Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63201    https://doi.org/10.1007/s11467-024-1409-4
Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy
Haoyu Dong1,2, Songyang Li1,2, Shuo Mi1,2, Jianfeng Guo1,2, Zhaxi Suonan1,2, Hanxiang Wu1,2, Yanyan Geng1,2, Manyu Wang1,2, Huiwen Xu1,2, Li Guan3, Fei Pang1,2, Wei Ji1,2, Rui Xu1,2(), Zhihai Cheng1,2()
1. Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
2. Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
3. Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
 Download: PDF(16723 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The van der Waals interface structures and behaviors are of great importance in determining the physical properties of two-dimensional atomic crystals and their heterostructures. The delicate interfacial properties are sensitively dependent on the mechanical behaviors of atomically thin films under external strain. Here, we investigated the strain-engineered rippling structures at the CVD-grown bilayer-MoS2 interface with advanced atomic force microscopy (AFM). The in-plane compressive strain is sequentially introduced into the 1L-substrate and 2L-1L interface of bilayer-MoS2 flakes via a fast-cooling process. The thermal strain-engineered rippling structures were directly visualized at the central 2H- and 3R-MoS2 bilayer regions with friction force microscopy (FFM) and bimodal AFM techniques. These rippling structures can be further artificially manipulated into the beating-like rippling features and fully erased via the contact mode AFM scanning. Our results shed lights on the strain-engineered interfacial structures of two-dimensional materials and also inspire the further investigation on the interface engineering of their electronic and optical properties.

Keywords rippling      interface      strain-engineered      atomic force microscopy      transition metal dichalcogenides     
Corresponding Author(s): Rui Xu,Zhihai Cheng   
Issue Date: 22 May 2024
 Cite this article:   
Haoyu Dong,Songyang Li,Shuo Mi, et al. Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy[J]. Front. Phys. , 2024, 19(6): 63201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1409-4
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63201
Fig.1  Growth of triangular monolayer- and bilayer-MoS2 flakes and the introduction of interfacial strain. (a) Schematic diagram for the CVD growth of MoS2. (b) The in-plane isotropic compressive strain can be subsequentially applied into the bottom and top MoS2 layer via the 1L-substatre and 2L−1L interface. (c?e) Optical images of the CVD-grown MoS2 monolayer (c), 2H-MoS2 (d) and 3R-MoS2 (e) bilayer triangular flakes. (f) Schematic formation mechanism for the strain-engineered vein-like MoS2 monolayer flake, and the 2H- and 3R-MoS2 bilayer flakes of (c?e).
Fig.2  Schematics of bimodal AFM and FFM. (a) Schematic of FFM mode. PSD, acronym for position-sensitive detector. (b) Scanning directions for FFM and TSM imaging. Here, the direction of scanning is perpendicular (parallel) to the cantilever axis for FFM (TSM) imaging. The FFM friction image is obtained by detecting the lateral torsional signal of PSD in FFM. (c) Schematic experimental setup of bimodal AFM. (d) Resonance frequencies of AFM probe (AC160) at the first and second eigenmode of cantilever. (e) Simplified scheme for the used feedback loops in bimodal AFM.
Fig.3  Strain-engineered ripple structures of the vein-like monolayer and 2H-MoS2 bilayer flake. (a, b) The AFM topography (a) and corresponding FFM friction (b) images of vein-like MoS2 monolayer on the SiO2/Si substrates. (c) The zoom-in image of (b) at the central region. (d) Schematic formation mechanism for the strain-engineered ripple structures in the monolayer flake. (e, f) The AFM topography (e) and corresponding FFM friction (f) images of 2H-MoS2 bilayer flake on the SiO2/Si substrates. (g) The zoom-in image of (f) at the central region. (h) Schematic formation mechanism for the strain-engineered triangular 2H-MoS2 bilayer flake. It is noted that the central top layer of 2H-MoS2 is under the interfacial compression via the compressive bottom layer. Image size: (a, b) 45 μm; (c) 16 μm. (e, f) 60 μm; (g) 25 μm.
Fig.4  Strain-engineered rippling at the 2H-MoS2 bilayer interface. (a) The AFM topography images of the top layer at the central region of 2H-MoS2 bilayer flake in Fig.3(e). The 2H-stacked top layer is indicated by 2H-MoS2. No strain-induced features can be observed in the topography image. (b?d) The bimodal AFM images (A2) of the same area of (a) obtained before (b), during (c) and after (d) the repeated contact mode scanning. (e?h) The corresponding zoom-in images of (a?d) at the central area of 2H-toplayer. The strain-induced rippling features are observed within the 2H-toplayer in the bimodal AFM images and can be manipulated by contact mode AFM scanning. (i, j) The corresponding averaged line profiles of rippling features in (f) and (g). (k, l) Schematics of the uniform compressive wave for (i) and the beating-like compressive wave (λB = 4λ) for (j). (m, n) Schematics for the contact mode scanning (m) and erasing process (n) of the rippling. Image Sizes: (a?d) 13 μm; (e?h) 4 μm.
Fig.5  Strain-engineered rippling at the 3R-MoS2 bilayer interface. (a) The FFM friction image of the 3R-MoS2 bilayer flake. The 3R-stacked top layer is indicated by 3R-MoS2. (b) The AFM topography image of the central 3R-MoS2 bilayer region in (a). (c) The corresponding bimodal AFM image (A2) of (b). (d) Schematic formation mechanism for the strain-engineered triangular 3R-MoS2 bilayer flake. It is noted that the central top layer of 3R-MoS2 is under interfacial compression via the compressive bottom layer. (e) The FFM friction image of another 3R-MoS2 bilayer flake. (f) The AFM topography image of the central 3R-MoS2 bilayer region in (e). (g) The corresponding bimodal AFM image (A2) of (f). (h) Averaged line profile of the rippling in (g). (i) Schematic of the beating-like compressive wave (λB = 8λ) for (h). Image size: (a) 58 μm; (b, c) 23 μm; (d) 50 μm; (e, f) 11 μm.
1 T. Yuan H., T. Wang H., Cui Y.. Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling. Acc. Chem. Res., 2015, 48(1): 81
https://doi.org/10.1021/ar5003297
2 Hussain S., Q. Xu K., L. Ye S., Lei L., M. Liu X., Xu R., M. Xie L., H. Cheng Z.. Local electrical characterization of two-dimensional materials with functional atomic force microscopy. Front. Phys., 2019, 14(3): 33401
https://doi.org/10.1007/s11467-018-0879-7
3 Lin Z.McCreary A.Briggs N.Subramanian S.H. Zhang K. F. Sun Y.F. Li X.J. Borys N.T. Yuan H.K. Fullerton-Shirey S.Chernikov A.Zhao H.McDonnell S.M. Lindenberg A.Xiao K.J. LeRoy B. Drndic M.C. M. Hwang J.Park J.Chhowalla M.E. Schaak R.Javey A.C. Hersam M.Robinson J. Terrones M., 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications, 2D Mater. 3(4), 042001 (2017)
4 Plechinger G., Castellanos-Gomez A., Buscema M., S. J. van der Zant H., A. Steele G., Kuc A., Heine T., Schuller C., Korn T.. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater., 2015, 2(1): 015006
https://doi.org/10.1088/2053-1583/2/1/015006
5 Bertolazzi S., Brivio J., Kis A.. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5(12): 9703
https://doi.org/10.1021/nn203879f
6 Johari P., B. Shenoy V.. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano, 2012, 6(6): 5449
https://doi.org/10.1021/nn301320r
7 McCreary A., Ghosh R., Amani M., Wang J., A. N. Duerloo K., Sharma A., Jarvis K., J. Reed E., M. Dongare A., K. Banerjee S., Terrones M., R. Namburu R., Dubey M.. Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport. ACS Nano, 2016, 10(3): 3186
https://doi.org/10.1021/acsnano.5b04550
8 W. Wang J., Q. He L., H. Zhang Y., Y. Nong H., N. Li S., K. Wu Q., Y. Tan J., L. Liu B.. Locally strained 2D materials: Preparation, properties, and applications. Adv. Mater., 2024, 2024: 2314145
https://doi.org/10.1002/adma.202314145
9 Xu R., Lun Y., Meng L., Pang F., Pan Y., Zheng Z., Lei L., Hussain S., J. Li Y., Sugawara Y., Hong J., Ji W., Cheng Z.. Visualization of strain-engineered nanopattern in center-confined mesoscopic WS2 monolayer flakes. J. Phys. Chem. C, 2022, 126(16): 7184
https://doi.org/10.1021/acs.jpcc.1c10538
10 Lei L., Q. Dai J., Y. Dong H., Y. Geng Y., Y. Cao F., Wang C., Xu R., Pang F., X. Liu Z., S. Li F., H. Cheng Z., Wang G., Ji W.. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers. Nat. Commun., 2023, 14(1): 6320
https://doi.org/10.1038/s41467-023-42044-5
11 K. Liu K., J. Zhang W., H. Lee Y., C. Lin Y., T. Chang M., Su C., S. Chang C., Li H., M. Shi Y., Zhang H., S. Lai C., J. Li L.. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett., 2012, 12(3): 1538
https://doi.org/10.1021/nl2043612
12 L. Liu B., Fathi M., Chen L., Abbas A., Q. Ma Y., W. Zhou C.. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano, 2015, 9(6): 6119
https://doi.org/10.1021/acsnano.5b01301
13 H. Lee Y., Q. Zhang X., J. Zhang W., T. Chang M., T. Lin C., D. Chang K., C. Yu Y., T. W. Wang J., S. Chang C., J. Li L., W. Lin T.. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 2012, 24(17): 2320
https://doi.org/10.1002/adma.201104798
14 Zeng H., Wen Y., Yin L., Q. Cheng R., Wang H., S. Liu C., He J.. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
15 Xu R., Pang F., H. Pan Y., Z. Lun Y., Meng L., Y. Zheng Z., Q. Xu K., Lei L., Hussain S., J. Li Y., Sugawara Y., W. Hong J., Ji W., H. Cheng Z.. Atomically asymmetric inversion scales up to mesoscopic single-crystal monolayer flakes. ACS Nano, 2020, 14(10): 13834
https://doi.org/10.1021/acsnano.0c06198
16 Xu R., L. Ye S., Q. Xu K., Lei L., Hussain S., Y. Zheng Z., Pang F., Y. Xing S., M. Liu X., Ji W., H. Cheng Z.. Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: Contact injection versus triboelectrification. Nanotechnology, 2018, 29(35): 355701
https://doi.org/10.1088/1361-6528/aacad7
17 Chen K., Wan X., X. Wen J., G. Xie W., W. Kang Z., L. Zeng X., J. Chen H., B. Xu J.. Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano, 2015, 9(10): 9868
https://doi.org/10.1021/acsnano.5b03188
18 Britnell L., M. Ribeiro R., Eckmann A., Jalil R., D. Belle B., Mishchenko A., J. Kim Y., V. Gorbachev R., Georgiou T., V. Morozov S., N. Grigorenko A., K. Geim A., Casiraghi C., H. C. Neto A., S. Novoselov K.. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
https://doi.org/10.1126/science.1235547
19 Hunt B., D. Sanchez-Yamagishi J., F. Young A., Yankowitz M., J. LeRoy B., Watanabe K., Taniguchi T., Moon P., Koshino M., Jarillo-Herrero P., C. Ashoori R.. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science, 2013, 340(6139): 1427
https://doi.org/10.1126/science.1237240
20 S. Novoselov K.Mishchenko A.Carvalho A. H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
21 Xu R., S. Wang X., Y. Zheng Z., L. Ye S., Q. Xu K., Lei L., Hussain S., Pang F., M. Liu X., J. Li Y., Sugawara Y., Ji W., M. Xie L., H. Cheng Z.. Interfacial water intercalation-induced metal−insulator transition in NbS2/BN heterostructure. Nanotechnology, 2019, 30(20): 205702
https://doi.org/10.1088/1361-6528/ab0452
22 F. Rigosi A., M. Hill H., Li Y., Chernikov A., F. Heinz T.. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
https://doi.org/10.1021/acs.nanolett.5b01055
23 Liu K., M. Yan Q., Chen M., Fan W., H. Sun Y., Suh J., Y. Fu D., Lee S., Zhou J., Tongay S., Ji J., B. Neaton J., Q. Wu J.. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett., 2014, 14(9): 5097
https://doi.org/10.1021/nl501793a
24 M. Pereira V., H. Castro Neto A.. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett., 2009, 103(4): 046801
https://doi.org/10.1103/PhysRevLett.103.046801
25 H. Ahn G., Amani M., Rasool H., H. Lien D., P. Mastandrea J., W. III Ager J., Dubey M., C. Chrzan D., M. Minor A., Javey A.. Strain-engineered growth of two-dimensional materials. Nat. Commun., 2017, 8(1): 608
https://doi.org/10.1038/s41467-017-00516-5
26 Deng S., V. Sumant A., Berry V.. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today, 2018, 22: 14
https://doi.org/10.1016/j.nantod.2018.07.001
27 Castellanos-Gomez A., Roldan R., Cappelluti E., Buscema M., Guinea F., S. J. van der Zant H., A. Steele G.. Local strain engineering in atomically thin MoS2. Nano Lett., 2013, 13(11): 5361
https://doi.org/10.1021/nl402875m
28 Y. Hui Y., F. Liu X., J. Jie W., Y. Chan N., H. Hao J., T. Hsu Y., J. Li L., L. Guo W., P. Lau S.. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano, 2013, 7(8): 7126
https://doi.org/10.1021/nn4024834
29 S. Kim M., J. Yun S., Lee Y., Seo C., H. Han G., K. Kim K., H. Lee Y., Kim J.. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano, 2016, 10(2): 2399
https://doi.org/10.1021/acsnano.5b07214
30 S. Yun W., W. Han S., C. Hong S., G. Kim I., D. Lee J.. Thickness and strain effects on electronic structures of transition metal dichalcogenides:2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B, 2012, 85(3): 033305
https://doi.org/10.1103/PhysRevB.85.033305
31 P. Dhakal K., Roy S., Jang H., Chen X., S. Yun W., Kim H., Lee J., Kim J., H. Ahn J.. Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater., 2017, 29(12): 5124
https://doi.org/10.1021/acs.chemmater.7b00453
32 Ramasubramaniam A., Naveh D., Towe E.. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B, 2011, 84(20): 205325
https://doi.org/10.1103/PhysRevB.84.205325
33 Hu X., Yasaei P., Jokisaari J., Ogut S., Salehi-Khojin A., F. Klie R.. Mapping thermal expansion coefficients in freestanding 2D materials at the nanometer scale. Phys. Rev. Lett., 2018, 120(5): 055902
https://doi.org/10.1103/PhysRevLett.120.055902
34 N. Zhang L., M. Lu Z., Song Y., Zhao L., Bhatia B., R. Bagnall K., N. Wang E.. Thermal Expansion Coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy. Nano Lett., 2019, 19(7): 4745
https://doi.org/10.1021/acs.nanolett.9b01829
35 Lei L., Z. Lun Y., Y. Cao F., Meng L., Y. Xing S., F. Guo J., Y. Dong H., Z. Gu S., Q. Xu K., Hussain S., J. Li Y., Sugawara Y., Pang F., Ji W., W. Hong J., Xu R., H. Cheng Z.. Size-dependent strain-engineered nanostructures in MoS2 monolayer investigated by atomic force microscopy. Nanotechnology, 2021, 32(46): 465703
https://doi.org/10.1088/1361-6528/ac1b54
36 Q. Xu K., H. Pan Y., L. Ye S., Lei L., Hussain S., M. Wang Q., Y. Yang Z., M. Liu X., Ji W., Xu R., H. Cheng Z.. Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals. Appl. Phys. Lett., 2019, 115(6): 063101
https://doi.org/10.1063/1.5096418
37 Hussain S., Xu R., Q. Xu K., Lei L., Y. Xing S., F. Guo J., Y. Dong H., Liaqat A., Iqbal R., A. Iqbal M., Z. Gu S., Y. Cao F., J. Li Y., Sugawara Y., Pang F., Ji W., M. Xie L., S. Chen S., H. Cheng Z.. Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy. Front. Phys., 2021, 16(5): 53504
https://doi.org/10.1007/s11467-021-1072-y
38 Pang F., Y. Cao F., Lei L., Meng L., L. Ye S., Y. Xing S., F. Guo J., Y. Dong H., Hussain S., Z. Gu S., Q. Xu K., J. Li Y., Sugawara Y., Ji W., Xu R., H. Cheng Z.. Strain-engineered rippling and manipulation of single-layer WS2 by atomic force microscopy. J. Phys. Chem. C, 2021, 125(16): 8696
https://doi.org/10.1021/acs.jpcc.1c01179
39 Hussain S., Xu R., Q. Xu K., Lei L., Meng L., Y. Zheng Z., Y. Xing S., F. Guo J., Y. Dong H., Liaqat A., A. Iqbal M., J. Li Y., Sugawara Y., Pang F., Ji W., M. Xie L., H. Cheng Z.. Strain-induced hierarchical ripples in MoS2 layers investigated by atomic force microscopy. Appl. Phys. Lett., 2020, 117(15): 153102
https://doi.org/10.1063/5.0023405
40 Benaglia S., A. Amo C., Garcia R.. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. Nanoscale, 2019, 11(32): 15289
https://doi.org/10.1039/C9NR04396A
41 Y. Zheng Z., Xu R., Q. Xu K., L. Ye S., Pang F., Lei L., Hussain S., M. Liu X., Ji W., H. Cheng Z.. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy. Front. Phys., 2020, 15(2): 23601
https://doi.org/10.1007/s11467-019-0933-0
[1] fop-24409-OF-chengzhihai_suppl_1 Download
[1] Zhao-Cai Wang, Zheng-Nan Li, Shuang-Shuang Li, Weiyao Zhao, Ren-Kui Zheng. High-mobility spin-polarized two-dimensional electron gas at the interface of LaTiO3/SrTiO3 (110) heterostructures[J]. Front. Phys. , 2024, 19(5): 53203-.
[2] Jianju Tang, Songlei Wang, Hongyi Yu. Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors[J]. Front. Phys. , 2024, 19(4): 43210-.
[3] Wenhua Wang, Guangdong Zhou. Moisture influence in emerging neuromorphic device[J]. Front. Phys. , 2023, 18(5): 53601-.
[4] Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53603-.
[5] Fang Li, Jun Fu, Mingzhu Xue, You Li, Hualing Zeng, Erjun Kan, Ting Hu, Yi Wan. Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding[J]. Front. Phys. , 2023, 18(5): 53305-.
[6] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[7] Mo Cheng, Junbo Yang, Xiaohui Li, Hui Li, Ruofan Du, Jianping Shi, Jun He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies[J]. Front. Phys. , 2022, 17(6): 63601-.
[8] Rui Yang, Jianuo Fan, Mengtao Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties[J]. Front. Phys. , 2022, 17(4): 43202-.
[9] Yunliang Liu, Peiji Deng, Ruqiang Wu, Ramadan A. Geioushy, Yaxi Li, Yixian Liu, Fengling Zhou, Haitao Li, Chenghua Sun. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction[J]. Front. Phys. , 2021, 16(5): 53503-.
[10] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[11] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[12] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[13] Zhi-Yue Zheng, Rui Xu, Kun-Qi Xu, Shi-Li Ye, Fei Pang, Le Lei, Sabir Hussain, Xin-Meng Liu, Wei Ji, Zhi-Hai Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy[J]. Front. Phys. , 2020, 15(2): 23601-.
[14] Lin Fa, Jiaojiao Tang, Qi Zhang, Minjin Zhang, Yandong Zhang, Meng Liang, Meishan Zhao. Reflection and refraction of elastic wave at VTI-TTI media interface[J]. Front. Phys. , 2020, 15(2): 22601-.
[15] Hangwen Guo, Mohammad Saghayezhian, Zhen Wang, Yimei Zhu, Jiandi Zhang, Ward Plummer. Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy[J]. Front. Phys. , 2020, 15(1): 13401-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed