|
|
Magnon, doublon and quarton excitations in 2D S=1/2 trimerized Heisenberg models |
Yue-Yue Chang1, Jun-Qing Cheng2( ), Hui Shao3,4, Dao-Xin Yao1,5( ), Han-Qing Wu1( ) |
1. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, State Key Laboratory of Optoelectronic Materials and Technologies, Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou 510275, China 2. School of Physical Sciences, Great Bay University, Dongguan 523000, China & Great Bay Institute for Advanced Study, Dongguan 523000, China 3. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China 4. Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing 100875, China 5. International Quantum Academy, Shenzhen 518048, China |
|
|
Abstract We investigate the magnetic excitations of the two-dimensional (2D) = 1/2 trimerized Heisenberg models with intratrimer interaction and intertrimer interaction on four different lattices using a combination of stochastic series expansion quantum Monte Carlo (SSE QMC) and stochastic analytic continuation methods (SAC), complemented by cluster perturbation theory (CPT). These models exhibit quasi-particle-like excitations when is weak, characterized by low-energy magnons, intermediate-energy doublons, and high-energy quartons. The low-energy magnons are associated with the magnetic ground states. They can be described by the linear spin wave theory (LSWT) of the effective block spin model and the original spin model. Doublons and quartons emerge from the corresponding internal excitations of the trimers with distinct energy levels, which can be effectively analyzed using perturbative calculation when the ratio of exchange interactions is weak. In this weak regime, we observe a clear separation between the magnon and higher-energy spectra. As increases, doublon and quarton gradually merge into the magnon modes or some continua. Notably, in the Collinear II and trimerized Hexagon lattice, a broad continuum emerges above the single-magnon spectrum, originating from the quasi-1D physics due to the dilute connections between chains. In addition, we also compare our numerical results to the experimental RIXS spectrum and analyze the difference. Our numerical analysis of these 2D trimers yields valuable theoretical predictions and explanations for the inelastic neutron scattering (INS) spectra of 2D magnetic materials featuring trimerized lattices.
|
Keywords
quantum Monte Carlo
trimerized Heisenberg model
|
Corresponding Author(s):
Jun-Qing Cheng,Dao-Xin Yao,Han-Qing Wu
|
Issue Date: 16 July 2024
|
|
1 |
Pines D., Elementary Excitations in Solids, CRC Press, 2018
|
2 |
J. P. Ament L., van Veenendaal M., P. Devereaux T., P. Hill J., and van den Brink J., Resonant inelastic X-ray scattering studies of elementary excitations, Rev. Mod. Phys. 83(2), 705 (2011)
https://doi.org/10.1103/RevModPhys.83.705
|
3 |
Chumak A.Schultheiss H., Magnonics: Spin waves connecting charges, spins and photons, arXiv: 1901.07021 (2019)
|
4 |
Wulferding D., Choi Y., H. Do S., H. Lee C., Lemmens P., Faugeras C., Gallais Y., and Y. Choi K., Magnon bound states versus anyonic Majorana excitations in the Kitaev honeycomb magnet α-RuCl3, Nat. Commun. 11(1), 1603 (2020)
https://doi.org/10.1038/s41467-020-15370-1
|
5 |
Coldea R., M. Hayden S., Aeppli G., G. Perring T., D. Frost C., E. Mason T., W. Cheong S., and Fisk Z., Spin waves and electronic interactions in La2CuO4, Phys. Rev. Lett. 86(23), 5377 (2001)
https://doi.org/10.1103/PhysRevLett.86.5377
|
6 |
M. R. Peres N. and A. N. Araújo M., Spin-wave dispersion in La2CuO4, Phys. Rev. B 65(13), 132404 (2002)
https://doi.org/10.1103/PhysRevB.65.132404
|
7 |
Peres N. and Araújo M., Spin waves in La2CuO4: Band structure and correlation effects, physica status solidi (b) 236, 523 (2003)
https://doi.org/10.1002/pssb.200301719
|
8 |
S. Headings N., M. Hayden S., Coldea R., and G. Perring T., Anomalous high-energy spin excitations in the high Tc superconductor-parent antiferromagnet La2CuO4, Phys. Rev. Lett. 105(24), 247001 (2010)
https://doi.org/10.1103/PhysRevLett.105.247001
|
9 |
Dalla Piazza B., Mourigal M., B. Christensen N., Nilsen G., Tregenna-Piggott P., Perring T., Enderle M., F. McMorrow D., Ivanov D., and M. Rønnow H., Fractional excitations in the square-lattice quantum antiferromagnet, Nat. Phys. 11(1), 62 (2015)
https://doi.org/10.1038/nphys3172
|
10 |
Shao H., Q. Qin Y., Capponi S., Chesi S., Y. Meng Z., and W. Sandvik A., Nearly deconfined spinon excitations in the square-lattice spin-1/2 Heisenberg antiferromagnet, Phys. Rev. X 7(4), 041072 (2017)
https://doi.org/10.1103/PhysRevX.7.041072
|
11 |
R. P. Singh R. and P. Gelfand M., Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets, Phys. Rev. B 52(22), R15695 (1995)
https://doi.org/10.1103/PhysRevB.52.R15695
|
12 |
W. Sandvik A. and R. P. Singh R., High-energy magnon dispersion and multimagnon continuum in the two-dimensional Heisenberg antiferromagnet, Phys. Rev. Lett. 86(3), 528 (2001)
https://doi.org/10.1103/PhysRevLett.86.528
|
13 |
Yang L. and E. Feiguin A., From deconfined spinons to coherent magnons in an antiferromagnetic Heisenberg chain with long-range interactions, SciPost Phys. 10(5), 110 (2021)
https://doi.org/10.21468/SciPostPhys.10.5.110
|
14 |
Powalski M., P. Schmidt K., and S. Uhrig G., Mutually attracting spin waves in the square-lattice quantum antiferromagnet, SciPost Phys. 4, 001 (2018)
https://doi.org/10.21468/SciPostPhys.4.1.001
|
15 |
Powalski M., S. Uhrig G., and P. Schmidt K., Roton minimum as a fingerprint of Magnon‒Higgs scattering in ordered quantum antiferromagnets, Phys. Rev. Lett. 115(20), 207202 (2015)
https://doi.org/10.1103/PhysRevLett.115.207202
|
16 |
Y. Sun G., C. Wang Y., Fang C., Qi Y., Cheng M., and Y. Meng Z., Dynamical signature of symmetry fractionalization in frustrated magnets, Phys. Rev. Lett. 121(7), 077201 (2018)
https://doi.org/10.1103/PhysRevLett.121.077201
|
17 |
Q. Qin Y., Normand B., W. Sandvik A., and Y. Meng Z., Amplitude mode in three-dimensional dimerized antiferromagnets, Phys. Rev. Lett. 118(14), 147207 (2017)
https://doi.org/10.1103/PhysRevLett.118.147207
|
18 |
Lohöfer M. and Wessel S., Excitation-gap scaling near quantum critical three-dimensional antiferromagnets, Phys. Rev. Lett. 118(14), 147206 (2017)
https://doi.org/10.1103/PhysRevLett.118.147206
|
19 |
K. Fang J., H. Huang J., Q. Wu H., and X. Yao D., Dynamical properties of the Haldane chain with bond disorder, Front. Phys. 17(3), 33503 (2022)
https://doi.org/10.1007/s11467-021-1124-3
|
20 |
Shen Y., Liu C., Qin Y., Shen S., D. Li Y., Bewley R., Schneidewind A., Chen G., and Zhao J., Intertwined dipolar and multipolar order in the triangular-lattice magnet TmMgGaO4, Nat. Commun. 10(1), 4530 (2019)
https://doi.org/10.1038/s41467-019-12410-3
|
21 |
Zhou Z., Liu C., Yan Z., Chen Y., and F. Zhang X., Quantum dynamics of topological strings in a frustrated Ising antiferromagnet, npj Quantum Mater. 7, 60 (2022)
https://doi.org/10.1038/s41535-022-00465-3
|
22 |
Majumder M., Kanungo S., Ghoshray A., Ghosh M., and Ghoshray K., Magnetism of the spin-trimer compound CaNi3(P2O7)2: Microscopic insight from combined 31P NMR and first-principles studies, Phys. Rev. B 91(10), 104422 (2015)
https://doi.org/10.1103/PhysRevB.91.104422
|
23 |
Shen Y., Sears J., Fabbris G., Weichselbaum A., Yin W., Zhao H., G. Mazzone D., Miao H., H. Upton M., Casa D., Acevedo-Esteves R., Nelson C., M. Barbour A., Mazzoli C., Cao G., and P. M. Dean M., Emergence of spinons in layered trimer iridate Ba4Ir3O10, Phys. Rev. Lett. 129(20), 207201 (2022)
https://doi.org/10.1103/PhysRevLett.129.207201
|
24 |
Cao G., Zheng H., Zhao H., Ni Y., A. Pocs C., et al.. Quantum liquid from strange frustration in the trimer magnet Ba4Ir3O10, npj Quantum Mater. 5, 26 (2020)
https://doi.org/10.1038/s41535-020-0232-6
|
25 |
Cao G., Zhao H., Hu B., Pellatz N., Reznik D., Schlottmann P., and Kimchi I., Quest for quantum states via field-altering technology, npj Quantum Mater. 5, 83 (2020)
https://doi.org/10.1038/s41535-020-00286-2
|
26 |
Chen X., He Y., Wu S., Song Y., Yuan D., Bourret-Courchesne E., P. C. Ruff J., Islam Z., Frano A., and J. Birgeneau R., Structural and magnetic transitions in the planar antiferromagnet Ba4Ir3O10, Phys. Rev. B 103(22), 224420 (2021)
https://doi.org/10.1103/PhysRevB.103.224420
|
27 |
Sokolik A., Hakani S., Roy S., Pellatz N., Zhao H., Cao G., Kimchi I., and Reznik D., Spinons and damped phonons in the spin-1/2 quantum liquid Ba4Ir3O10 observed by Raman scattering, Phys. Rev. B 106(7), 075108 (2022)
https://doi.org/10.1103/PhysRevB.106.075108
|
28 |
Jiang Q. and X. Yao D., Magnetic order driven by orbital ordering in the semiconducting KFe1.5Se2, Front. Phys. 11(2), 117401 (2016)
https://doi.org/10.1007/s11467-015-0527-4
|
29 |
Nie X.Li J.Datta T.X. Yao D., A spin–rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk, Front. Phys. 19(5), 53201 (2024)
|
30 |
Xu Y., Xiong Z., Q. Wu H., and X. Yao D., Spin excitation spectra of the two-dimensional S = 1/2 Heisenberg model with a checkerboard structure, Phys. Rev. B 99(8), 085112 (2019)
https://doi.org/10.1103/PhysRevB.99.085112
|
31 |
Yan T., Jin S., Xiong Z., Li J., and X. Yao D., Magnetic excitations of diagonally coupled checkerboards, Chin. Phys. B 30(10), 107505 (2021)
https://doi.org/10.1088/1674-1056/ac1b94
|
32 |
Ma N., Y. Sun G., Z. You Y., Xu C., Vishwanath A., W. Sandvik A., and Y. Meng Z., Dynamical signature of fractionalization at a deconfined quantum critical point, Phys. Rev. B 98(17), 174421 (2018)
https://doi.org/10.1103/PhysRevB.98.174421
|
33 |
Ran X., Ma N., and X. Yao D., Criticality and scaling corrections for two-dimensional Heisenberg models in plaquette patterns with strong and weak couplings, Phys. Rev. B 99(17), 174434 (2019)
https://doi.org/10.1103/PhysRevB.99.174434
|
34 |
Tan Y. and X. Yao D., Spin waves and phase transition on a magnetically frustrated square lattice with long-range interactions, Front. Phys. 18(3), 33309 (2023)
https://doi.org/10.1007/s11467-022-1238-2
|
35 |
Q. Cheng J., Li J., Xiong Z., Q. Wu H., W. Sandvik A., and X. Yao D., Fractional and composite excitations of antiferromagnetic quantum spin trimer chains, npj Quantum Mater. 7, 3 (2022)
https://doi.org/10.1038/s41535-021-00416-4
|
36 |
Strohmaier N., Greif D., Jördens R., Tarruell L., Moritz H., Esslinger T., Sensarma R., Pekker D., Altman E., and Demler E., Observation of elastic doublon decay in the Fermi‒Hubbard model, Phys. Rev. Lett. 104(8), 080401 (2010)
https://doi.org/10.1103/PhysRevLett.104.080401
|
37 |
Terashige T., Ono T., Miyamoto T., Morimoto T., Yamakawa H., Kida N., Ito T., Sasagawa T., Tohyama T., and Okamoto H., Doublon‒Holon pairing mechanism via exchange interaction in two-dimensional cuprate Mott insulators, Sci. Adv. 5(6), eaav2187 (2019)
https://doi.org/10.1126/sciadv.aav2187
|
38 |
Ye Y., Peng K., Naghiloo M., Cunningham G., and P. O’Brien K., Engineering purely nonlinear coupling between superconducting qubits using a quarton, Phys. Rev. Lett. 127(5), 050502 (2021)
https://doi.org/10.1103/PhysRevLett.127.050502
|
39 |
K. Bera A., Yusuf S., K. Saha S., Kumar M., Voneshen D., Skourski Y., and A. Zvyagin S., Emergent many-body composite excitations of interacting spin-1/2 trimers, Nat. Commun. 13(1), 6888 (2022)
https://doi.org/10.1038/s41467-022-34342-1
|
40 |
Q. Cheng J.Y. Ning Z.Q. Wu H.X. Yao D., Quantum phase transitions and composite excitations of antiferromagnetic quantum spin trimer chains in a magnetic field, arXiv: 2402.00272 (2024)
|
41 |
Klein Y., Rousse G., Damay F., Porcher F., André G., and Terasaki I., Antiferromagnetic order and consequences on the transport properties of Ba4Ru3O10, Phys. Rev. B 84, 054439 (2011)
https://doi.org/10.1103/PhysRevB.84.054439
|
42 |
Igarashi T., Okazaki R., Taniguchi H., Yasui Y., and Terasaki I., Effects of the Ir impurity on the thermodynamic and transport properties of Ba4Ru3O10, J. Phys. Soc. Jpn. 84(9), 094601 (2015)
https://doi.org/10.7566/JPSJ.84.094601
|
43 |
Weber L., Honecker A., Normand B., Corboz P., Mila F., and Wessel S., Quantum Monte Carlo simulations in the trimer basis: First-order transitions and thermal critical points in frustrated trilayer magnets, SciPost Phys. 12, 054 (2022)
https://doi.org/10.21468/SciPostPhys.12.2.054
|
44 |
Yang H., Zeng J., You S., Han Y., and Qiao Z., Equipartition of current in metallic armchair nanoribbon of graphene-based device, Front. Phys. 17(6), 63508 (2022)
https://doi.org/10.1007/s11467-022-1201-2
|
45 |
Bolens A. and Nagaosa N., Topological states on the breathing kagomé lattice, Phys. Rev. B 99(16), 165141 (2019)
https://doi.org/10.1103/PhysRevB.99.165141
|
46 |
Farnell D., Emergence of magnetic order in kagomé antiferromagnets, Front. Phys. 14(2), 23302 (2019)
https://doi.org/10.1007/s11467-019-0886-3
|
47 |
Chen Y., Wu W., Liu G., Tao H., and Liu W., Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223 (2012)
https://doi.org/10.1007/s11467-012-0247-y
|
48 |
Weichselbaum A., Yin W., and M. Tsvelik A., Dimerization and spin decoupling in a two-leg Heisenberg ladder with frustrated trimer rungs, Phys. Rev. B 103(12), 125120 (2021)
https://doi.org/10.1103/PhysRevB.103.125120
|
49 |
F. Gull S. and Skilling J., Maximum entropy method in image processing, IEE Proceedings F 131(6), 646 (1984)
https://doi.org/10.1049/ip-f-1.1984.0099
|
50 |
Bergeron D. and M. S. Tremblay A., Algorithms for optimized maximum entropy and diagnostic tools for analytic continuation, Phys. Rev. E 94(2), 023303 (2016)
https://doi.org/10.1103/PhysRevE.94.023303
|
51 |
W. Sandvik A., Stochastic method for analytic continuation of quantum Monte Carlo data, Phys. Rev. B 57(17), 10287 (1998)
https://doi.org/10.1103/PhysRevB.57.10287
|
52 |
W. Sandvik A., Constrained sampling method for analytic continuation, Phys. Rev. E 94(6), 063308 (2016)
https://doi.org/10.1103/PhysRevE.94.063308
|
53 |
S. D. Beach K., Identifying the maximum entropy method as a special limit of stochastic analytic continuation, arXiv: cond-mat/0403055 (2004)
|
54 |
O. Löwdin P., A note on the quantum-mechanical perturbation theory, J. Chem. Phys. 19(11), 1396 (1951)
|
55 |
L. Chernyshev A. and E. Zhitomirsky M., Magnon decay in noncollinear quantum antiferromagnets, Phys. Rev. Lett. 97(20), 207202 (2006)
https://doi.org/10.1103/PhysRevLett.97.207202
|
56 |
Kato T., Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, 2013
|
57 |
H. Huang J., Liu Z., Q. Wu H., and X. Yao D., Ground states and dynamical properties of the S > 1/2 quantum Heisenberg model on the 1/5-depleted square lattice, Phys. Rev. B 106(8), 085101 (2022)
https://doi.org/10.1103/PhysRevB.106.085101
|
58 |
Vafayi K. and Gunnarsson O., Analytical continuation of spectral data from imaginary time axis to real frequency axis using statistical sampling, Phys. Rev. B 76(3), 035115 (2007)
https://doi.org/10.1103/PhysRevB.76.035115
|
59 |
R. Reichman D. and Rabani E., Analytic continuation average spectrum method for quantum liquids, J. Chem. Phys. 131(5), 054502 (2009)
https://doi.org/10.1063/1.3185728
|
60 |
F. Syljuåsen O., Using the average spectrum method to extract dynamics from quantum Monte Carlo simulations, Phys. Rev. B 78(17), 174429 (2008)
https://doi.org/10.1103/PhysRevB.78.174429
|
61 |
Fuchs S., Pruschke T., and Jarrell M., Analytic continuation of quantum Monte Carlo data by stochastic analytical inference, Phys. Rev. E 81(5), 056701 (2010)
https://doi.org/10.1103/PhysRevE.81.056701
|
62 |
Ghanem K. and Koch E., Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid, Phys. Rev. B 101(8), 085111 (2020)
https://doi.org/10.1103/PhysRevB.101.085111
|
63 |
Ghanem K. and Koch E., Extending the average spectrum method: Grid point sampling and density averaging, Phys. Rev. B 102(3), 035114 (2020)
https://doi.org/10.1103/PhysRevB.102.035114
|
64 |
Shao H. and W. Sandvik A., Progress on stochastic analytic continuation of quantum Monte Carlo data, Phys. Rep. 1003, 1 (2023)
https://doi.org/10.1016/j.physrep.2022.11.002
|
65 |
L. Yu S., Wang W., Y. Dong Z., J. Yao Z., and X. Li J., Deconfinement of spinons in frustrated spin systems: Spectral perspective, Phys. Rev. B 98(13), 134410 (2018)
https://doi.org/10.1103/PhysRevB.98.134410
|
66 |
Sénéchal D., Perez D., and Pioro-Ladriere M., Spectral weight of the Hubbard model through cluster perturbation theory, Phys. Rev. Lett. 84(3), 522 (2000)
https://doi.org/10.1103/PhysRevLett.84.522
|
67 |
S. Ovchinnikov A., G. Bostrem I., and E. Sinitsyn V., Cluster perturbation theory for spin Hamiltonians, Theor. Math. Phys. 162(2), 179 (2010)
https://doi.org/10.1007/s11232-010-0013-7
|
68 |
Wu J., P. L. Faye J., Sénéchal D., and Maciejko J., Quantum cluster approach to the spinful Haldane‒Hubbard model, Phys. Rev. B 93(7), 075131 (2016)
https://doi.org/10.1103/PhysRevB.93.075131
|
69 |
Dahnken C., Aichhorn M., Hanke W., Arrigoni E., and Potthoff M., Variational cluster approach to spontaneous symmetry breaking: The itinerant antiferromagnet in two dimensions, Phys. Rev. B 70(24), 245110 (2004)
https://doi.org/10.1103/PhysRevB.70.245110
|
70 |
Maier T., Jarrell M., Pruschke T., and H. Hettler M., Quantum cluster theories, Rev. Mod. Phys. 77(3), 1027 (2005)
https://doi.org/10.1103/RevModPhys.77.1027
|
71 |
W. Sandvik A. and G. Evertz H., Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis, Phys. Rev. B 82(2), 024407 (2010)
https://doi.org/10.1103/PhysRevB.82.024407
|
72 |
Gerber U., P. Hofmann C., J. Jiang F., Nyfeler M., and J. Wiese U., The constraint effective potential of the staggered magnetization in an antiferromagnet, J. Stat. Mech-theory E 2009, P03021 (2009)
https://doi.org/10.1088/1742-5468/2009/03/P03021
|
73 |
B. Beard B., J. Birgeneau R., Greven M., and J. Wiese U., Square-lattice Heisenberg antiferromagnet at very large correlation lengths, Phys. Rev. Lett. 80(8), 1742 (1998)
https://doi.org/10.1103/PhysRevLett.80.1742
|
74 |
K. Bera A., M. Yusuf S., Kumar A., Majumder M., Ghoshray K., and Keller L., Long-range and shortrange magnetic correlations, and microscopic origin of net magnetization in the spin-1 trimer chain compound CaNi3P4O14, Phys. Rev. B 93(18), 184409 (2016)
https://doi.org/10.1103/PhysRevB.93.184409
|
75 |
K. Bera A., M. Yusuf S., and T. Adroja D., Excitations in the spin-1 trimer chain compound CaNi3P4O14: From gapped dispersive spin waves to gapless magnetic excitations, Phys. Rev. B 97(22), 224413 (2018)
https://doi.org/10.1103/PhysRevB.97.224413
|
76 |
Hase M., Kitazawa H., Tsujii N., Ozawa K., Kohno M., and Kido G., Ferrimagnetic long-range order caused by periodicity of exchange interactions in the spin-1 trimer chain compounds ANi3P4O14 (A = Ca, Sr, Pb, Ba), Phys. Rev. B 74(2), 024430 (2006)
https://doi.org/10.1103/PhysRevB.74.024430
|
77 |
Zhou C., Yan Z., Q. Wu H., Sun K., A. Starykh O., and Y. Meng Z., Amplitude mode in quantum magnets via dimensional crossover, Phys. Rev. Lett. 126(22), 227201 (2021)
https://doi.org/10.1103/PhysRevLett.126.227201
|
78 |
Lin Z., H. Choi J., Zhang Q., Qin W., Yi S., Wang P., Li L., Wang Y., Zhang H., Sun Z., Wei L., Zhang S., Guo T., Lu Q., H. Cho J., Zeng C., and Zhang Z., Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagomé lattices, Phys. Rev. Lett. 121(9), 096401 (2018)
https://doi.org/10.1103/PhysRevLett.121.096401
|
79 |
Wu C., Bergman D., Balents L., and Das Sarma S., Flat bands and Wigner crystallization in the honeycomb optical lattice, Phys. Rev. Lett. 99(7), 070401 (2007)
https://doi.org/10.1103/PhysRevLett.99.070401
|
80 |
X. Yin J., S. Zhang S., Chang G., Wang Q., S. Tsirkin S., Guguchia Z., Lian B., Zhou H., Jiang K., Belopolski I., Shumiya N., Multer D., Litskevich M., A. Cochran T., Lin H., Wang Z., Neupert T., Jia S., Lei H., and Z. Hasan M., Negative flat band magnetism in a spin–orbit coupled correlated kagomé magnet, Nat. Phys. 15(5), 443 (2019)
https://doi.org/10.1038/s41567-019-0426-7
|
81 |
Li M., Wang Q., Wang G., Yuan Z., Song W., Lou R., Liu Z., Huang Y., Liu Z., Lei H., Yin Z., and Wang S., Dirac cone, flat band and saddle point in kagomé magnet YMn6Sn6, Nat. Commun. 12(1), 3129 (2021)
https://doi.org/10.1038/s41467-021-23536-8
|
82 |
Luo C., Datta T., Huang Z., and X. Yao D., Signatures of indirect k-edge resonant inelastic X-ray scattering on magnetic excitations in a triangular-lattice antiferromagnet, Phys. Rev. B 92(3), 035109 (2015)
https://doi.org/10.1103/PhysRevB.92.035109
|
83 |
Luo C., Datta T., and X. Yao D., Spectrum splitting of bimagnon excitations in a spatially frustrated Heisenberg antiferromagnet revealed by resonant inelastic X-ray scat tering, Phys. Rev. B 89(16), 165103 (2014)
https://doi.org/10.1103/PhysRevB.89.165103
|
84 |
R. Shu Y., X. Yao D., W. Ke C., C. Lin Y., and W. Sandvik A., Properties of the random-singlet phase: From the disordered Heisenberg chain to an amorphous valence-bond solid, Phys. Rev. B 94, 174442 (2016)
https://doi.org/10.1103/PhysRevB.94.174442
|
85 |
Q. Wu H., S. Gong S., and N. Sheng D., Randomness-induced spin-liquid-like phase in the spin-1/2 J1−J2 triangular Heisenberg model, Phys. Rev. B 99, 085141 (2019)
https://doi.org/10.1103/PhysRevB.99.085141
|
86 |
Jullien R., Pfeuty P., N. Fields J., and Doniach S., Zerotemperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension, Phys. Rev. B 18(7), 3568 (1978)
https://doi.org/10.1103/PhysRevB.18.3568
|
87 |
A. Martín-Delgado M. and Sierra G., Real space renormalization group methods and quantum groups, Phys. Rev. Lett. 76(7), 1146 (1996)
https://doi.org/10.1103/PhysRevLett.76.1146
|
88 |
Kargarian M., Jafari R., and Langari A., Renormalization of entanglement in the anisotropic Heisenberg XXZ model, Phys. Rev. A 77(3), 032346 (2008)
https://doi.org/10.1103/PhysRevA.77.032346
|
89 |
Q. Cheng J., Wu W., and B. Xu J., Multipartite entanglement in an XXZ spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition, Quantum Inform. Process. 16(9), 231 (2017)
https://doi.org/10.1007/s11128-017-1683-y
|
90 |
Usman M., Ilyas A., and Khan K., Quantum renormalization group of the XY model in two dimensions, Phys. Rev. A 92(3), 032327 (2015)
https://doi.org/10.1103/PhysRevA.92.032327
|
91 |
Q. Cheng J. and B. Xu J., Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiński fractal lattices, Phys. Rev. E 97(6), 062134 (2018)
https://doi.org/10.1103/PhysRevE.97.062134
|
92 |
Wessel S., Normand B., Mila F., and Honecker A., Efficient quantum Monte Carlo simulations of highly frustrated magnets: The frustrated spin-1/2 ladder, SciPost Phys. 3, 005 (2017)
https://doi.org/10.21468/SciPostPhys.3.1.005
|
93 |
Honecker A., Weber L., Corboz P., Mila F., and Wessel S., Quantum Monte Carlo simulations of highly frustrated magnets in a cluster basis: The two-dimensional Shastry−Sutherland model, J. Phys. Conf. Ser. 2207(1), 012032 (2022)
https://doi.org/10.1088/1742-6596/2207/1/012032
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|