|
|
Multi-conditioned controlled growth of CoBi nanostructures on SrTiO3 |
Desheng Cai1,2, Yumin Xia1,2, Pengju Li1,2, Kun Xie1,2, Yuzhou Liu1,2, Yitong Gu1,2, Gan Yu1,2, Changgan Zeng1,2,3, Ping Cui1,3, Shengyong Qin1,2,3( ) |
1. International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei 230026, China 2. CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China 3. Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China |
|
|
Abstract Cobalt pnictides have been theoretically proposed to be attractive candidates for high-temperature superconductors. Additionally, monolayered CoX (X = As, Sb, Bi) on SrTiO3 systems present a potential new platform for realizing topological superconductors in the two-dimensional limit, due to their nontrivial band topology. To this end, we have successfully fabricated high-quality CoBi nanoislands on SrTiO3 (001) substrates by molecular beam epitaxy followed by an investigation of their atomic structure and electronic properties via in situ scanning tunneling microscopy/spectroscopy. Beyond the previously predicted lattice with a = b = 3.5 Å, 2 × 1 dimer row was observed in this study. Furthermore, our results reveal that the topography of CoBi islands is strongly influenced by various growth conditions, such as substrate temperature, the flux ratio between Co and Bi, and the annealing process. This study paves the way for further explorations of the superconductivity and topological properties of cobalt pnictide systems.
|
Keywords
CoBi/SrTiO3
molecular beam epitaxy
scanning tunneling microscopy
scanning tunneling spectroscopy
nanostructure
|
Corresponding Author(s):
Shengyong Qin
|
Issue Date: 17 July 2024
|
|
1 |
G. Bednorz J. and A. Müller K. , Possible high Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. B 64(2), 189 (1986)
https://doi.org/10.1007/BF01303701
|
2 |
K. Wu M. , R. Ashburn J. , J. Torng C. , H. Hor P. , L. Meng R. , Gao L. , J. Huang Z. , Q. Wang Y. , and W. Chu C. , Superconductivity at 93 K in a new mixed-phase Yb–Ba–Cu–O compound system at ambient pressure, Phys. Rev. Lett. 58(9), 908 (1987)
https://doi.org/10.1103/PhysRevLett.58.908
|
3 |
Schilling A. , Cantoni M. , D. Guo J. , and R. Ott H. , Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system, Nature 363(6424), 56 (1993)
https://doi.org/10.1038/363056a0
|
4 |
Kamihara Y. , Watanabe T. , Hirano M. , and Hosono H. , Iron-based layered superconductor La[O1–xFx]FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
|
5 |
Takahashi H. , Igawa K. , Arii K. , Kamihara Y. , Hirano M. , and Hosono H. , Superconductivity at 43 K in an iron-based layered compound LaO1–xFxFeAs, Nature 453(7193), 376 (2008)
https://doi.org/10.1038/nature06972
|
6 |
H. Chen X. , Wu T. , Wu G. , H. Liu R. , Chen H. , and F. Fang D. , Superconductivity at 43 K in SmFeAsO1–xFx, Nature 453(7196), 761 (2008)
https://doi.org/10.1038/nature07045
|
7 |
X. Yao D. , Iron-based superconductors: A new family to find the origin of high Tc superconductivity, Front. Phys. 6(4), 344 (2011)
https://doi.org/10.1007/s11467-011-0218-8
|
8 |
Li D. , Lee K. , Y. Wang B. , Osada M. , Crossley S. , R. Lee H. , Cui Y. , Hikita Y. , and Y. Hwang H. , Superconductivity in an infinite-layer nickelate, Nature 572(7771), 624 (2019)
https://doi.org/10.1038/s41586-019-1496-5
|
9 |
Osada M. , Y. Wang B. , H. Goodge B. , P. Harvey S. , Lee K. , Li D. , F. Kourkoutis L. , and Y. Hwang H. , Nickelate superconductivity without rare-earth magnetism:(La, Sr)NiO2, Adv. Mater. 33(45), 2104083 (2021)
https://doi.org/10.1002/adma.202104083
|
10 |
Zeng S. , Li C. , E. Chow L. , Cao Y. , Zhang Z. , S. Tang C. , Yin X. , S. Lim Z. , Hu J. , Yang P. , and Ariando A. , Superconductivity in infinite-layer nickelate La1–xCaxNiO2 thin films, Sci. Adv. 8(7), eabl9927 (2022)
https://doi.org/10.1126/sciadv.abl9927
|
11 |
Xu M. , Zhao Y. , Ding X. , Leng H. , Zhang S. , Gong J. , Xiao H. , Zu X. , Luo H. , J. Zhou K. , Huang B. , and Qiao L. , Optimization for epitaxial fabrication of infinite-layer nickelate superconductors, Front. Phys. 19(3), 33209 (2024)
https://doi.org/10.1007/s11467-023-1368-1
|
12 |
L. Song C. , L. Wang Y. , Cheng P. , P. Jiang Y. , Li W. , Zhang T. , Li Z. , He K. , Wang L. , F. Jia J. , H. Hung H. , Wu C. , Ma X. , Chen X. , and K. Xue Q. , Direct observation of nodes and two-fold symmetry in FeSe superconductor, Science 332(6036), 1410 (2011)
https://doi.org/10.1126/science.1202226
|
13 |
Fan Q. , H. Zhang W. , Liu X. , J. Yan Y. , Q. Ren M. , Peng R. , C. Xu H. , P. Xie B. , P. Hu J. , Zhang T. , and L. Feng D. , Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy, Nat. Phys. 11(11), 946 (2015)
https://doi.org/10.1038/nphys3450
|
14 |
Chen C. , Liu Q. , C. Bao W. , Yan Y. , H. Wang Q. , Zhang T. , and Feng D. , Observation of discrete conventional Caroli–de Gennes-Matricon states in the vortex core of single-layer FeSe/SrTiO3, Phys. Rev. Lett. 124(9), 097001 (2020)
https://doi.org/10.1103/PhysRevLett.124.097001
|
15 |
Y. Wang Q. , Li Z. , H. Zhang W. , C. Zhang Z. , S. Zhang J. , Li W. , Ding H. , B. Ou Y. , Deng P. , Chang K. , Wen J. , L. Song C. , He K. , F. Jia J. , H. Ji S. , Y. Wang Y. , L. Wang L. , Chen X. , C. Ma X. , and K. Xue Q. , Interface-induced high-temperature superconductivity in single unit-cell FeSe films SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)
https://doi.org/10.1088/0256-307X/29/3/037402
|
16 |
He S. , He J. , Zhang W. , Zhao L. , Liu D. , Liu X. , Mou D. , B. Ou Y. , Y. Wang Q. , Li Z. , Wang L. , Peng Y. , Liu Y. , Chen C. , Yu L. , Liu G. , Dong X. , Zhang J. , Chen C. , Xu Z. , Chen X. , Ma X. , Xue Q. , and J. Zhou X. , Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)
https://doi.org/10.1038/nmat3648
|
17 |
Feng B. , Zhang J. , Zhong Q. , Li W. , Li S. , Li H. , Cheng P. , Meng S. , Chen L. , and Wu K. , Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
https://doi.org/10.1038/nchem.2491
|
18 |
L. Zhang J. , Zhao S. , Han C. , Wang Z. , Zhong S. , Sun S. , Guo R. , Zhou X. , D. Gu C. , D. Yuan K. , Li Z. , and Chen W. , Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus, Nano Lett. 16(8), 4903 (2016)
https://doi.org/10.1021/acs.nanolett.6b01459
|
19 |
J. Mannix A. , Zhang Z. , P. Guisinger N. , I. Yakobson B. , and C. Hersam M. , Borophene as a prototype for synthetic 2D materials development, Nat. Nanotechnol. 13(6), 444 (2018)
https://doi.org/10.1038/s41565-018-0157-4
|
20 |
Y. Huang M. , X. Jiang X. , S. Zheng Y. , W. Xu Z. , X. Xue X. , Q. Chen K. , and X. Feng Y. , Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties, Front. Phys. 17(5), 53504 (2022)
https://doi.org/10.1007/s11467-022-1154-5
|
21 |
Lei B. , Li A. , Zhou W. , Wang Y. , Xiong W. , Chen Y. , and Ouyang F. , Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2, Front. Phys. 19(4), 43200 (2024)
https://doi.org/10.1007/s11467-023-1387-y
|
22 |
Zhu Z. , Cai X. , Yi S. , Chen J. , Dai Y. , Niu C. , Guo Z. , Xie M. , Liu F. , H. Cho J. , Jia Y. , and Zhang Z. , Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
https://doi.org/10.1103/PhysRevLett.119.106101
|
23 |
X. Wang Y. , Qiu G. , X. Wang R. , Y. Huang S. , X. Wang Q. , Y. Liu Y. , C. Du Y. , A. III Goddard W. , J. Kim M. , F. Xu X. , D. Ye P. , and Z. Wu W. , Field-effect transistors made from solution-grown two-dimensional tellurene, Nat. Electron. 1(4), 228 (2018)
https://doi.org/10.1038/s41928-018-0058-4
|
24 |
J. Xie Z. , Y. Xing C. , C. Huang W. , J. Fan T. , J. Li Z. , L. Zhao J. , J. Xiang Y. , N. Guo Z. , Q. Li J. , G. Yang Z. , Q. Dong B. , L. Qu J. , Y. Fan D. , and Zhang H. , Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability, Adv. Funct. Mater. 28(16), 1705833 (2018)
https://doi.org/10.1002/adfm.201705833
|
25 |
Ding W. , Zeng J. , Qin W. , Cui P. , and Zhang Z. , Exploring high transition temperature superconductivity in a freestanding or SrTiO3-supported CoSb monolayer, Phys. Rev. Lett. 124(2), 027002 (2020)
https://doi.org/10.1103/PhysRevLett.124.027002
|
26 |
Gao J. , Ding W. , Zhang S. , Zhang Z. , and Cui P. , Coexistence of superconductivity and nontrivial band topology in monolayered cobalt pnictides on SrTiO3, Nano Lett. 21(17), 7396 (2021)
https://doi.org/10.1021/acs.nanolett.1c02830
|
27 |
Ding C. , Gong G. , Liu Y. , Zheng F. , Zhang Z. , Yang H. , Li Z. , Xing Y. , Ge J. , He K. , Li W. , Zhang P. , Wang J. , Wang L. , and K. Xue Q. , Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3, ACS Nano 13(9), 10434 (2019)
https://doi.org/10.1021/acsnano.9b04223
|
28 |
Lou R. , Y. A. Lei M. , J. Ding W. , T. Yang W. , Y. Chen X. , Tao R. , Y. Ding S. , P. Shen X. , J. Yan Y. , Cui P. , C. Xu H. , Peng R. , Zhang T. , Y. Zhang Z. , and L. Feng D. , Electronic structure and signature of Tomonaga–Luttinger liquid state in epitaxial CoSb1−x nanoribbons, npj Quantum Mater. 6(1), 79 (2021)
https://doi.org/10.1038/s41535-021-00381-y
|
29 |
J. Lee J. , T. Schmitt F. , G. Moore R. , Johnston S. , T. Cui Y. , Li W. , Yi M. , K. Liu Z. , Hashimoto M. , Zhang Y. , H. Lu D. , P. Devereaux T. , H. Lee D. , and X. Shen Z. , Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3, Nature 515(7526), 245 (2014)
https://doi.org/10.1038/nature13894
|
30 |
Gerber S. , L. Yang S. , Zhu D. , Soifer H. , A. Sobota J. , Rebec S. , J. Lee J. , Jia T. , Moritz B. , Jia C. , Gauthier A. , Li Y. , Leuenberger D. , Zhang Y. , Chaix L. , Li W. , Jang H. , S. Lee J. , Yi M. , L. Dakovski G. , Song S. , M. Glownia J. , Nelson S. , W. Kim K. , D. Chuang Y. , Hussain Z. , G. Moore R. , P. Devereaux T. , S. Lee W. , S. Kirchmann P. , and X. Shen Z. , Femtosecond electron−phonon lock-in by photoemission and X-ray free-electron laser, Science 357(6346), 71 (2017)
https://doi.org/10.1126/science.aak9946
|
31 |
Zhang S. , Wei T. , Guan J. , Zhu Q. , Qin W. , Wang W. , Zhang J. , W. Plummer E. , Zhu X. , Zhang Z. , and Guo J. , Enhanced superconducting state in FeSe/SrTiO3 by a dynamic interfacial polaron mechanism, Phys. Rev. Lett. 122(6), 066802 (2019)
https://doi.org/10.1103/PhysRevLett.122.066802
|
32 |
Horcas I.Fernandez R.M. Gomez-Rodriguez J.Colchero J.Gomez-Herrero J.M. Baro A., WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum. 78(1), 013705 (2007)
|
33 |
Qin S. , Kim J. , Niu Q. , and K. Shih C. , Superconductivity at the two-dimensional limit, Science 324(5932), 1314 (2009)
https://doi.org/10.1126/science.1170775
|
34 |
Cai F. , Li P. , Xie K. , Tang R. , and Qin S. , Superconductivity of Pb films studied with superconducting Pb tips, Sci. China Phys. Mech. 62(1), 1 (2018)
https://doi.org/10.1007/s11433-018-9269-3
|
35 |
Feng R. , H. Conrad E. , C. Tringides M. , Kim C. , and F. Miceli P. , Wetting-layer transformation for Pb nanocrystals grown on Si(111), Appl. Phys. Lett. 85(17), 3866 (2004)
https://doi.org/10.1063/1.1812593
|
36 |
M. Tromp R. , J. Hamers R. , and E. Demuth J. , Si(001) dimer structure observed with scanning tunneling microscopy, Phys. Rev. Lett. 55(12), 1303 (1985)
https://doi.org/10.1103/PhysRevLett.55.1303
|
37 |
Zhou W. , Zou X. , Najmaei S. , Liu Z. , Shi Y. , Kong J. , Lou J. , M. Ajayan P. , I. Yakobson B. , and C. Idrobo J. , Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 13(6), 2615 (2013)
https://doi.org/10.1021/nl4007479
|
38 |
Springholz G. and Wiesauer K. , Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy, Phys. Rev. Lett. 88(1), 015507 (2001)
https://doi.org/10.1103/PhysRevLett.88.015507
|
39 |
Sudheendra L. , Moshnyaga V. , D. Mishina E. , Damaschke B. , Rasing T. , and Samwer K. , Direct imaging of lattice-strain-induced stripe phases in an optimally doped manganite film, Phys. Rev. B 75(17), 172407 (2007)
https://doi.org/10.1103/PhysRevB.75.172407
|
40 |
Wright J. , Chang C. , Waters D. , Lupke F. , Feenstra R. , Raymond L. , Koscica R. , Khalsa G. , Muller D. , G. Xing H. , and Jena D. , Unexplored MBE growth mode reveals new properties of superconducting NbN, Phys. Rev. Mater. 5(2), 024802 (2021)
https://doi.org/10.1103/PhysRevMaterials.5.024802
|
41 |
Rajan A. , Underwood K. , Mazzola F. , and D. C. King P. , Morphology control of epitaxial monolayer transition metal dichalcogenides, Phys. Rev. Mater. 4(1), 014003 (2020)
https://doi.org/10.1103/PhysRevMaterials.4.014003
|
42 |
H. Yuan Y. , T. Wang X. , L. Song C. , L. Wang L. , He K. , C. Ma X. , Yao H. , Li W. , and K. Xue Q. , Observation of coulomb gap and enhanced superconducting gap in nano-sized Pb islands grown on SrTiO3, Chin. Phys. Lett. 37(1), 017402 (2020)
https://doi.org/10.1088/0256-307X/37/1/017402
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|