Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (3) : 33212    https://doi.org/10.1007/s11467-024-1414-7
Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures
Wenlong Chu1, Xilong Zhou1, Ze Wang2, Xiulian Fan1, Xuehao Guo1,3, Cheng Li1, Jianling Yue2, Fangping Ouyang1,2,3, Jiong Zhao4, Yu Zhou1,2()
1. School of Physics, Hunan Key Laboratory of Nanophotonics and Devices, Central South University, Changsha 410083, China
2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
3. School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
4. Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
 Download: PDF(4100 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional hafnium-based semiconductors and their heterostructures with native oxides have been shown unique physical properties and potential electronic and optoelectronic applications. However, the scalable synthesis methods for ultrathin layered hafnium-based semiconductor laterally epitaxy growth and its heterostructure are still restricted, also for the understanding of its formation mechanism. Herein, we report the stable sublimation of alkali halide vapor assisted synthesis strategy for high-quality 2D HfSe2 nanosheets via chemical vapor deposition. Single-crystalline ultrathin 2D HfSe2 nanosheets were systematically grown by tuning the growth parameters, reaching the lateral size of 6‒40 μm and the thickness down to 4.5 nm. The scalable amorphous HfO2 and HfSe2 heterostructures were achieved by the controllable oxidation, which benefited from the approximate zero Gibbs free energy of unstable 2D HfSe2 templates. The crystal structure, elemental, and time dependent Raman characterization were carried out to understand surface precipitated Se atoms and the formation of amorphous Hf−O bonds, confirming the slow surface oxidation and lattice incorporation of oxygen atoms. The relatively smooth surface roughness and electrical potential change of HfO2−HfSe2 heterostructures indicate the excellent interface quality, which helps obtain the high performance memristor with high on/off ratio of 105 and long retention period over 9000 s. Our work introduces a new vapor catalysts strategy for the synthesis of lateral 2D HfSe2 nanosheets, also providing the scalable oxidation of the Hf-based heterostructures for 2D electronic devices.

Keywords chemical vapor deposition      HfSe2−HfO2      nanoelectronics     
Corresponding Author(s): Yu Zhou   
Just Accepted Date: 22 April 2024   Issue Date: 03 June 2024
 Cite this article:   
Wenlong Chu,Xilong Zhou,Ze Wang, et al. Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures[J]. Front. Phys. , 2024, 19(3): 33212.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1414-7
https://academic.hep.com.cn/fop/EN/Y2024/V19/I3/33212
Fig.1  (a) Schematic diagram of remote alkali halide vapor assisted stable sublimation of high melting point hafnium dioxide for controlled synthesis of 2D HfSe2 nanosheets. The NaCl and HfO2 powder were arranged at the separated temperature of 780 °C, and 800 °C, respectively. (b) Schematic atomic structures of 1T-HfSe2 along the ab and bc crystal planes, also for its unit cell. (c) Typical optical image of the synthesized HfSe2 nanosheets on the mica substrate. (d) Raman spectra and (e) XRD pattern of the synthesized HfSe2 nanosheets.
Fig.2  (a−e) Optical images of HfSe2 nanosheets grown on mica substrates at different growth temperatures: 800 °C, 820 °C, 840 °C, 870 °C, and 940 °C, respectively, under the argon flow rate of 30 sccm, Se temperature of 280 °C and growth time of 10 min. (f?j) Corresponding representative AFM images. (k) Statistical graph of the thickness of HfSe2 nanosheets at different growth temperatures. (l) Statistical graphs of HfSe2 nanosheet domain sizes at different growth temperatures.
Fig.3  (a) Low-resolution TEM image and (b) High-resolution TEM image of 2D HfSe2 nanosheet. (c) Corresponding selected-area electron diffraction pattern (SAED). (d) EDS elemental analysis spectra of 2D HfSe2 nanosheet and the inset shows the stoichiometric ratio of Hf and Se. (e) Dark-field TEM image of 2D HfSe2 nanosheet. (f, g) EDS mapping images of Hf and Se, respectively.
Fig.4  (a) Schematic of natural oxidation of 2D HfSe2 nanosheets in air, forming Se clusters on the surface of HfO2?HfSe2 heterostructure under the H2O and O2 atmosphere. (b) Schematic of the relative magnitudes of standard molar Gibbs free formation energies of HfSe2 and HfO2. (c) High-resolution TEM image of HfSe2 nanosheets after 48 h oxidation in air, and the inset image is the corresponding FFT of amorphous HfO2 structure. (d) Corresponding EDS elemental mapping for Hf, Se, and O, respectively. (e) Raman spectra of HfSe2 nanosheets naturally oxidized in air for different oxidation times. (f) Surface potentials comparison of 2D HfSe2 nanosheets before and after the oxidation.
Fig.5  (a) Typical I−V switching curve of the HfO2?HfSe2 heterostructure memristor with Cr/Au top electrode and Cr/Au bottom electrodes. The inset picture shows the schematic device structure. (b) Typical I−V switching curve of the HfO2?HfSe2 heterostructure memristor with inert Au top electrode and Au bottom electrodes. The inset picture shows the schematic device structure. (c) Schematic mechanism diagram of oxygen vacancies dominated resistance change in the HfO2−HfSe2 heterostructure. (d) I−V switching curves of the HfO2−HfSe2 memristor under different limiting currents. (e) Holding characteristics of the high and low resistance states of the HfO2−HfSe2 memristor. (f) The multiple cycling stability measurement of the HfO2−HfSe2 memristor devices.
1 Li T.Tu T. Sun Y.Fu H.Yu J.Xing L.Wang Z. Wang H.Jia R.Wu J.Tan C.Liang Y. Zhang Y.Zhang C.Dai Y.Qiu C.Li M. Huang R.Jiao L.Lai K.Yan B.Gao P. Peng H., A native oxide high-κ gate dielectric for two-dimensional electronics, Nat. Electron. 3(8), 473 (2020)
2 Zhou Y., Wu D., Zhu Y., Cho Y., He Q., Yang X., Herrera K., Chu Z., Han Y., C. Downer M., Peng H., Lai K.. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett., 2017, 17(9): 5508
https://doi.org/10.1021/acs.nanolett.7b02198
3 Chen C., Chen X., Wu C., Wang X., Ping Y., Wei X., Zhou X., Lu J., Zhu L., Zhou J., Zhai T., Han J., Xu H.. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater., 2022, 34(2): 2107512
https://doi.org/10.1002/adma.202107512
4 Li B., Wan Z., Wang C., Chen P., Huang B., Cheng X., Qian Q., Li J., Zhang Z., Sun G., Zhao B., Ma H., Wu R., Wei Z., Liu Y., Liao L., Ye Y., Huang Y., Xu X., Duan X., Ji W., Duan X.. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
https://doi.org/10.1038/s41563-021-00927-2
5 Fan X., Xin R., Li L., Zhang B., Li C., Zhou X., Chen H., Zhang H., OuYang F., Zhou Y.. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Front. Phys. 19, 2023, (2): 23401
https://doi.org/10.1007/s11467-023-1342-y
6 Lei B., Li A., Zhou W., Wang Y., Xiong W., Chen Y., Ouyang F.. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2. Front. Phys. 19, 2024, (4): 43200
https://doi.org/10.1007/s11467-023-1387-y
7 Zhu X., Liu H., Liu L., Ren L., Li W., Fang L., Chen X., Xie L., Jing Y., Chen J., Liu S., Ouyang F., Zhou Y., Xiong X.. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets. Chem. Mater., 2021, 33(10): 3851
https://doi.org/10.1021/acs.chemmater.1c01222
8 Zhou Y., Li C., Zhang Y., Wang L., Fan X., Zou L., Cai Z., Jiang J., Zhou S., Zhang B., Zhang H., Li W., Chen Z.. Controllable thermochemical generation of active defects in the horizontal/vertical MoS2 for enhanced hydrogen evolution. Adv. Funct. Mater., 2023, 33(46): 2304302
https://doi.org/10.1002/adfm.202304302
9 Xie R., Luo W., Zou L., Fan X., Li C., Lv T., Jiang J., Chen Z., Zhou Y.. Low-temperature synthesis of colloidal few-layer WTe2 nanostructures for electrochemical hydrogen evolution. Discover Nano, 2023, 18(1): 44
https://doi.org/10.1186/s11671-023-03796-7
10 Zhou Y., L. Silva J., M. Woods J., V. Pondick J., Feng Q., Liang Z., Liu W., Lin L., Deng B., Brena B., Xia F., Peng H., Liu Z., Wang H., M. Araujo C., J. Cha J.. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater., 2018, 30(18): 1706076
https://doi.org/10.1002/adma.201706076
11 Zhou Y., Jang H., M. Woods J., Xie Y., Kumaravadivel P., A. Pan G., Liu J., Liu Y., G. Cahill D., J. Cha J.. Direct synthesis of large-scale WTe2 thin films with low thermal conductivity. Adv. Funct. Mater., 2017, 27(8): 1605928
https://doi.org/10.1002/adfm.201605928
12 Wen Y., Wang Q., Yin L., Liu Q., Wang F., Wang F., Wang Z., Liu K., Xu K., Huang Y., A. Shifa T., Jiang C., Xiong J., He J.. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater., 2016, 28(36): 8051
https://doi.org/10.1002/adma.201602481
13 Wu G., Xiang L., Wang W., Yao C., Yan Z., Zhang C., Wu J., Liu Y., Zheng B., Liu H., Hu C., Sun X., Zhu C., Wang Y., Xiong X., Wu Y., Gao L., Li D., Pan A., Li S.. Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system. Sci. Bull. (Beijing), 2024, 69(4): 473
https://doi.org/10.1016/j.scib.2023.12.027
14 Liu H., Zhu C., Chen Y., Yi X., Sun X., Liu Y., Wang H., Wu G., Wu J., Li Y., Zhu X., Li D., Pan A.. Polarization-sensitive photodetectors based on highly in-plane anisotropic violet phosphorus with large dichroic ratio. Adv. Funct. Mater., 2023, 34(17): 2314838
https://doi.org/10.1002/adfm.202314838
15 Sun X., Zhu C., Yi J., Xiang L., Ma C., Liu H., Zheng B., Liu Y., You W., Zhang W., Liang D., Shuai Q., Zhu X., Duan H., Liao L., Liu Y., Li D., Pan A.. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron., 2022, 5(11): 752
https://doi.org/10.1038/s41928-022-00858-z
16 Zhu J., Wang L., Wu J., Liang Y., Xiao F., Xu B., Zhang Z., Fan X., Zhou Y., Xia J., Wang Z.. Achieving 1.2 fm/Hz1/2 displacement sensitivity with laser interferometry in two-dimensional nanomechanical resonators: Pathways towards quantum-noise-limited measurement at room temperature. Chin. Phys. Lett., 2023, 40(3): 038102
https://doi.org/10.1088/0256-307X/40/3/038102
17 Liu B., Chu W., Liu S., Zhou Y., Zou L., Fu J., Liu M., Fu X., Ouyang F., Zhou Y.. Engineering the nanostructures of solution proceed In2SexS3−x films with enhanced near-infrared absorption for photoelectrochemical water splitting. J. Phys. D Appl. Phys., 2022, 55(43): 434004
https://doi.org/10.1088/1361-6463/ac8b8f
18 Li M., Sun H., Zhou J., Zhao Y.. Engineering phonon thermal transport in few-layer PdSe2. Front. Phys. 19, 2023, (3): 33203
https://doi.org/10.1007/s11467-023-1351-x
19 Zhu T., Zhang Y., Wei X., Jiang M., Xu H.. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys., 2023, 18(3): 33601
https://doi.org/10.1007/s11467-022-1231-9
20 Wang Y., Guo X., You S., Jiang J., Wang Z., Ouyang F., Huang H.. Giant quartic-phonon decay in PVD-grown α-MoO3 flakes. Nano Res., 2023, 16(1): 1115
https://doi.org/10.1007/s12274-022-4734-3
21 H. Chae S., Jin Y., S. Kim T., S. Chung D., Na H., Nam H., Kim H., J. Perello D., Y. Jeong H., H. Ly T., H. Lee Y.. Oxidation effect in octahedral hafnium disulfide thin film. ACS Nano, 2016, 10(1): 1309
https://doi.org/10.1021/acsnano.5b06680
22 J. Mleczko M., Zhang C., R. Lee H., H. Kuo H., Magyari-Köpe B., G. Moore R., X. Shen Z., R. Fisher I., Nishi Y., Pop E.. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides. Sci. Adv., 2017, 3(8): e1700481
https://doi.org/10.1126/sciadv.1700481
23 Zhang W., Huang Z., Zhang W., Li Y.. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res., 2014, 7(12): 1731
https://doi.org/10.1007/s12274-014-0532-x
24 Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., K. Banerjee S., Colombo L.. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
https://doi.org/10.1038/nnano.2014.207
25 Peimyoo N., D. Barnes M., D. Mehew J., De Sanctis A., Amit I., Escolar J., Anastasiou K., P. Rooney A., J. Haigh S., Russo S., F. Craciun M., Withers F.. Laser-writable high-κ dielectric for van der Waals nanoelectronics. Sci. Adv., 2019, 5(1): eaau0906
https://doi.org/10.1126/sciadv.aau0906
26 Yin L., Xu K., Wen Y., Wang Z., Huang Y., Wang F., A. Shifa T., Cheng R., Ma H., He J.. Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett., 2016, 109(21): 213105
https://doi.org/10.1063/1.4968808
27 Kang M., Rathi S., Lee I., Lim D., Wang J., Li L., A. Khan M., H. Kim G.. Electrical characterization of multilayer HfSe2 field-effect transistors on SiO2 substrate. Appl. Phys. Lett., 2015, 106(14): 143108
https://doi.org/10.1063/1.4917458
28 Kang M., Rathi S., Lee I., Li L., A. Khan M., Lim D., Lee Y., Park J., J. Yun S., H. Youn D., Jun C., H. Kim G.. Tunable electrical properties of multilayer HfSe2 field effect transistors by oxygen plasma treatment. Nanoscale, 2017, 9(4): 1645
https://doi.org/10.1039/C6NR08467B
29 Kang T.Park J.Jung H.Choi H.M. Lee S. Lee N.G. Lee R.Kim G.H. Kim S.Kim H. W. Yang C.Jeon J.H. Kim Y.Lee S., High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices, Adv. Mater. 2312747, doi: 10.1002/adma.202312747 (2024)
30 L. Hector A., Levason W., Reid G., D. Reid S., Webster M.. Evaluation of group 4 metal bis-cyclopentadienyl complexes with selenolate and tellurolate ligands for CVD of ME2 films (E = Se or Te). Chem. Mater., 2008, 20(15): 5100
https://doi.org/10.1021/cm800802g
31 Yue R., T. Barton A., Zhu H., Azcatl A., F. Pena L., Wang J., Peng X., Lu N., Cheng L., Addou R., McDonnell S., Colombo L., W. P. Hsu J., Kim J., J. Kim M., M. Wallace R., L. Hinkle C.. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano, 2015, 9(1): 474
https://doi.org/10.1021/nn5056496
32 E. Aretouli K., Tsipas P., Tsoutsou D., Marquez-Velasco J., Xenogiannopoulou E., A. Giamini S., Vassalou E., Kelaidis N., Dimoulas A.. Two-dimensional semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular beam epitaxy. Appl. Phys. Lett., 2015, 106(14): 143105
https://doi.org/10.1063/1.4917422
33 Li S., E. Pam M., Li Y., Chen L., C. Chien Y., Fong X., Chi D., W. Ang K.. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv. Mater., 2022, 34(25): 2103376
https://doi.org/10.1002/adma.202103376
34 Zheng B., Chen Y., Wang Z., Qi F., Huang Z., Hao X., Li P., Zhang W., Li Y.. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater., 2016, 3(3): 035024
https://doi.org/10.1088/2053-1583/3/3/035024
35 Wang D., Zhang X., Liu H., Meng J., Xia J., Yin Z., Wang Y., You J., M. Meng X.. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors. 2D Mater., 2017, 4(3): 031012
https://doi.org/10.1088/2053-1583/aa7ea2
36 Fu L., Wang F., Wu B., Wu N., Huang W., Wang H., Jin C., Zhuang L., He J., Fu L., Liu Y.. Van der Waals epitaxial growth of atomic layered HfS2 crystals for ultrasensitive near-infrared phototransistors. Adv. Mater., 2017, 29(32): 1700439
https://doi.org/10.1002/adma.201700439
37 Li W., Zhou J., Cai S., Yu Z., Zhang J., Fang N., Li T., Wu Y., Chen T., Xie X., Ma H., Yan K., Dai N., Wu X., Zhao H., Wang Z., He D., Pan L., Shi Y., Wang P., Chen W., Nagashio K., Duan X., Wang X.. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron., 2019, 2(12): 563
https://doi.org/10.1038/s41928-019-0334-y
38 Li C., Xin R., Y. Jiao C., Zhang Z., Qin J., Chu W., Zhou X., Li Z., Wang Z., Xia J., Zhou Y.. Synthesis of hetero-site nucleation twisted bilayer MoS2 by local airflow perturbations and interlayer angle characterization. J. Cent. South Univ., 2023, 30(10): 3187
https://doi.org/10.1007/s11771-023-5428-z
39 Zhu X., Wong L., Fan X., Zhao J., Zhou Y., Ouyang F.. Role of the spatial distribution of gas flow for tuning the vertical/planar growth of nonlayered two-dimensional nanoplates. Cryst. Growth Des., 2022, 22(1): 763
https://doi.org/10.1021/acs.cgd.1c01261
40 Chu W., Xin R., Zou L., Fan X., Zhou X., Li C., Zhou Y.. Synthesis of nonlayered 2D α-Fe2O3 nanosheets by ultralow concentration precursor with Se catalysts design. Phys. Status Solidi R., 2023, 2023: 2300102
https://doi.org/10.1002/pssr.202300102
41 Wang D., Zhang X., Guo G., Gao S., Li X., Meng J., Yin Z., Liu H., Gao M., Cheng L., You J., Wang R.. Large-area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater., 2018, 30(44): 1803285
https://doi.org/10.1002/adma.201803285
42 Yao Q., Zhang L., Bampoulis P., J. W. Zandvliet H.. Nanoscale investigation of defects and oxidation of HfSe2. J. Phys. Chem. C, 2018, 122(44): 25498
https://doi.org/10.1021/acs.jpcc.8b08713
43 Cui F., Zhao X., Tang B., Zhu L., Huan Y., Chen Q., Liu Z., Zhang Y.. Epitaxial growth of step-like Cr2S3 lateral homojunctions towards versatile conduction polarities and enhanced transistor performances. Small, 2022, 18(4): 2105744
https://doi.org/10.1002/smll.202105744
44 Zhang F., Mo Z., Cui B., Liu S., Xia Q., Li B., Li L., Zhang Z., He J., Zhong M.. Bandgap engineering of BiIns nanowire for wide-spectrum, high-responsivity, and polarimetric-sensitive detection. Adv. Funct. Mater., 2023, 33(49): 2306077
https://doi.org/10.1002/adfm.202306077
45 Mo Z., Zhang F., Wang D., Cui B., Xia Q., Li B., He J., Zhong M.. Ultrafast-response and broad-spectrum polarization sensitive photodetector based on Bi1.85In0.15S3 nanowire. Appl. Phys. Lett., 2022, 120(20): 201105
https://doi.org/10.1063/5.0093115
46 Chen H., Zhou X., Tang L., Chen Y., Luo H., Yuan X., R. Bowen C., Zhang D.. HfO2-based ferroelectrics: From enhancing performance, material design, to applications. Appl. Phys. Rev., 2022, 9(1): 011307
https://doi.org/10.1063/5.0066607
47 Chen H., Tang L., Luo H., Yuan X., Zhang D.. Modulation of ferroelectricity in atomic layer deposited HfO2/ZrO2 multilayer films. Mater. Lett., 2022, 313: 131732
https://doi.org/10.1016/j.matlet.2022.131732
48 Lai S., Byeon S., K. Jang S., Lee J., H. Lee B., H. Park J., H. Kim Y., Lee S.. HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2. Nanoscale, 2018, 10(39): 18758
https://doi.org/10.1039/C8NR06020G
49 Fan X., Zou L., Chu W., Wang L., Zhou Y.. Synthesis of high resistive two-dimensional nonlayered Cr2S3 nanoflakes with stable phosphorus dopants by chemical vapor deposition. Appl. Phys. Lett., 2023, 122(22): 222101
https://doi.org/10.1063/5.0151795
[1] fop-24417-of-zhouyu_suppl_1 Download
[1] Mengting Song, Nan An, Yuke Zou, Yue Zhang, Wenjuan Huang, Huayi Hou, Xiangbai Chen. Epitaxial growth of 2D gallium selenide flakes for strong nonlinear optical response and visible-light photodetection[J]. Front. Phys. , 2023, 18(5): 52302-.
[2] Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53603-.
[3] Shi-Qiang Luo, Ji-Fei Wang, Bin Yang, Yong-Bo Yuan. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device[J]. Front. Phys. , 2019, 14(5): 53401-.
[4] Bing Wang (王兵),Yun Zhao (赵云),Xiao-Yan Yi (伊晓燕),Guo-Hong Wang (王国宏),Zhi-Qiang Liu (刘志强),Rui-Rei Duan (段瑞飞),Peng Huang (黄鹏),Jun-Xi Wang (王军喜),Jin-Min Li (李晋闽). Direct growth of graphene on gallium nitride using C2H2 as carbon source[J]. Front. Phys. , 2016, 11(2): 116803-.
[5] ZHUANG Cheng-gang, CHEN Li-ping, DING Li-li, ZHANG Kai-cheng, CHEN Chin-ping, FENG Qing-rong, GAN Zi-zhao, AN Ling, XU Jun. MgB2 thick films with remarkable ductility on stainless steel substrate[J]. Front. Phys. , 2006, 1(2): 246-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed