Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63205    https://doi.org/10.1007/s11467-024-1423-6
Multi-conditioned controlled growth of CoBi nanostructures on SrTiO3
Desheng Cai1,2, Yumin Xia1,2, Pengju Li1,2, Kun Xie1,2, Yuzhou Liu1,2, Yitong Gu1,2, Gan Yu1,2, Changgan Zeng1,2,3, Ping Cui1,3, Shengyong Qin1,2,3()
1. International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei 230026, China
2. CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China
3. Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
 Download: PDF(14842 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cobalt pnictides have been theoretically proposed to be attractive candidates for high-temperature superconductors. Additionally, monolayered CoX (X = As, Sb, Bi) on SrTiO3 systems present a potential new platform for realizing topological superconductors in the two-dimensional limit, due to their nontrivial band topology. To this end, we have successfully fabricated high-quality CoBi nanoislands on SrTiO3 (001) substrates by molecular beam epitaxy followed by an investigation of their atomic structure and electronic properties via in situ scanning tunneling microscopy/spectroscopy. Beyond the previously predicted lattice with a = b = 3.5 Å, 2 × 1 dimer row was observed in this study. Furthermore, our results reveal that the topography of CoBi islands is strongly influenced by various growth conditions, such as substrate temperature, the flux ratio between Co and Bi, and the annealing process. This study paves the way for further explorations of the superconductivity and topological properties of cobalt pnictide systems.

Keywords CoBi/SrTiO3      molecular beam epitaxy      scanning tunneling microscopy      scanning tunneling spectroscopy      nanostructure     
Corresponding Author(s): Shengyong Qin   
Issue Date: 17 July 2024
 Cite this article:   
Desheng Cai,Yumin Xia,Pengju Li, et al. Multi-conditioned controlled growth of CoBi nanostructures on SrTiO3[J]. Front. Phys. , 2024, 19(6): 63205.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1423-6
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63205
Fig.1  Epitaxial growth of CoBi on SrTiO3 (001) substrate. (a) Topographic image (100 nm × 100 nm, U = +8 V, I = 10 pA) of CoBi islands grown on SrTiO3 at 430 K. (b) Cross section of the STM image along the line in (a) (blue). (c) Atomically resolved topography measured on a CoBi island (6 nm × 6 nm, U = ?0.7 V, I = ?100 pA); the inset shows the fast Fourier transform (FFT) of the atomically resolved STM image of CoBi. (d) Typical dI/dV tunneling spectrum taken on the CoBi island. (e) PbO-type monolayered CoBi. The upper and lower panels show the top and side views, respectively. Reproduced with permission from Ref. [26].
Fig.2  Mismatched CoBi structure. (a) Topographic image (50 nm × 50 nm, U = +1 V, I = 10 pA) of CoBi islands. (b) Atomically resolved topography measured on a CoBi island in (a) (5 nm × 5 nm, U = +0.235 V, I = 110 pA).
Fig.3  Impact of varying substrate temperature on CoBi growth. (a) Topographic image (100 nm × 100 nm, U = +2 V, I = 10 pA) of the CoBi nanomesh grown on SrTiO3 at 100 K after annealing at 393 K for 8 h, Co and Bi cell temperatures at 1420 K and 670 K. (b) Cross section of the STM image along the line in (a) (black). (c) Topographic image (100 nm × 100 nm, U = +2 V, I = 30 pA) of CoBi islands grown on SrTiO3 at 100 K after annealing at 393 K for 8 hours, Co and Bi cell temperatures at 1420 K and 670 K; the inset shows the zoomed-in topography of a CoBi islands (5 nm × 5 nm, U = +0.1 V, I = 200 pA). (d) Cross section of the STM image along the line in (c) (blue). (e) Topographic image (100 nm × 100 nm, U = +1.5 V, I = 5 pA) of CoBi nanowires grown on SrTiO3 at 500 K, Co and Bi cell temperatures at 1320 K and 670 K; the inset shows the zoomed-in topography of a CoBi nanowire showing its striped surface (5 nm × 5 nm, U = +0.1 V, I = 200 pA). (f) Cross section of the STM image along the line in (e) (purple).
Fig.4  STM/STS characterization of CoBi islands of different sizes. (a) Topographic image (100 nm × 100 nm, U = +8 V, I = 5 pA) of CoBi islands grown on SrTiO3 at room temperature. (b) Cross section of the STM image along the line in (a) (black). (c) Zoomed-in topographic image (15 nm × 15 nm, U = +0.5 V, I = 100 pA) of island number 6. The top inset shows the atomically resolved topography measured in the flattened region in (c) (5 nm × 5 nm, U = +1 V, I = 10 pA), while the bottom inset shows the zoomed-in topography measured in the striped region in (c) (10 nm × 10 nm, U = +0.2 V, I = 1 nA). (d) Tunneling spectra taken on CoBi islands of different sizes and double logarithmic scale plot of Coulomb gap size and lateral size of CoBi islands. (e) Typical tunneling spectra taken on different size CoBi islands.
1 G. Bednorz J. and A. Müller K. , Possible high Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. B 64(2), 189 (1986)
https://doi.org/10.1007/BF01303701
2 K. Wu M. , R. Ashburn J. , J. Torng C. , H. Hor P. , L. Meng R. , Gao L. , J. Huang Z. , Q. Wang Y. , and W. Chu C. , Superconductivity at 93 K in a new mixed-phase Yb–Ba–Cu–O compound system at ambient pressure, Phys. Rev. Lett. 58(9), 908 (1987)
https://doi.org/10.1103/PhysRevLett.58.908
3 Schilling A. , Cantoni M. , D. Guo J. , and R. Ott H. , Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system, Nature 363(6424), 56 (1993)
https://doi.org/10.1038/363056a0
4 Kamihara Y. , Watanabe T. , Hirano M. , and Hosono H. , Iron-based layered superconductor La[O1–xFx]FeAs (x = 0.05–0.12) with Tc = 26 K, J. Am. Chem. Soc. 130(11), 3296 (2008)
https://doi.org/10.1021/ja800073m
5 Takahashi H. , Igawa K. , Arii K. , Kamihara Y. , Hirano M. , and Hosono H. , Superconductivity at 43 K in an iron-based layered compound LaO1–xFxFeAs, Nature 453(7193), 376 (2008)
https://doi.org/10.1038/nature06972
6 H. Chen X. , Wu T. , Wu G. , H. Liu R. , Chen H. , and F. Fang D. , Superconductivity at 43 K in SmFeAsO1–xFx, Nature 453(7196), 761 (2008)
https://doi.org/10.1038/nature07045
7 X. Yao D. , Iron-based superconductors: A new family to find the origin of high Tc superconductivity, Front. Phys. 6(4), 344 (2011)
https://doi.org/10.1007/s11467-011-0218-8
8 Li D. , Lee K. , Y. Wang B. , Osada M. , Crossley S. , R. Lee H. , Cui Y. , Hikita Y. , and Y. Hwang H. , Superconductivity in an infinite-layer nickelate, Nature 572(7771), 624 (2019)
https://doi.org/10.1038/s41586-019-1496-5
9 Osada M. , Y. Wang B. , H. Goodge B. , P. Harvey S. , Lee K. , Li D. , F. Kourkoutis L. , and Y. Hwang H. , Nickelate superconductivity without rare-earth magnetism:(La, Sr)NiO2, Adv. Mater. 33(45), 2104083 (2021)
https://doi.org/10.1002/adma.202104083
10 Zeng S. , Li C. , E. Chow L. , Cao Y. , Zhang Z. , S. Tang C. , Yin X. , S. Lim Z. , Hu J. , Yang P. , and Ariando A. , Superconductivity in infinite-layer nickelate La1–xCaxNiO2 thin films, Sci. Adv. 8(7), eabl9927 (2022)
https://doi.org/10.1126/sciadv.abl9927
11 Xu M. , Zhao Y. , Ding X. , Leng H. , Zhang S. , Gong J. , Xiao H. , Zu X. , Luo H. , J. Zhou K. , Huang B. , and Qiao L. , Optimization for epitaxial fabrication of infinite-layer nickelate superconductors, Front. Phys. 19(3), 33209 (2024)
https://doi.org/10.1007/s11467-023-1368-1
12 L. Song C. , L. Wang Y. , Cheng P. , P. Jiang Y. , Li W. , Zhang T. , Li Z. , He K. , Wang L. , F. Jia J. , H. Hung H. , Wu C. , Ma X. , Chen X. , and K. Xue Q. , Direct observation of nodes and two-fold symmetry in FeSe superconductor, Science 332(6036), 1410 (2011)
https://doi.org/10.1126/science.1202226
13 Fan Q. , H. Zhang W. , Liu X. , J. Yan Y. , Q. Ren M. , Peng R. , C. Xu H. , P. Xie B. , P. Hu J. , Zhang T. , and L. Feng D. , Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy, Nat. Phys. 11(11), 946 (2015)
https://doi.org/10.1038/nphys3450
14 Chen C. , Liu Q. , C. Bao W. , Yan Y. , H. Wang Q. , Zhang T. , and Feng D. , Observation of discrete conventional Caroli–de Gennes-Matricon states in the vortex core of single-layer FeSe/SrTiO3, Phys. Rev. Lett. 124(9), 097001 (2020)
https://doi.org/10.1103/PhysRevLett.124.097001
15 Y. Wang Q. , Li Z. , H. Zhang W. , C. Zhang Z. , S. Zhang J. , Li W. , Ding H. , B. Ou Y. , Deng P. , Chang K. , Wen J. , L. Song C. , He K. , F. Jia J. , H. Ji S. , Y. Wang Y. , L. Wang L. , Chen X. , C. Ma X. , and K. Xue Q. , Interface-induced high-temperature superconductivity in single unit-cell FeSe films SrTiO3, Chin. Phys. Lett. 29(3), 037402 (2012)
https://doi.org/10.1088/0256-307X/29/3/037402
16 He S. , He J. , Zhang W. , Zhao L. , Liu D. , Liu X. , Mou D. , B. Ou Y. , Y. Wang Q. , Li Z. , Wang L. , Peng Y. , Liu Y. , Chen C. , Yu L. , Liu G. , Dong X. , Zhang J. , Chen C. , Xu Z. , Chen X. , Ma X. , Xue Q. , and J. Zhou X. , Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nat. Mater. 12(7), 605 (2013)
https://doi.org/10.1038/nmat3648
17 Feng B. , Zhang J. , Zhong Q. , Li W. , Li S. , Li H. , Cheng P. , Meng S. , Chen L. , and Wu K. , Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)
https://doi.org/10.1038/nchem.2491
18 L. Zhang J. , Zhao S. , Han C. , Wang Z. , Zhong S. , Sun S. , Guo R. , Zhou X. , D. Gu C. , D. Yuan K. , Li Z. , and Chen W. , Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus, Nano Lett. 16(8), 4903 (2016)
https://doi.org/10.1021/acs.nanolett.6b01459
19 J. Mannix A. , Zhang Z. , P. Guisinger N. , I. Yakobson B. , and C. Hersam M. , Borophene as a prototype for synthetic 2D materials development, Nat. Nanotechnol. 13(6), 444 (2018)
https://doi.org/10.1038/s41565-018-0157-4
20 Y. Huang M. , X. Jiang X. , S. Zheng Y. , W. Xu Z. , X. Xue X. , Q. Chen K. , and X. Feng Y. , Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties, Front. Phys. 17(5), 53504 (2022)
https://doi.org/10.1007/s11467-022-1154-5
21 Lei B. , Li A. , Zhou W. , Wang Y. , Xiong W. , Chen Y. , and Ouyang F. , Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2, Front. Phys. 19(4), 43200 (2024)
https://doi.org/10.1007/s11467-023-1387-y
22 Zhu Z. , Cai X. , Yi S. , Chen J. , Dai Y. , Niu C. , Guo Z. , Xie M. , Liu F. , H. Cho J. , Jia Y. , and Zhang Z. , Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
https://doi.org/10.1103/PhysRevLett.119.106101
23 X. Wang Y. , Qiu G. , X. Wang R. , Y. Huang S. , X. Wang Q. , Y. Liu Y. , C. Du Y. , A. III Goddard W. , J. Kim M. , F. Xu X. , D. Ye P. , and Z. Wu W. , Field-effect transistors made from solution-grown two-dimensional tellurene, Nat. Electron. 1(4), 228 (2018)
https://doi.org/10.1038/s41928-018-0058-4
24 J. Xie Z. , Y. Xing C. , C. Huang W. , J. Fan T. , J. Li Z. , L. Zhao J. , J. Xiang Y. , N. Guo Z. , Q. Li J. , G. Yang Z. , Q. Dong B. , L. Qu J. , Y. Fan D. , and Zhang H. , Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability, Adv. Funct. Mater. 28(16), 1705833 (2018)
https://doi.org/10.1002/adfm.201705833
25 Ding W. , Zeng J. , Qin W. , Cui P. , and Zhang Z. , Exploring high transition temperature superconductivity in a freestanding or SrTiO3-supported CoSb monolayer, Phys. Rev. Lett. 124(2), 027002 (2020)
https://doi.org/10.1103/PhysRevLett.124.027002
26 Gao J. , Ding W. , Zhang S. , Zhang Z. , and Cui P. , Coexistence of superconductivity and nontrivial band topology in monolayered cobalt pnictides on SrTiO3, Nano Lett. 21(17), 7396 (2021)
https://doi.org/10.1021/acs.nanolett.1c02830
27 Ding C. , Gong G. , Liu Y. , Zheng F. , Zhang Z. , Yang H. , Li Z. , Xing Y. , Ge J. , He K. , Li W. , Zhang P. , Wang J. , Wang L. , and K. Xue Q. , Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3, ACS Nano 13(9), 10434 (2019)
https://doi.org/10.1021/acsnano.9b04223
28 Lou R. , Y. A. Lei M. , J. Ding W. , T. Yang W. , Y. Chen X. , Tao R. , Y. Ding S. , P. Shen X. , J. Yan Y. , Cui P. , C. Xu H. , Peng R. , Zhang T. , Y. Zhang Z. , and L. Feng D. , Electronic structure and signature of Tomonaga–Luttinger liquid state in epitaxial CoSb1−x nanoribbons, npj Quantum Mater. 6(1), 79 (2021)
https://doi.org/10.1038/s41535-021-00381-y
29 J. Lee J. , T. Schmitt F. , G. Moore R. , Johnston S. , T. Cui Y. , Li W. , Yi M. , K. Liu Z. , Hashimoto M. , Zhang Y. , H. Lu D. , P. Devereaux T. , H. Lee D. , and X. Shen Z. , Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3, Nature 515(7526), 245 (2014)
https://doi.org/10.1038/nature13894
30 Gerber S. , L. Yang S. , Zhu D. , Soifer H. , A. Sobota J. , Rebec S. , J. Lee J. , Jia T. , Moritz B. , Jia C. , Gauthier A. , Li Y. , Leuenberger D. , Zhang Y. , Chaix L. , Li W. , Jang H. , S. Lee J. , Yi M. , L. Dakovski G. , Song S. , M. Glownia J. , Nelson S. , W. Kim K. , D. Chuang Y. , Hussain Z. , G. Moore R. , P. Devereaux T. , S. Lee W. , S. Kirchmann P. , and X. Shen Z. , Femtosecond electron−phonon lock-in by photoemission and X-ray free-electron laser, Science 357(6346), 71 (2017)
https://doi.org/10.1126/science.aak9946
31 Zhang S. , Wei T. , Guan J. , Zhu Q. , Qin W. , Wang W. , Zhang J. , W. Plummer E. , Zhu X. , Zhang Z. , and Guo J. , Enhanced superconducting state in FeSe/SrTiO3 by a dynamic interfacial polaron mechanism, Phys. Rev. Lett. 122(6), 066802 (2019)
https://doi.org/10.1103/PhysRevLett.122.066802
32 Horcas I.Fernandez R.M. Gomez-Rodriguez J.Colchero J.Gomez-Herrero J.M. Baro A., WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum. 78(1), 013705 (2007)
33 Qin S. , Kim J. , Niu Q. , and K. Shih C. , Superconductivity at the two-dimensional limit, Science 324(5932), 1314 (2009)
https://doi.org/10.1126/science.1170775
34 Cai F. , Li P. , Xie K. , Tang R. , and Qin S. , Superconductivity of Pb films studied with superconducting Pb tips, Sci. China Phys. Mech. 62(1), 1 (2018)
https://doi.org/10.1007/s11433-018-9269-3
35 Feng R. , H. Conrad E. , C. Tringides M. , Kim C. , and F. Miceli P. , Wetting-layer transformation for Pb nanocrystals grown on Si(111), Appl. Phys. Lett. 85(17), 3866 (2004)
https://doi.org/10.1063/1.1812593
36 M. Tromp R. , J. Hamers R. , and E. Demuth J. , Si(001) dimer structure observed with scanning tunneling microscopy, Phys. Rev. Lett. 55(12), 1303 (1985)
https://doi.org/10.1103/PhysRevLett.55.1303
37 Zhou W. , Zou X. , Najmaei S. , Liu Z. , Shi Y. , Kong J. , Lou J. , M. Ajayan P. , I. Yakobson B. , and C. Idrobo J. , Intrinsic structural defects in monolayer molybdenum disulfide, Nano Lett. 13(6), 2615 (2013)
https://doi.org/10.1021/nl4007479
38 Springholz G. and Wiesauer K. , Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy, Phys. Rev. Lett. 88(1), 015507 (2001)
https://doi.org/10.1103/PhysRevLett.88.015507
39 Sudheendra L. , Moshnyaga V. , D. Mishina E. , Damaschke B. , Rasing T. , and Samwer K. , Direct imaging of lattice-strain-induced stripe phases in an optimally doped manganite film, Phys. Rev. B 75(17), 172407 (2007)
https://doi.org/10.1103/PhysRevB.75.172407
40 Wright J. , Chang C. , Waters D. , Lupke F. , Feenstra R. , Raymond L. , Koscica R. , Khalsa G. , Muller D. , G. Xing H. , and Jena D. , Unexplored MBE growth mode reveals new properties of superconducting NbN, Phys. Rev. Mater. 5(2), 024802 (2021)
https://doi.org/10.1103/PhysRevMaterials.5.024802
41 Rajan A. , Underwood K. , Mazzola F. , and D. C. King P. , Morphology control of epitaxial monolayer transition metal dichalcogenides, Phys. Rev. Mater. 4(1), 014003 (2020)
https://doi.org/10.1103/PhysRevMaterials.4.014003
42 H. Yuan Y. , T. Wang X. , L. Song C. , L. Wang L. , He K. , C. Ma X. , Yao H. , Li W. , and K. Xue Q. , Observation of coulomb gap and enhanced superconducting gap in nano-sized Pb islands grown on SrTiO3, Chin. Phys. Lett. 37(1), 017402 (2020)
https://doi.org/10.1088/0256-307X/37/1/017402
[1] Zihan Wang, Yan Yang, Bin Hua, Qingqing Ji. Synthetic two-dimensional electronics for transistor scaling[J]. Front. Phys. , 2023, 18(6): 63601-.
[2] Gefei Niu, Jianchen Lu, Jianqun Geng, Shicheng Li, Hui Zhang, Wei Xiong, Zilin Ruan, Yong Zhang, Boyu Fu, Lei Gao, Jinming Cai. Electronic properties of monolayer copper selenide with one-dimensional moiré patterns[J]. Front. Phys. , 2023, 18(1): 13303-.
[3] Si-Yu Li, Lin He. Recent progresses of quantum confinement in graphene quantum dots[J]. Front. Phys. , 2022, 17(3): 33201-.
[4] Haoyu Dong, Le Lei, Shuya Xing, Jianfeng Guo, Feiyue Cao, Shangzhi Gu, Yanyan Geng, Shuo Mi, Hanxiang Wu, Yan Jun Li, Yasuhiro Sugawara, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng. Epitaxial fabrication of AgTe monolayer on Ag(111) and the sequential growth of Te film[J]. Front. Phys. , 2021, 16(6): 63502-.
[5] Ya-Hui Mao, Huan Shan, Jin-Rong Wu, Ze-Jun Li, Chang-Zheng Wu, Xiao-Fang Zhai, Ai-Di Zhao, Bing Wang. Observation of pseudogap in SnSe2 atomic layers grown on graphite[J]. Front. Phys. , 2020, 15(4): 43501-.
[6] Fang Yang, Yan Liang, Li-Xia Liu, Qing Zhu, Wei-Hua Wang, Xue-Tao Zhu, Jian-Dong Guo. Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy[J]. Front. Phys. , 2018, 13(5): 136802-.
[7] Longjuan Kong, Kehui Wu, Lan Chen. Recent progress on borophene: Growth and structures[J]. Front. Phys. , 2018, 13(3): 138105-.
[8] Pei-Yun Yang,Wei-Min Zhang. Master equation approach to transient quantum transport in nanostructures[J]. Front. Phys. , 2017, 12(4): 127204-.
[9] Mai Takase,Satoshi Yasuda,Kei Murakoshi. Single-site surface-enhanced Raman scattering beyond spectroscopy[J]. Front. Phys. , 2016, 11(2): 117803-.
[10] Jia-He Lin, Hong Zhang, Xin-Lu Cheng. First-principle study on the optical response of phosphorene[J]. Front. Phys. , 2015, 10(4): 107301-.
[11] Yang Li, Hong Zhang, Da-Wei Yan, Hai-Feng Yin, Xin-Lu Cheng. Secondary plasmon resonance in graphene nanostructures[J]. Front. Phys. , 2015, 10(1): 103101-.
[12] Ju Wu, Peng Jin. Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy[J]. Front. Phys. , 2015, 10(1): 108101-.
[13] Ondrej Stranik, Jacqueline Jatschka, Andrea Csáki, Wolfgang Fritzsche. Development of new classes of plasmon active nano-structures and their application in bio-sensing and energy guiding[J]. Front. Phys. , 2014, 9(5): 652-664.
[14] Yuan-Yuan Tang, Jian-Dong Guo. Strong localization across the metal-insulator transition at the Ag/Si(111)-(3×3)R30? interface[J]. Front. Phys. , 2013, 8(1): 44-49.
[15] Hui Li (李辉), Hailin Peng (彭海琳), Wenhui Dang (党文辉), Lili Yu (余力立), Zhongfan Liu (刘忠范). Topological insulator nanostructures: Materials synthesis, Raman spectroscopy, and transport properties[J]. Front. Phys. , 2012, 7(2): 208-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed