Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63202    https://doi.org/10.1007/s11467-024-1418-3
Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models
Yue-Yue Chang1, Jun-Qing Cheng2(), Hui Shao3,4, Dao-Xin Yao1,5(), Han-Qing Wu1()
1. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, State Key Laboratory of Optoelectronic Materials and Technologies, Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2. School of Physical Sciences, Great Bay University, Dongguan 523000, China & Great Bay Institute for Advanced Study, Dongguan 523000, China
3. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
4. Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing 100875, China
5. International Quantum Academy, Shenzhen 518048, China
 Download: PDF(11589 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the magnetic excitations of the two-dimensional (2D) S = 1/2 trimerized Heisenberg models with intratrimer interaction J1 and intertrimer interaction J2 on four different lattices using a combination of stochastic series expansion quantum Monte Carlo (SSE QMC) and stochastic analytic continuation methods (SAC), complemented by cluster perturbation theory (CPT). These models exhibit quasi-particle-like excitations when g=J2/J 1 is weak, characterized by low-energy magnons, intermediate-energy doublons, and high-energy quartons. The low-energy magnons are associated with the magnetic ground states. They can be described by the linear spin wave theory (LSWT) of the effective block spin model and the original spin model. Doublons and quartons emerge from the corresponding internal excitations of the trimers with distinct energy levels, which can be effectively analyzed using perturbative calculation when the ratio of exchange interactions g is weak. In this weak g regime, we observe a clear separation between the magnon and higher-energy spectra. As g increases, doublon and quarton gradually merge into the magnon modes or some continua. Notably, in the Collinear II and trimerized Hexagon lattice, a broad continuum emerges above the single-magnon spectrum, originating from the quasi-1D physics due to the dilute connections between chains. In addition, we also compare our numerical results to the experimental RIXS spectrum and analyze the difference. Our numerical analysis of these 2D trimers yields valuable theoretical predictions and explanations for the inelastic neutron scattering (INS) spectra of 2D magnetic materials featuring trimerized lattices.

Keywords quantum Monte Carlo      trimerized Heisenberg model     
Corresponding Author(s): Jun-Qing Cheng,Dao-Xin Yao,Han-Qing Wu   
Issue Date: 16 July 2024
 Cite this article:   
Yue-Yue Chang,Jun-Qing Cheng,Hui Shao, et al. Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models[J]. Front. Phys. , 2024, 19(6): 63202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1418-3
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63202
Fig.1  Four 2D trimerized lattices and their full Brillouin zones: (a1) Collinear I lattice, corresponding to a 2D square lattice in the g=J2/J 1=1 limit. (b1) Collinear II lattice, derived from the structure of CaNi 3(P2O 7)2 [22]. (c1) Trimerized Lieb lattice exhibiting a ferrimagnetic ground state. (d1) Trimerized Hexagon lattice, derived from the structure of Ba4Ir 3O10 [23-27]. (e1) A topological equivalent lattice of trimerized Hexagon lattice. The green quadrilaterals in panels (a1)−(e1) represent unit cells. The Collinear I lattice comprises three sites and six bonds within a cell, while the other lattices feature three sites and four bonds per cell. The red bonds denote the intratrimer interactions, while the dark blue ones represent the intertrimer interactions. It is worth noting that all these neighbor bonds are antiferromagnetic interactions. For (a1)−(e1), the length of red bonds is set to be one (as the length unit), and the length of blue dashed bonds in (a1)−(c1) is also equal to one, while in (d1) and (e1), we set the length of blue bonds to be two. Besides, the lattices shown in (a1)−(c1) are also the clusters used in the CPT calculation with 24 sites (a1, b1) and 27 sites (c1). For panels (a2)−(e2), we illustrate the corresponding full Brillouin zone (BZ), and the shadow areas denote the reduced BZ. The point T is (2π/3,0), point M 2 is ( 3π/6,π/6), Y is (0,π) and Z is (0,π/2).
Fig.2  The energy levels and the corresponding wave functions of an isolated trimer block. Its ground state is a doublet with effective spin-1 /2. | n? S,m denotes an eigenstate, where n=0,1,and2 represent the ground state, the first-excited state, and the second-excited state, respectively. S is the total spin quantum number, and m is the magnetic quantum number. The dashed lines denote the |Δm|=1 excitations, and the solid lines are |ΔS|=1 excitations. The orange lines denote the excitations from |0? 12, 12 ground state and the blue lines are the excitations from |0? 12,12 ground state.
Fig.3  The extrapolations of square staggered magnetization on four lattices with (a) g = 0.1 and (b) g=1. Error bars are much smaller than the size of the symbols. The extrapolated values are shown directly on the horizontal axis. To avoid text overlap, we represented the intercepts of the trimerized Hexagon using arrows.
Fig.4  The dynamic spin structure factors of the Collinear I lattice, obtained through QMC and CPT methods, are presented with varying ratios g=J2/J 1. We follow a high-symmetry path Γ (0,0 ) T(2π /3 ,0) X(π,0) M(π,π) Γ(0,0 ), as shown in Fig.1(a2), to show the dynamic spin structure factors. The solid lines are the LSWT results of its low-energy effective block spin model. In contrast, the white dotted lines correspond to the LSWT results of the original spin model. The dashed lines in the higher-energy parts denote the optimal dispersions obtained by the PA. Panels (a1)−(e1) display results from QMC-SAC, while panels (a2)−(e2) feature CPT results. For clarity, in the QMC-SAC results, a piecewise function is utilized where the intensity is bifurcated at U0=5. When the value is less than 5, the low-intensity section follows a linear distribution. Beyond this threshold, a logarithmic scale is applied, expressed as U= U0+log10 S(q,ω)log10 U0. However, no additional transformation is applied to the CPT spectrum. This same piecewise function is also used in the subsequent excitation spectra of other lattices.
Fig.5  Dynamic spin structure factors of the Collinear II lattice for different g values. The pink solid lines represent the magnon dispersion of the corresponding effective model formed by the trimer block spins, while the white dotted lines illustrate the LSWT results for the original model. The yellow and green dashed lines represent the dispersions of quarton and doublon, respectively, obtained from the PA in weak g. Panels (a1)−(e1) show results obtained from the SAC method, and (a2)−(e2) are the results obtained from the CPT. The high-symmetry path is the same as the Collinear I model as shown in Fig.1(b2), and we use the same logarithmic scale in SAC results when S(q, ω)> U0=5, expressed as U= U0+log10 S(q,ω) log10 U0.
Fig.6  Dynamic spin structure factors of the trimerized Lieb lattice at various g values. The pink solid lines represent the magnon dispersions of the corresponding effective model formed by the trimer block spins. The white dotted lines illustrate the LSWT results of the original model. The yellow and green dashed lines represent the dispersions of quarton and doublon, respectively, obtained from the PA in weak g. Panels (a1)−(e1) show results obtained from the QMC-SAC method, while (a2)−(e2) present results obtained from CPT. The high-symmetry path is shown in Fig.1(a2), and we use the same logarithmic scale in QMC-SAC results when S(q, ω)> U0=5, expressed as U= U0+log10 S(q,ω)log10 U0.
Lattice Excitation Dispersions
Collinear I Doublon ?=E 0+E1+7g/9
?=E 0+E1+5g/9
Quarton ?=E 0+E2+4g/9+2gcos ?(3qx)/9+2gcos ?(qy) /3
?=E 0+E2+5g/9+gcos?(3 qx)/18+2 gcos?(qy)/3
?=E 0+E2+g /9+gcos?(3 qx)/18+2gcos ?(qy) /9
Collinear II Doublon ?=E 0+E1+g /9+gcos?(qx) /33
Quarton ?=E 0+E2+g /9+gcos?(3 qx)/9+4gcos? ( qy)/9
?=E 0+E2+g /9g cos?(3qx)/6 32g cos?(qy) /33
Trimerized Lieb lattice Doublon ?=E 0+E12g/9
Quarton ?=E 0+E2+7g/18gcos?(2 qx)/3gcos ?(2qy)/3
Tab.1  The optimal dispersions in the different lattices.
Fig.7  Dynamic spin structure factors in the reduced BZ of the trimerized Hexagon lattice at different g values: (a) g=0.1, (b) g=0.5, (c) g=0.8, and (d) g=1. The pink lines illustrate the magnon dispersion obtained from LSWT using the low-energy effective block spin model. The white lines represent the LSWT results of the original model. The high-symmetry path is shown in Fig.1(d2), and we use the same logarithmic scale in SAC results when Sredzz(q, ω)> U0=5, expressed as U= U0+log10 Sredz z(q,ω) log10 U0.
Fig.8  Dynamic spin structure factors of spin model shown in Fig.1(e1) along the path Γ Y(0,π) at different g values: (a) g=0.1, (b) g=0.3, (c) g=0.5, (d) g=0.7, (e) g=1, (f) g = 0.1, (g) g = 0.3, (h) g = 0.5, (i) g = 0.7, and (j) g = 1. The white lines represent the LSWT results of the original model. The high-symmetry path is shown in Fig.1(e2), and we use the same logarithmic scale in SAC results when S(q, ω)> U0=30, expressed as U= U0+log10 S(q,ω)log10 U0.
Fig.9  The low-energy effective block spin models of each 2D trimerized lattice when the value g is small. (a) Collinear I lattice; (b) Collinear II lattice; (c) Trimerized Lieb lattice; (d) Trimerized Hexagon lattice. The light blue and orange lines represent the effective interactions between trimer blocks along two primitive vectors of unit cells. Here, Jh represents an interaction along the horizontal direction of the primitive cell, while Jv is associated with the vertical direction. For the trimerized Lieb lattice, the effective interaction is ferromagnetic. represents the effective block spin S=1 /2 of each trimer. The arrays of and show the magnetically ordered ground state of each effective model.
Fig.10  The perturbation dispersion relations for g=0.1. (a) Collinear I lattice; (b) Collinear II lattice; (c) Trimerized Lieb lattice; (d) Trimerized Hexagon lattice. The green lines denote the doublons, and the orange ones denote the quartons.
  Fig.A1 Test of a synthetic spectral function (black curves) using correlation data with error levels from 103 to 10 6. The sampling temperature is decided according to Eq. (A1) with different values of a.
  Fig.A2 Spectral functions for the Collinear II model with momenta along the ΓT path and close to the T point.
  Fig.A3 Spectral functions for the Collinear II model with q=(15π/24,0) and different sampling temperatures.
  Fig.A4 Dynamic spin structure factors of the trimerized Collinear II lattice at different vertical interchain J2 interactions: (a) J2=1 and J2= 0.1, we show the interactions in the inset. (b) J2=1 and J2= 0.3, (c) J2=1 and J2= 0.5, (d) J2=1 and J2= 0.7 and (e) J2=1 and J2= 1. The white lines represent the LSWT results. The high-symmetry path is shown in Fig.1(a2), and we use the same logarithmic scale in the SAC results when S(q, ω)> 5, expressed as U=U0+log10S(q,ω )log10 U0.
1 Pines D., Elementary Excitations in Solids, CRC Press, 2018
2 J. P. Ament L., van Veenendaal M., P. Devereaux T., P. Hill J., and van den Brink J., Resonant inelastic X-ray scattering studies of elementary excitations, Rev. Mod. Phys. 83(2), 705 (2011)
https://doi.org/10.1103/RevModPhys.83.705
3 Chumak A.Schultheiss H., Magnonics: Spin waves connecting charges, spins and photons, arXiv: 1901.07021 (2019)
4 Wulferding D., Choi Y., H. Do S., H. Lee C., Lemmens P., Faugeras C., Gallais Y., and Y. Choi K., Magnon bound states versus anyonic Majorana excitations in the Kitaev honeycomb magnet α-RuCl3, Nat. Commun. 11(1), 1603 (2020)
https://doi.org/10.1038/s41467-020-15370-1
5 Coldea R., M. Hayden S., Aeppli G., G. Perring T., D. Frost C., E. Mason T., W. Cheong S., and Fisk Z., Spin waves and electronic interactions in La2CuO4, Phys. Rev. Lett. 86(23), 5377 (2001)
https://doi.org/10.1103/PhysRevLett.86.5377
6 M. R. Peres N. and A. N. Araújo M., Spin-wave dispersion in La2CuO4, Phys. Rev. B 65(13), 132404 (2002)
https://doi.org/10.1103/PhysRevB.65.132404
7 Peres N. and Araújo M., Spin waves in La2CuO4: Band structure and correlation effects, physica status solidi (b) 236, 523 (2003)
https://doi.org/10.1002/pssb.200301719
8 S. Headings N., M. Hayden S., Coldea R., and G. Perring T., Anomalous high-energy spin excitations in the high Tc superconductor-parent antiferromagnet La2CuO4, Phys. Rev. Lett. 105(24), 247001 (2010)
https://doi.org/10.1103/PhysRevLett.105.247001
9 Dalla Piazza B., Mourigal M., B. Christensen N., Nilsen G., Tregenna-Piggott P., Perring T., Enderle M., F. McMorrow D., Ivanov D., and M. Rønnow H., Fractional excitations in the square-lattice quantum antiferromagnet, Nat. Phys. 11(1), 62 (2015)
https://doi.org/10.1038/nphys3172
10 Shao H., Q. Qin Y., Capponi S., Chesi S., Y. Meng Z., and W. Sandvik A., Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet, Phys. Rev. X 7(4), 041072 (2017)
https://doi.org/10.1103/PhysRevX.7.041072
11 R. P. Singh R. and P. Gelfand M., Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets, Phys. Rev. B 52(22), R15695 (1995)
https://doi.org/10.1103/PhysRevB.52.R15695
12 W. Sandvik A. and R. P. Singh R., High-energy magnon dispersion and multimagnon continuum in the two-dimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 86(3), 528 (2001)
https://doi.org/10.1103/PhysRevLett.86.528
13 Yang L. and E. Feiguin A., From deconfined spinons to coherent magnons in an antiferromagnetic Heisenberg chain with long-range interactions, SciPost Phys. 10(5), 110 (2021)
https://doi.org/10.21468/SciPostPhys.10.5.110
14 Powalski M., P. Schmidt K., and S. Uhrig G., Mutually attracting spin waves in the square-lattice quantum antiferromagnet, SciPost Phys. 4, 001 (2018)
https://doi.org/10.21468/SciPostPhys.4.1.001
15 Powalski M., S. Uhrig G., and P. Schmidt K., Roton minimum as a fingerprint of Magnon‒Higgs scattering in ordered quantum antiferromagnets, Phys. Rev. Lett. 115(20), 207202 (2015)
https://doi.org/10.1103/PhysRevLett.115.207202
16 Y. Sun G., C. Wang Y., Fang C., Qi Y., Cheng M., and Y. Meng Z., Dynamical signature of symmetry fractionalization in frustrated magnets, Phys. Rev. Lett. 121(7), 077201 (2018)
https://doi.org/10.1103/PhysRevLett.121.077201
17 Q. Qin Y., Normand B., W. Sandvik A., and Y. Meng Z., Amplitude mode in three-dimensional dimerized antiferromagnets, Phys. Rev. Lett. 118(14), 147207 (2017)
https://doi.org/10.1103/PhysRevLett.118.147207
18 Lohöfer M. and Wessel S., Excitation-gap scaling near quantum critical three-dimensional antiferromagnets, Phys. Rev. Lett. 118(14), 147206 (2017)
https://doi.org/10.1103/PhysRevLett.118.147206
19 K. Fang J., H. Huang J., Q. Wu H., and X. Yao D., Dynamical properties of the Haldane chain with bond disorder, Front. Phys. 17(3), 33503 (2022)
https://doi.org/10.1007/s11467-021-1124-3
20 Shen Y., Liu C., Qin Y., Shen S., D. Li Y., Bewley R., Schneidewind A., Chen G., and Zhao J., Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4, Nat. Commun. 10(1), 4530 (2019)
https://doi.org/10.1038/s41467-019-12410-3
21 Zhou Z., Liu C., Yan Z., Chen Y., and F. Zhang X., Quantum dynamics of topological strings in a frustrated Ising antiferromagnet, npj Quantum Mater. 7, 60 (2022)
https://doi.org/10.1038/s41535-022-00465-3
22 Majumder M., Kanungo S., Ghoshray A., Ghosh M., and Ghoshray K., Magnetism of the spin-trimer compound CaNi3(P2O7)2: Microscopic insight from combined 31P NMR and first-principles studies, Phys. Rev. B 91(10), 104422 (2015)
https://doi.org/10.1103/PhysRevB.91.104422
23 Shen Y., Sears J., Fabbris G., Weichselbaum A., Yin W., Zhao H., G. Mazzone D., Miao H., H. Upton M., Casa D., Acevedo-Esteves R., Nelson C., M. Barbour A., Mazzoli C., Cao G., and P. M. Dean M., Emergence of spinons in layered trimer iridate Ba4Ir3O10, Phys. Rev. Lett. 129(20), 207201 (2022)
https://doi.org/10.1103/PhysRevLett.129.207201
24 Cao G., Zheng H., Zhao H., Ni Y., A. Pocs C., et al.. Quantum liquid from strange frustration in the trimer magnet Ba4Ir3O10, npj Quantum Mater. 5, 26 (2020)
https://doi.org/10.1038/s41535-020-0232-6
25 Cao G., Zhao H., Hu B., Pellatz N., Reznik D., Schlottmann P., and Kimchi I., Quest for quantum states via field-altering technology, npj Quantum Mater. 5, 83 (2020)
https://doi.org/10.1038/s41535-020-00286-2
26 Chen X., He Y., Wu S., Song Y., Yuan D., Bourret-Courchesne E., P. C. Ruff J., Islam Z., Frano A., and J. Birgeneau R., Structural and magnetic transitions in the planar antiferromagnet Ba4Ir3O10, Phys. Rev. B 103(22), 224420 (2021)
https://doi.org/10.1103/PhysRevB.103.224420
27 Sokolik A., Hakani S., Roy S., Pellatz N., Zhao H., Cao G., Kimchi I., and Reznik D., Spinons and damped phonons in the spin-1/2 quantum liquid Ba4Ir3O10 observed by Raman scattering, Phys. Rev. B 106(7), 075108 (2022)
https://doi.org/10.1103/PhysRevB.106.075108
28 Jiang Q. and X. Yao D., Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2, Front. Phys. 11(2), 117401 (2016)
https://doi.org/10.1007/s11467-015-0527-4
29 Nie X.Li J.Datta T.X. Yao D., A spin–rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk, Front. Phys. 19(5), 53201 (2024)
30 Xu Y., Xiong Z., Q. Wu H., and X. Yao D., Spin excitation spectra of the two-dimensional S = 1/2 Heisenberg model with a checkerboard structure, Phys. Rev. B 99(8), 085112 (2019)
https://doi.org/10.1103/PhysRevB.99.085112
31 Yan T., Jin S., Xiong Z., Li J., and X. Yao D., Magnetic excitations of diagonally coupled checkerboards, Chin. Phys. B 30(10), 107505 (2021)
https://doi.org/10.1088/1674-1056/ac1b94
32 Ma N., Y. Sun G., Z. You Y., Xu C., Vishwanath A., W. Sandvik A., and Y. Meng Z., Dynamical signature of fractionalization at a deconfined quantum critical point, Phys. Rev. B 98(17), 174421 (2018)
https://doi.org/10.1103/PhysRevB.98.174421
33 Ran X., Ma N., and X. Yao D., Criticality and scaling corrections for two-dimensional Heisenberg models in plaquette patterns with strong and weak couplings, Phys. Rev. B 99(17), 174434 (2019)
https://doi.org/10.1103/PhysRevB.99.174434
34 Tan Y. and X. Yao D., Spin waves and phase transition on a magnetically frustrated square lattice with long-range interactions, Front. Phys. 18(3), 33309 (2023)
https://doi.org/10.1007/s11467-022-1238-2
35 Q. Cheng J., Li J., Xiong Z., Q. Wu H., W. Sandvik A., and X. Yao D., Fractional and composite excitations of antiferromagnetic quantum spin trimer chains, npj Quantum Mater. 7, 3 (2022)
https://doi.org/10.1038/s41535-021-00416-4
36 Strohmaier N., Greif D., Jördens R., Tarruell L., Moritz H., Esslinger T., Sensarma R., Pekker D., Altman E., and Demler E., Observation of elastic doublon decay in the Fermi‒Hubbard model, Phys. Rev. Lett. 104(8), 080401 (2010)
https://doi.org/10.1103/PhysRevLett.104.080401
37 Terashige T., Ono T., Miyamoto T., Morimoto T., Yamakawa H., Kida N., Ito T., Sasagawa T., Tohyama T., and Okamoto H., Doublon‒Holon pairing mechanism via exchange interaction in two-dimensional cuprate Mott insulators, Sci. Adv. 5(6), eaav2187 (2019)
https://doi.org/10.1126/sciadv.aav2187
38 Ye Y., Peng K., Naghiloo M., Cunningham G., and P. O’Brien K., Engineering purely nonlinear coupling between superconducting qubits using a quarton, Phys. Rev. Lett. 127(5), 050502 (2021)
https://doi.org/10.1103/PhysRevLett.127.050502
39 K. Bera A., Yusuf S., K. Saha S., Kumar M., Voneshen D., Skourski Y., and A. Zvyagin S., Emergent many-body composite excitations of interacting spin-1/2 trimers, Nat. Commun. 13(1), 6888 (2022)
https://doi.org/10.1038/s41467-022-34342-1
40 Q. Cheng J.Y. Ning Z.Q. Wu H.X. Yao D., Quantum phase transitions and composite excitations of antiferromagnetic quantum spin trimer chains in a magnetic field, arXiv: 2402.00272 (2024)
41 Klein Y., Rousse G., Damay F., Porcher F., André G., and Terasaki I., Antiferromagnetic order and consequences on the transport properties of Ba4Ru3O10, Phys. Rev. B 84, 054439 (2011)
https://doi.org/10.1103/PhysRevB.84.054439
42 Igarashi T., Okazaki R., Taniguchi H., Yasui Y., and Terasaki I., Effects of the Ir impurity on the thermodynamic and transport properties of Ba4Ru3O10, J. Phys. Soc. Jpn. 84(9), 094601 (2015)
https://doi.org/10.7566/JPSJ.84.094601
43 Weber L., Honecker A., Normand B., Corboz P., Mila F., and Wessel S., Quantum Monte Carlo simulations in the trimer basis: First-order transitions and thermal critical points in frustrated trilayer magnets, SciPost Phys. 12, 054 (2022)
https://doi.org/10.21468/SciPostPhys.12.2.054
44 Yang H., Zeng J., You S., Han Y., and Qiao Z., Equipartition of current in metallic armchair nanoribbon of graphene-based device, Front. Phys. 17(6), 63508 (2022)
https://doi.org/10.1007/s11467-022-1201-2
45 Bolens A. and Nagaosa N., Topological states on the breathing kagomé lattice, Phys. Rev. B 99(16), 165141 (2019)
https://doi.org/10.1103/PhysRevB.99.165141
46 Farnell D., Emergence of magnetic order in kagomé antiferromagnets, Front. Phys. 14(2), 23302 (2019)
https://doi.org/10.1007/s11467-019-0886-3
47 Chen Y., Wu W., Liu G., Tao H., and Liu W., Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223 (2012)
https://doi.org/10.1007/s11467-012-0247-y
48 Weichselbaum A., Yin W., and M. Tsvelik A., Dimerization and spin decoupling in a two-leg Heisenberg ladder with frustrated trimer rungs, Phys. Rev. B 103(12), 125120 (2021)
https://doi.org/10.1103/PhysRevB.103.125120
49 F. Gull S. and Skilling J., Maximum entropy method in image processing, IEE Proceedings F 131(6), 646 (1984)
https://doi.org/10.1049/ip-f-1.1984.0099
50 Bergeron D. and M. S. Tremblay A., Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation, Phys. Rev. E 94(2), 023303 (2016)
https://doi.org/10.1103/PhysRevE.94.023303
51 W. Sandvik A., Stochastic method for analytic continuation of quantum Monte Carlo data, Phys. Rev. B 57(17), 10287 (1998)
https://doi.org/10.1103/PhysRevB.57.10287
52 W. Sandvik A., Constrained sampling method for analytic continuation, Phys. Rev. E 94(6), 063308 (2016)
https://doi.org/10.1103/PhysRevE.94.063308
53 S. D. Beach K., Identifying the maximum entropy method as a special limit of stochastic analytic continuation, arXiv: cond-mat/0403055 (2004)
54 O. Löwdin P., A note on the quantum-mechanical perturbation theory, J. Chem. Phys. 19(11), 1396 (1951)
55 L. Chernyshev A. and E. Zhitomirsky M., Magnon decay in noncollinear quantum antiferromagnets, Phys. Rev. Lett. 97(20), 207202 (2006)
https://doi.org/10.1103/PhysRevLett.97.207202
56 Kato T., Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, 2013
57 H. Huang J., Liu Z., Q. Wu H., and X. Yao D., Ground states and dynamical properties of the S > 1/2 quantum Heisenberg model on the 1/5-depleted square lattice, Phys. Rev. B 106(8), 085101 (2022)
https://doi.org/10.1103/PhysRevB.106.085101
58 Vafayi K. and Gunnarsson O., Analytical continuation of spectral data from imaginary time axis to real frequency axis using statistical sampling, Phys. Rev. B 76(3), 035115 (2007)
https://doi.org/10.1103/PhysRevB.76.035115
59 R. Reichman D. and Rabani E., Analytic continuation average spectrum method for quantum liquids, J. Chem. Phys. 131(5), 054502 (2009)
https://doi.org/10.1063/1.3185728
60 F. Syljuåsen O., Using the average spectrum method to extract dynamics from quantum Monte Carlo simulations, Phys. Rev. B 78(17), 174429 (2008)
https://doi.org/10.1103/PhysRevB.78.174429
61 Fuchs S., Pruschke T., and Jarrell M., Analytic continuation of quantum Monte Carlo data by stochastic analytical inference, Phys. Rev. E 81(5), 056701 (2010)
https://doi.org/10.1103/PhysRevE.81.056701
62 Ghanem K. and Koch E., Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid, Phys. Rev. B 101(8), 085111 (2020)
https://doi.org/10.1103/PhysRevB.101.085111
63 Ghanem K. and Koch E., Extending the average spectrum method: Grid point sampling and density averaging, Phys. Rev. B 102(3), 035114 (2020)
https://doi.org/10.1103/PhysRevB.102.035114
64 Shao H. and W. Sandvik A., Progress on stochastic analytic continuation of quantum Monte Carlo data, Phys. Rep. 1003, 1 (2023)
https://doi.org/10.1016/j.physrep.2022.11.002
65 L. Yu S., Wang W., Y. Dong Z., J. Yao Z., and X. Li J., Deconfinement of spinons in frustrated spin systems: Spectral perspective, Phys. Rev. B 98(13), 134410 (2018)
https://doi.org/10.1103/PhysRevB.98.134410
66 Sénéchal D., Perez D., and Pioro-Ladriere M., Spectral weight of the Hubbard model through cluster perturbation theory, Phys. Rev. Lett. 84(3), 522 (2000)
https://doi.org/10.1103/PhysRevLett.84.522
67 S. Ovchinnikov A., G. Bostrem I., and E. Sinitsyn V., Cluster perturbation theory for spin Hamiltonians, Theor. Math. Phys. 162(2), 179 (2010)
https://doi.org/10.1007/s11232-010-0013-7
68 Wu J., P. L. Faye J., Sénéchal D., and Maciejko J., Quantum cluster approach to the spinful Haldane‒Hubbard model, Phys. Rev. B 93(7), 075131 (2016)
https://doi.org/10.1103/PhysRevB.93.075131
69 Dahnken C., Aichhorn M., Hanke W., Arrigoni E., and Potthoff M., Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions, Phys. Rev. B 70(24), 245110 (2004)
https://doi.org/10.1103/PhysRevB.70.245110
70 Maier T., Jarrell M., Pruschke T., and H. Hettler M., Quantum cluster theories, Rev. Mod. Phys. 77(3), 1027 (2005)
https://doi.org/10.1103/RevModPhys.77.1027
71 W. Sandvik A. and G. Evertz H., Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis, Phys. Rev. B 82(2), 024407 (2010)
https://doi.org/10.1103/PhysRevB.82.024407
72 Gerber U., P. Hofmann C., J. Jiang F., Nyfeler M., and J. Wiese U., The constraint effective potential of the staggered magnetization in an antiferromagnet, J. Stat. Mech-theory E 2009, P03021 (2009)
https://doi.org/10.1088/1742-5468/2009/03/P03021
73 B. Beard B., J. Birgeneau R., Greven M., and J. Wiese U., Square-lattice Heisenberg antiferromagnet at very large correlation lengths, Phys. Rev. Lett. 80(8), 1742 (1998)
https://doi.org/10.1103/PhysRevLett.80.1742
74 K. Bera A., M. Yusuf S., Kumar A., Majumder M., Ghoshray K., and Keller L., Long-range and shortrange magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14, Phys. Rev. B 93(18), 184409 (2016)
https://doi.org/10.1103/PhysRevB.93.184409
75 K. Bera A., M. Yusuf S., and T. Adroja D., Excitations in the spin-1 trimer chain compound CaNi3P4O14: From gapped dispersive spin waves to gapless magnetic excitations, Phys. Rev. B 97(22), 224413 (2018)
https://doi.org/10.1103/PhysRevB.97.224413
76 Hase M., Kitazawa H., Tsujii N., Ozawa K., Kohno M., and Kido G., Ferrimagnetic long-range order caused by periodicity of exchange interactions in the spin-1 trimer chain compounds ANi3P4O14 (A = Ca, Sr, Pb, Ba), Phys. Rev. B 74(2), 024430 (2006)
https://doi.org/10.1103/PhysRevB.74.024430
77 Zhou C., Yan Z., Q. Wu H., Sun K., A. Starykh O., and Y. Meng Z., Amplitude mode in quantum magnets via dimensional crossover, Phys. Rev. Lett. 126(22), 227201 (2021)
https://doi.org/10.1103/PhysRevLett.126.227201
78 Lin Z., H. Choi J., Zhang Q., Qin W., Yi S., Wang P., Li L., Wang Y., Zhang H., Sun Z., Wei L., Zhang S., Guo T., Lu Q., H. Cho J., Zeng C., and Zhang Z., Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagomé lattices, Phys. Rev. Lett. 121(9), 096401 (2018)
https://doi.org/10.1103/PhysRevLett.121.096401
79 Wu C., Bergman D., Balents L., and Das Sarma S., Flat bands and Wigner crystallization in the honeycomb optical lattice, Phys. Rev. Lett. 99(7), 070401 (2007)
https://doi.org/10.1103/PhysRevLett.99.070401
80 X. Yin J., S. Zhang S., Chang G., Wang Q., S. Tsirkin S., Guguchia Z., Lian B., Zhou H., Jiang K., Belopolski I., Shumiya N., Multer D., Litskevich M., A. Cochran T., Lin H., Wang Z., Neupert T., Jia S., Lei H., and Z. Hasan M., Negative flat band magnetism in a spin–orbit coupled correlated kagomé magnet, Nat. Phys. 15(5), 443 (2019)
https://doi.org/10.1038/s41567-019-0426-7
81 Li M., Wang Q., Wang G., Yuan Z., Song W., Lou R., Liu Z., Huang Y., Liu Z., Lei H., Yin Z., and Wang S., Dirac cone, flat band and saddle point in kagomé magnet YMn6Sn6, Nat. Commun. 12(1), 3129 (2021)
https://doi.org/10.1038/s41467-021-23536-8
82 Luo C., Datta T., Huang Z., and X. Yao D., Signatures of indirect k-edge resonant inelastic X-ray scattering on magnetic excitations in a triangular-lattice antiferromagnet, Phys. Rev. B 92(3), 035109 (2015)
https://doi.org/10.1103/PhysRevB.92.035109
83 Luo C., Datta T., and X. Yao D., Spectrum splitting of bimagnon excitations in a spatially frustrated Heisenberg antiferromagnet revealed by resonant inelastic X-ray scat tering, Phys. Rev. B 89(16), 165103 (2014)
https://doi.org/10.1103/PhysRevB.89.165103
84 R. Shu Y., X. Yao D., W. Ke C., C. Lin Y., and W. Sandvik A., Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valence-bond solid, Phys. Rev. B 94, 174442 (2016)
https://doi.org/10.1103/PhysRevB.94.174442
85 Q. Wu H., S. Gong S., and N. Sheng D., Randomness-induced spin-liquid-like phase in the spin-1/2 J1−J2 triangular Heisenberg model, Phys. Rev. B 99, 085141 (2019)
https://doi.org/10.1103/PhysRevB.99.085141
86 Jullien R., Pfeuty P., N. Fields J., and Doniach S., Zerotemperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension, Phys. Rev. B 18(7), 3568 (1978)
https://doi.org/10.1103/PhysRevB.18.3568
87 A. Martín-Delgado M. and Sierra G., Real space renormalization group methods and quantum groups, Phys. Rev. Lett. 76(7), 1146 (1996)
https://doi.org/10.1103/PhysRevLett.76.1146
88 Kargarian M., Jafari R., and Langari A., Renormalization of entanglement in the anisotropic Heisenberg XXZ model, Phys. Rev. A 77(3), 032346 (2008)
https://doi.org/10.1103/PhysRevA.77.032346
89 Q. Cheng J., Wu W., and B. Xu J., Multipartite entanglement in an XXZ spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition, Quantum Inform. Process. 16(9), 231 (2017)
https://doi.org/10.1007/s11128-017-1683-y
90 Usman M., Ilyas A., and Khan K., Quantum renormalization group of the XY model in two dimensions, Phys. Rev. A 92(3), 032327 (2015)
https://doi.org/10.1103/PhysRevA.92.032327
91 Q. Cheng J. and B. Xu J., Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiński fractal lattices, Phys. Rev. E 97(6), 062134 (2018)
https://doi.org/10.1103/PhysRevE.97.062134
92 Wessel S., Normand B., Mila F., and Honecker A., Efficient quantum Monte Carlo simulations of highly frustrated magnets: The frustrated spin-1/2 ladder, SciPost Phys. 3, 005 (2017)
https://doi.org/10.21468/SciPostPhys.3.1.005
93 Honecker A., Weber L., Corboz P., Mila F., and Wessel S., Quantum Monte Carlo simulations of highly frustrated magnets in a cluster basis: The two-dimensional Shastry−Sutherland model, J. Phys. Conf. Ser. 2207(1), 012032 (2022)
https://doi.org/10.1088/1742-6596/2207/1/012032
[1] Jing-Kai Fang, Jun-Han Huang, Han-Qing Wu, Dao-Xin Yao. Dynamical properties of the Haldane chain with bond disorder[J]. Front. Phys. , 2022, 17(3): 33503-.
[2] Yin Zhong, Qin Wang, Yu Liu, Hai-Feng Song, Ke Liu, Hong-Gang Luo. Finite temperature physics of 1D topological Kondo insulator: Stable Haldane phase, emergent energy scale and beyond[J]. Front. Phys. , 2019, 14(2): 23602-.
[3] Bao An(保安),Chen Yao-Hua(陈耀华),Lin Heng-Fu(林恒福),Liu Hai-Di(刘海迪),Zhang Xiao-Zhong(章晓中). Quantum phase transitions in two-dimensional strongly correlated fermion systems[J]. Front. Phys. , 2015, 10(5): 106401-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed