|
|
|
Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures |
Wenlong Chu1, Xilong Zhou1, Ze Wang2, Xiulian Fan1, Xuehao Guo1,3, Cheng Li1, Jianling Yue2, Fangping Ouyang1,2,3, Jiong Zhao4, Yu Zhou1,2( ) |
1. School of Physics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China 3. School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China 4. Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China |
|
|
|
|
Abstract Two-dimensional hafnium-based semiconductors and their heterostructures with native oxides have been shown unique physical properties and potential electronic and optoelectronic applications. However, the scalable synthesis methods for ultrathin layered hafnium-based semiconductor laterally epitaxy growth and its heterostructure are still restricted, also for the understanding of its formation mechanism. Herein, we report the stable sublimation of alkali halide vapor assisted synthesis strategy for high-quality 2D HfSe2 nanosheets via chemical vapor deposition. Single-crystalline ultrathin 2D HfSe2 nanosheets were systematically grown by tuning the growth parameters, reaching the lateral size of 6‒40 μm and the thickness down to 4.5 nm. The scalable amorphous HfO2 and HfSe2 heterostructures were achieved by the controllable oxidation, which benefited from the approximate zero Gibbs free energy of unstable 2D HfSe2 templates. The crystal structure, elemental, and time dependent Raman characterization were carried out to understand surface precipitated Se atoms and the formation of amorphous Hf−O bonds, confirming the slow surface oxidation and lattice incorporation of oxygen atoms. The relatively smooth surface roughness and electrical potential change of HfO2−HfSe2 heterostructures indicate the excellent interface quality, which helps obtain the high performance memristor with high on/off ratio of 105 and long retention period over 9000 s. Our work introduces a new vapor catalysts strategy for the synthesis of lateral 2D HfSe2 nanosheets, also providing the scalable oxidation of the Hf-based heterostructures for 2D electronic devices.
|
| Keywords
chemical vapor deposition
HfSe2−HfO2
nanoelectronics
|
|
Corresponding Author(s):
Yu Zhou
|
|
Just Accepted Date: 22 April 2024
Issue Date: 03 June 2024
|
|
| 1 |
Li T.Tu T. Sun Y.Fu H.Yu J.Xing L.Wang Z. Wang H.Jia R.Wu J.Tan C.Liang Y. Zhang Y.Zhang C.Dai Y.Qiu C.Li M. Huang R.Jiao L.Lai K.Yan B.Gao P. Peng H., A native oxide high-κ gate dielectric for two-dimensional electronics, Nat. Electron. 3(8), 473 (2020)
|
| 2 |
Zhou Y., Wu D., Zhu Y., Cho Y., He Q., Yang X., Herrera K., Chu Z., Han Y., C. Downer M., Peng H., Lai K.. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett., 2017, 17(9): 5508
https://doi.org/10.1021/acs.nanolett.7b02198
|
| 3 |
Chen C., Chen X., Wu C., Wang X., Ping Y., Wei X., Zhou X., Lu J., Zhu L., Zhou J., Zhai T., Han J., Xu H.. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater., 2022, 34(2): 2107512
https://doi.org/10.1002/adma.202107512
|
| 4 |
Li B., Wan Z., Wang C., Chen P., Huang B., Cheng X., Qian Q., Li J., Zhang Z., Sun G., Zhao B., Ma H., Wu R., Wei Z., Liu Y., Liao L., Ye Y., Huang Y., Xu X., Duan X., Ji W., Duan X.. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
https://doi.org/10.1038/s41563-021-00927-2
|
| 5 |
Fan X., Xin R., Li L., Zhang B., Li C., Zhou X., Chen H., Zhang H., OuYang F., Zhou Y.. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Front. Phys. 19, 2023, (2): 23401
https://doi.org/10.1007/s11467-023-1342-y
|
| 6 |
Lei B., Li A., Zhou W., Wang Y., Xiong W., Chen Y., Ouyang F.. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2. Front. Phys. 19, 2024, (4): 43200
https://doi.org/10.1007/s11467-023-1387-y
|
| 7 |
Zhu X., Liu H., Liu L., Ren L., Li W., Fang L., Chen X., Xie L., Jing Y., Chen J., Liu S., Ouyang F., Zhou Y., Xiong X.. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets. Chem. Mater., 2021, 33(10): 3851
https://doi.org/10.1021/acs.chemmater.1c01222
|
| 8 |
Zhou Y., Li C., Zhang Y., Wang L., Fan X., Zou L., Cai Z., Jiang J., Zhou S., Zhang B., Zhang H., Li W., Chen Z.. Controllable thermochemical generation of active defects in the horizontal/vertical MoS2 for enhanced hydrogen evolution. Adv. Funct. Mater., 2023, 33(46): 2304302
https://doi.org/10.1002/adfm.202304302
|
| 9 |
Xie R., Luo W., Zou L., Fan X., Li C., Lv T., Jiang J., Chen Z., Zhou Y.. Low-temperature synthesis of colloidal few-layer WTe2 nanostructures for electrochemical hydrogen evolution. Discover Nano, 2023, 18(1): 44
https://doi.org/10.1186/s11671-023-03796-7
|
| 10 |
Zhou Y., L. Silva J., M. Woods J., V. Pondick J., Feng Q., Liang Z., Liu W., Lin L., Deng B., Brena B., Xia F., Peng H., Liu Z., Wang H., M. Araujo C., J. Cha J.. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater., 2018, 30(18): 1706076
https://doi.org/10.1002/adma.201706076
|
| 11 |
Zhou Y., Jang H., M. Woods J., Xie Y., Kumaravadivel P., A. Pan G., Liu J., Liu Y., G. Cahill D., J. Cha J.. Direct synthesis of large-scale WTe2 thin films with low thermal conductivity. Adv. Funct. Mater., 2017, 27(8): 1605928
https://doi.org/10.1002/adfm.201605928
|
| 12 |
Wen Y., Wang Q., Yin L., Liu Q., Wang F., Wang F., Wang Z., Liu K., Xu K., Huang Y., A. Shifa T., Jiang C., Xiong J., He J.. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater., 2016, 28(36): 8051
https://doi.org/10.1002/adma.201602481
|
| 13 |
Wu G., Xiang L., Wang W., Yao C., Yan Z., Zhang C., Wu J., Liu Y., Zheng B., Liu H., Hu C., Sun X., Zhu C., Wang Y., Xiong X., Wu Y., Gao L., Li D., Pan A., Li S.. Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system. Sci. Bull. (Beijing), 2024, 69(4): 473
https://doi.org/10.1016/j.scib.2023.12.027
|
| 14 |
Liu H., Zhu C., Chen Y., Yi X., Sun X., Liu Y., Wang H., Wu G., Wu J., Li Y., Zhu X., Li D., Pan A.. Polarization-sensitive photodetectors based on highly in-plane anisotropic violet phosphorus with large dichroic ratio. Adv. Funct. Mater., 2023, 34(17): 2314838
https://doi.org/10.1002/adfm.202314838
|
| 15 |
Sun X., Zhu C., Yi J., Xiang L., Ma C., Liu H., Zheng B., Liu Y., You W., Zhang W., Liang D., Shuai Q., Zhu X., Duan H., Liao L., Liu Y., Li D., Pan A.. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron., 2022, 5(11): 752
https://doi.org/10.1038/s41928-022-00858-z
|
| 16 |
Zhu J., Wang L., Wu J., Liang Y., Xiao F., Xu B., Zhang Z., Fan X., Zhou Y., Xia J., Wang Z.. Achieving 1.2 fm/Hz1/2 displacement sensitivity with laser interferometry in two-dimensional nanomechanical resonators: Pathways towards quantum-noise-limited measurement at room temperature. Chin. Phys. Lett., 2023, 40(3): 038102
https://doi.org/10.1088/0256-307X/40/3/038102
|
| 17 |
Liu B., Chu W., Liu S., Zhou Y., Zou L., Fu J., Liu M., Fu X., Ouyang F., Zhou Y.. Engineering the nanostructures of solution proceed In2SexS3−x films with enhanced near-infrared absorption for photoelectrochemical water splitting. J. Phys. D Appl. Phys., 2022, 55(43): 434004
https://doi.org/10.1088/1361-6463/ac8b8f
|
| 18 |
Li M., Sun H., Zhou J., Zhao Y.. Engineering phonon thermal transport in few-layer PdSe2. Front. Phys. 19, 2023, (3): 33203
https://doi.org/10.1007/s11467-023-1351-x
|
| 19 |
Zhu T., Zhang Y., Wei X., Jiang M., Xu H.. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys., 2023, 18(3): 33601
https://doi.org/10.1007/s11467-022-1231-9
|
| 20 |
Wang Y., Guo X., You S., Jiang J., Wang Z., Ouyang F., Huang H.. Giant quartic-phonon decay in PVD-grown α-MoO3 flakes. Nano Res., 2023, 16(1): 1115
https://doi.org/10.1007/s12274-022-4734-3
|
| 21 |
H. Chae S., Jin Y., S. Kim T., S. Chung D., Na H., Nam H., Kim H., J. Perello D., Y. Jeong H., H. Ly T., H. Lee Y.. Oxidation effect in octahedral hafnium disulfide thin film. ACS Nano, 2016, 10(1): 1309
https://doi.org/10.1021/acsnano.5b06680
|
| 22 |
J. Mleczko M., Zhang C., R. Lee H., H. Kuo H., Magyari-Köpe B., G. Moore R., X. Shen Z., R. Fisher I., Nishi Y., Pop E.. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides. Sci. Adv., 2017, 3(8): e1700481
https://doi.org/10.1126/sciadv.1700481
|
| 23 |
Zhang W., Huang Z., Zhang W., Li Y.. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res., 2014, 7(12): 1731
https://doi.org/10.1007/s12274-014-0532-x
|
| 24 |
Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., K. Banerjee S., Colombo L.. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
https://doi.org/10.1038/nnano.2014.207
|
| 25 |
Peimyoo N., D. Barnes M., D. Mehew J., De Sanctis A., Amit I., Escolar J., Anastasiou K., P. Rooney A., J. Haigh S., Russo S., F. Craciun M., Withers F.. Laser-writable high-κ dielectric for van der Waals nanoelectronics. Sci. Adv., 2019, 5(1): eaau0906
https://doi.org/10.1126/sciadv.aau0906
|
| 26 |
Yin L., Xu K., Wen Y., Wang Z., Huang Y., Wang F., A. Shifa T., Cheng R., Ma H., He J.. Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett., 2016, 109(21): 213105
https://doi.org/10.1063/1.4968808
|
| 27 |
Kang M., Rathi S., Lee I., Lim D., Wang J., Li L., A. Khan M., H. Kim G.. Electrical characterization of multilayer HfSe2 field-effect transistors on SiO2 substrate. Appl. Phys. Lett., 2015, 106(14): 143108
https://doi.org/10.1063/1.4917458
|
| 28 |
Kang M., Rathi S., Lee I., Li L., A. Khan M., Lim D., Lee Y., Park J., J. Yun S., H. Youn D., Jun C., H. Kim G.. Tunable electrical properties of multilayer HfSe2 field effect transistors by oxygen plasma treatment. Nanoscale, 2017, 9(4): 1645
https://doi.org/10.1039/C6NR08467B
|
| 29 |
Kang T.Park J.Jung H.Choi H.M. Lee S. Lee N.G. Lee R.Kim G.H. Kim S.Kim H. W. Yang C.Jeon J.H. Kim Y.Lee S., High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices, Adv. Mater. 2312747, doi: 10.1002/adma.202312747 (2024)
|
| 30 |
L. Hector A., Levason W., Reid G., D. Reid S., Webster M.. Evaluation of group 4 metal bis-cyclopentadienyl complexes with selenolate and tellurolate ligands for CVD of ME2 films (E = Se or Te). Chem. Mater., 2008, 20(15): 5100
https://doi.org/10.1021/cm800802g
|
| 31 |
Yue R., T. Barton A., Zhu H., Azcatl A., F. Pena L., Wang J., Peng X., Lu N., Cheng L., Addou R., McDonnell S., Colombo L., W. P. Hsu J., Kim J., J. Kim M., M. Wallace R., L. Hinkle C.. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano, 2015, 9(1): 474
https://doi.org/10.1021/nn5056496
|
| 32 |
E. Aretouli K., Tsipas P., Tsoutsou D., Marquez-Velasco J., Xenogiannopoulou E., A. Giamini S., Vassalou E., Kelaidis N., Dimoulas A.. Two-dimensional semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular beam epitaxy. Appl. Phys. Lett., 2015, 106(14): 143105
https://doi.org/10.1063/1.4917422
|
| 33 |
Li S., E. Pam M., Li Y., Chen L., C. Chien Y., Fong X., Chi D., W. Ang K.. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv. Mater., 2022, 34(25): 2103376
https://doi.org/10.1002/adma.202103376
|
| 34 |
Zheng B., Chen Y., Wang Z., Qi F., Huang Z., Hao X., Li P., Zhang W., Li Y.. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater., 2016, 3(3): 035024
https://doi.org/10.1088/2053-1583/3/3/035024
|
| 35 |
Wang D., Zhang X., Liu H., Meng J., Xia J., Yin Z., Wang Y., You J., M. Meng X.. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors. 2D Mater., 2017, 4(3): 031012
https://doi.org/10.1088/2053-1583/aa7ea2
|
| 36 |
Fu L., Wang F., Wu B., Wu N., Huang W., Wang H., Jin C., Zhuang L., He J., Fu L., Liu Y.. Van der Waals epitaxial growth of atomic layered HfS2 crystals for ultrasensitive near-infrared phototransistors. Adv. Mater., 2017, 29(32): 1700439
https://doi.org/10.1002/adma.201700439
|
| 37 |
Li W., Zhou J., Cai S., Yu Z., Zhang J., Fang N., Li T., Wu Y., Chen T., Xie X., Ma H., Yan K., Dai N., Wu X., Zhao H., Wang Z., He D., Pan L., Shi Y., Wang P., Chen W., Nagashio K., Duan X., Wang X.. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron., 2019, 2(12): 563
https://doi.org/10.1038/s41928-019-0334-y
|
| 38 |
Li C., Xin R., Y. Jiao C., Zhang Z., Qin J., Chu W., Zhou X., Li Z., Wang Z., Xia J., Zhou Y.. Synthesis of hetero-site nucleation twisted bilayer MoS2 by local airflow perturbations and interlayer angle characterization. J. Cent. South Univ., 2023, 30(10): 3187
https://doi.org/10.1007/s11771-023-5428-z
|
| 39 |
Zhu X., Wong L., Fan X., Zhao J., Zhou Y., Ouyang F.. Role of the spatial distribution of gas flow for tuning the vertical/planar growth of nonlayered two-dimensional nanoplates. Cryst. Growth Des., 2022, 22(1): 763
https://doi.org/10.1021/acs.cgd.1c01261
|
| 40 |
Chu W., Xin R., Zou L., Fan X., Zhou X., Li C., Zhou Y.. Synthesis of nonlayered 2D α-Fe2O3 nanosheets by ultralow concentration precursor with Se catalysts design. Phys. Status Solidi R., 2023, 2023: 2300102
https://doi.org/10.1002/pssr.202300102
|
| 41 |
Wang D., Zhang X., Guo G., Gao S., Li X., Meng J., Yin Z., Liu H., Gao M., Cheng L., You J., Wang R.. Large-area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater., 2018, 30(44): 1803285
https://doi.org/10.1002/adma.201803285
|
| 42 |
Yao Q., Zhang L., Bampoulis P., J. W. Zandvliet H.. Nanoscale investigation of defects and oxidation of HfSe2. J. Phys. Chem. C, 2018, 122(44): 25498
https://doi.org/10.1021/acs.jpcc.8b08713
|
| 43 |
Cui F., Zhao X., Tang B., Zhu L., Huan Y., Chen Q., Liu Z., Zhang Y.. Epitaxial growth of step-like Cr2S3 lateral homojunctions towards versatile conduction polarities and enhanced transistor performances. Small, 2022, 18(4): 2105744
https://doi.org/10.1002/smll.202105744
|
| 44 |
Zhang F., Mo Z., Cui B., Liu S., Xia Q., Li B., Li L., Zhang Z., He J., Zhong M.. Bandgap engineering of BiIns nanowire for wide-spectrum, high-responsivity, and polarimetric-sensitive detection. Adv. Funct. Mater., 2023, 33(49): 2306077
https://doi.org/10.1002/adfm.202306077
|
| 45 |
Mo Z., Zhang F., Wang D., Cui B., Xia Q., Li B., He J., Zhong M.. Ultrafast-response and broad-spectrum polarization sensitive photodetector based on Bi1.85In0.15S3 nanowire. Appl. Phys. Lett., 2022, 120(20): 201105
https://doi.org/10.1063/5.0093115
|
| 46 |
Chen H., Zhou X., Tang L., Chen Y., Luo H., Yuan X., R. Bowen C., Zhang D.. HfO2-based ferroelectrics: From enhancing performance, material design, to applications. Appl. Phys. Rev., 2022, 9(1): 011307
https://doi.org/10.1063/5.0066607
|
| 47 |
Chen H., Tang L., Luo H., Yuan X., Zhang D.. Modulation of ferroelectricity in atomic layer deposited HfO2/ZrO2 multilayer films. Mater. Lett., 2022, 313: 131732
https://doi.org/10.1016/j.matlet.2022.131732
|
| 48 |
Lai S., Byeon S., K. Jang S., Lee J., H. Lee B., H. Park J., H. Kim Y., Lee S.. HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2. Nanoscale, 2018, 10(39): 18758
https://doi.org/10.1039/C8NR06020G
|
| 49 |
Fan X., Zou L., Chu W., Wang L., Zhou Y.. Synthesis of high resistive two-dimensional nonlayered Cr2S3 nanoflakes with stable phosphorus dopants by chemical vapor deposition. Appl. Phys. Lett., 2023, 122(22): 222101
https://doi.org/10.1063/5.0151795
|
| [1] |
fop-24417-of-zhouyu_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|