao K.J. LeRoy B. Drndic M.C. M. Hwang J.Park J.Chhowalla M.E. Schaak R.Javey A.C. Hersam M.Robinson J. Terrones M., 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications, 2D Mater. 3(4), 042001 (2017)
|
4 |
Plechinger G., Castellanos-Gomez A., Buscema M., S. J. van der Zant H., A. Steele G., Kuc A., Heine T., Schuller C., Korn T.. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater., 2015, 2(1): 015006
https://doi.org/10.1088/2053-1583/2/1/015006
|
5 |
Bertolazzi S., Brivio J., Kis A.. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5(12): 9703
https://doi.org/10.1021/nn203879f
|
6 |
Johari P., B. Shenoy V.. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano, 2012, 6(6): 5449
https://doi.org/10.1021/nn301320r
|
7 |
McCreary A., Ghosh R., Amani M., Wang J., A. N. Duerloo K., Sharma A., Jarvis K., J. Reed E., M. Dongare A., K. Banerjee S., Terrones M., R. Namburu R., Dubey M.. Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport. ACS Nano, 2016, 10(3): 3186
https://doi.org/10.1021/acsnano.5b04550
|
8 |
W. Wang J., Q. He L., H. Zhang Y., Y. Nong H., N. Li S., K. Wu Q., Y. Tan J., L. Liu B.. Locally strained 2D materials: Preparation, properties, and applications. Adv. Mater., 2024, 2024: 2314145
https://doi.org/10.1002/adma.202314145
|
9 |
Xu R., Lun Y., Meng L., Pang F., Pan Y., Zheng Z., Lei L., Hussain S., J. Li Y., Sugawara Y., Hong J., Ji W., Cheng Z.. Visualization of strain-engineered nanopattern in center-confined mesoscopic WS2 monolayer flakes. J. Phys. Chem. C, 2022, 126(16): 7184
https://doi.org/10.1021/acs.jpcc.1c10538
|
10 |
Lei L., Q. Dai J., Y. Dong H., Y. Geng Y., Y. Cao F., Wang C., Xu R., Pang F., X. Liu Z., S. Li F., H. Cheng Z., Wang G., Ji W.. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers. Nat. Commun., 2023, 14(1): 6320
https://doi.org/10.1038/s41467-023-42044-5
|
11 |
K. Liu K., J. Zhang W., H. Lee Y., C. Lin Y., T. Chang M., Su C., S. Chang C., Li H., M. Shi Y., Zhang H., S. Lai C., J. Li L.. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett., 2012, 12(3): 1538
https://doi.org/10.1021/nl2043612
|
12 |
L. Liu B., Fathi M., Chen L., Abbas A., Q. Ma Y., W. Zhou C.. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano, 2015, 9(6): 6119
https://doi.org/10.1021/acsnano.5b01301
|
13 |
H. Lee Y., Q. Zhang X., J. Zhang W., T. Chang M., T. Lin C., D. Chang K., C. Yu Y., T. W. Wang J., S. Chang C., J. Li L., W. Lin T.. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 2012, 24(17): 2320
https://doi.org/10.1002/adma.201104798
|
14 |
Zeng H., Wen Y., Yin L., Q. Cheng R., Wang H., S. Liu C., He J.. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
|
15 |
Xu R., Pang F., H. Pan Y., Z. Lun Y., Meng L., Y. Zheng Z., Q. Xu K., Lei L., Hussain S., J. Li Y., Sugawara Y., W. Hong J., Ji W., H. Cheng Z.. Atomically asymmetric inversion scales up to mesoscopic single-crystal monolayer flakes. ACS Nano, 2020, 14(10): 13834
https://doi.org/10.1021/acsnano.0c06198
|
16 |
Xu R., L. Ye S., Q. Xu K., Lei L., Hussain S., Y. Zheng Z., Pang F., Y. Xing S., M. Liu X., Ji W., H. Cheng Z.. Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: Contact injection versus triboelectrification. Nanotechnology, 2018, 29(35): 355701
https://doi.org/10.1088/1361-6528/aacad7
|
17 |
Chen K., Wan X., X. Wen J., G. Xie W., W. Kang Z., L. Zeng X., J. Chen H., B. Xu J.. Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano, 2015, 9(10): 9868
https://doi.org/10.1021/acsnano.5b03188
|
18 |
Britnell L., M. Ribeiro R., Eckmann A., Jalil R., D. Belle B., Mishchenko A., J. Kim Y., V. Gorbachev R., Georgiou T., V. Morozov S., N. Grigorenko A., K. Geim A., Casiraghi C., H. C. Neto A., S. Novoselov K.. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
https://doi.org/10.1126/science.1235547
|
19 |
Hunt B., D. Sanchez-Yamagishi J., F. Young A., Yankowitz M., J. LeRoy B., Watanabe K., Taniguchi T., Moon P., Koshino M., Jarillo-Herrero P., C. Ashoori R.. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science, 2013, 340(6139): 1427
https://doi.org/10.1126/science.1237240
|
20 |
S. Novoselov K.Mishchenko A.Carvalho A. H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
|
21 |
Xu R., S. Wang X., Y. Zheng Z., L. Ye S., Q. Xu K., Lei L., Hussain S., Pang F., M. Liu X., J. Li Y., Sugawara Y., Ji W., M. Xie L., H. Cheng Z.. Interfacial water intercalation-induced metal−insulator transition in NbS2/BN heterostructure. Nanotechnology, 2019, 30(20): 205702
https://doi.org/10.1088/1361-6528/ab0452
|
22 |
F. Rigosi A., M. Hill H., Li Y., Chernikov A., F. Heinz T.. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
https://doi.org/10.1021/acs.nanolett.5b01055
|
23 |
Liu K., M. Yan Q., Chen M., Fan W., H. Sun Y., Suh J., Y. Fu D., Lee S., Zhou J., Tongay S., Ji J., B. Neaton J., Q. Wu J.. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett., 2014, 14(9): 5097
https://doi.org/10.1021/nl501793a
|
24 |
M. Pereira V., H. Castro Neto A.. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett., 2009, 103(4): 046801
https://doi.org/10.1103/PhysRevLett.103.046801
|
25 |
H. Ahn G., Amani M., Rasool H., H. Lien D., P. Mastandrea J., W. III Ager J., Dubey M., C. Chrzan D., M. Minor A., Javey A.. Strain-engineered growth of two-dimensional materials. Nat. Commun., 2017, 8(1): 608
https://doi.org/10.1038/s41467-017-00516-5
|
26 |
Deng S., V. Sumant A., Berry V.. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today, 2018, 22: 14
https://doi.org/10.1016/j.nantod.2018.07.001
|
27 |
Castellanos-Gomez A., Roldan R., Cappelluti E., Buscema M., Guinea F., S. J. van der Zant H., A. Steele G.. Local strain engineering in atomically thin MoS2. Nano Lett., 2013, 13(11): 5361
https://doi.org/10.1021/nl402875m
|
28 |
Y. Hui Y., F. Liu X., J. Jie W., Y. Chan N., H. Hao J., T. Hsu Y., J. Li L., L. Guo W., P. Lau S.. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano, 2013, 7(8): 7126
https://doi.org/10.1021/nn4024834
|
29 |
S. Kim M., J. Yun S., Lee Y., Seo C., H. Han G., K. Kim K., H. Lee Y., Kim J.. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano, 2016, 10(2): 2399
https://doi.org/10.1021/acsnano.5b07214
|
30 |
S. Yun W., W. Han S., C. Hong S., G. Kim I., D. Lee J.. Thickness and strain effects on electronic structures of transition metal dichalcogenides:2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B, 2012, 85(3): 033305
https://doi.org/10.1103/PhysRevB.85.033305
|
31 |
P. Dhakal K., Roy S., Jang H., Chen X., S. Yun W., Kim H., Lee J., Kim J., H. Ahn J.. Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater., 2017, 29(12): 5124
https://doi.org/10.1021/acs.chemmater.7b00453
|
32 |
Ramasubramaniam A., Naveh D., Towe E.. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B, 2011, 84(20): 205325
https://doi.org/10.1103/PhysRevB.84.205325
|
33 |
Hu X., Yasaei P., Jokisaari J., Ogut S., Salehi-Khojin A., F. Klie R.. Mapping thermal expansion coefficients in freestanding 2D materials at the nanometer scale. Phys. Rev. Lett., 2018, 120(5): 055902
https://doi.org/10.1103/PhysRevLett.120.055902
|
34 |
N. Zhang L., M. Lu Z., Song Y., Zhao L., Bhatia B., R. Bagnall K., N. Wang E.. Thermal Expansion Coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy. Nano Lett., 2019, 19(7): 4745
https://doi.org/10.1021/acs.nanolett.9b01829
|
35 |
Lei L., Z. Lun Y., Y. Cao F., Meng L., Y. Xing S., F. Guo J., Y. Dong H., Z. Gu S., Q. Xu K., Hussain S., J. Li Y., Sugawara Y., Pang F., Ji W., W. Hong J., Xu R., H. Cheng Z.. Size-dependent strain-engineered nanostructures in MoS2 monolayer investigated by atomic force microscopy. Nanotechnology, 2021, 32(46): 465703
https://doi.org/10.1088/1361-6528/ac1b54
|
36 |
Q. Xu K., H. Pan Y., L. Ye S., Lei L., Hussain S., M. Wang Q., Y. Yang Z., M. Liu X., Ji W., Xu R., H. Cheng Z.. Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals. Appl. Phys. Lett., 2019, 115(6): 063101
https://doi.org/10.1063/1.5096418
|
37 |
Hussain S., Xu R., Q. Xu K., Lei L., Y. Xing S., F. Guo J., Y. Dong H., Liaqat A., Iqbal R., A. Iqbal M., Z. Gu S., Y. Cao F., J. Li Y., Sugawara Y., Pang F., Ji W., M. Xie L., S. Chen S., H. Cheng Z.. Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy. Front. Phys., 2021, 16(5): 53504
https://doi.org/10.1007/s11467-021-1072-y
|
38 |
Pang F., Y. Cao F., Lei L., Meng L., L. Ye S., Y. Xing S., F. Guo J., Y. Dong H., Hussain S., Z. Gu S., Q. Xu K., J. Li Y., Sugawara Y., Ji W., Xu R., H. Cheng Z.. Strain-engineered rippling and manipulation of single-layer WS2 by atomic force microscopy. J. Phys. Chem. C, 2021, 125(16): 8696
https://doi.org/10.1021/acs.jpcc.1c01179
|
39 |
Hussain S., Xu R., Q. Xu K., Lei L., Meng L., Y. Zheng Z., Y. Xing S., F. Guo J., Y. Dong H., Liaqat A., A. Iqbal M., J. Li Y., Sugawara Y., Pang F., Ji W., M. Xie L., H. Cheng Z.. Strain-induced hierarchical ripples in MoS2 layers investigated by atomic force microscopy. Appl. Phys. Lett., 2020, 117(15): 153102
https://doi.org/10.1063/5.0023405
|
40 |
Benaglia S., A. Amo C., Garcia R.. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. Nanoscale, 2019, 11(32): 15289
https://doi.org/10.1039/C9NR04396A
|
41 |
Y. Zheng Z., Xu R., Q. Xu K., L. Ye S., Pang F., Lei L., Hussain S., M. Liu X., Ji W., H. Cheng Z.. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy. Front. Phys., 2020, 15(2): 23601
https://doi.org/10.1007/s11467-019-0933-0
|
[1] |
fop-24409-OF-chengzhihai_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|