Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 62501    https://doi.org/10.1007/s11467-024-1427-2
Machine learning in laser-induced breakdown spectroscopy: A review
Zhongqi Hao1, Ke Liu2,8, Qianlin Lian2,6, Weiran Song3, Zongyu Hou3, Rui Zhang2,7, Qianqian Wang4, Chen Sun5, Xiangyou Li2(), Zhe Wang3()
1. Key Laboratory of Nondestructive Testing (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China
2. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
3. State Key Lab of Power System, Department of Energy and Power Engineering, Tsinghua-BP Clean Energy Centre, Tsinghua University, Beijing 100084, China
4. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
5. School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
6. School of Public Health, Xinjiang Medical University, Urumqi 830054, China
7. The Second Medical College of Binzhou Medical University, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
8. School of Electronic Engineering, Naval University of Engineering, Wuhan 430014, China
 Download: PDF(6752 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic analytic technique with great application potential because of its unique advantages for online/in-situ detection. However, due to the spatially inhomogeneity and drastically temporal varying nature of its emission source, the laser-induced plasma, it is difficult to find or hard to generate an appropriate spatiotemporal window for high repeatable signal collection with lower matrix effects. The quantification results of traditional physical principle based calibration model are unsatisfactory since these models were not able to compensate for complicate matrix effects as well as signal fluctuation. Machine learning is an emerging approach, which can intelligently correlated the complex LIBS spectral data with its qualitative or/and quantitative composition by establishing multivariate regression models with greater potential to reduce the impacts of signal fluctuation and matrix effects, therefore achieving relatively better qualitative and quantitative performance. In this review, the progress of machine learning application in LIBS is summarized from two main aspects: i) Pre-processing data for machine learning model, including spectral selection, variable reconstruction, and denoising to improve qualitative/quantitative performance; ii) Machine learning methods for better quantification performance with reduction of the impact of matrix effect as well as LIBS spectra fluctuations. The review also points out the issues that researchers need to address in their future research on improving the performance of LIBS analysis using machine learning algorithms, such as restrictions on training data, the disconnect between physical principles and algorithms, the low generalization ability and massive data processing ability of the model.

Keywords laser-induced breakdown spectroscopy      machine learning      repeatability      matrix effects      qualitative and quantitative analysis     
Corresponding Author(s): Xiangyou Li,Zhe Wang   
Issue Date: 16 July 2024
 Cite this article:   
Zhongqi Hao,Ke Liu,Qianlin Lian, et al. Machine learning in laser-induced breakdown spectroscopy: A review[J]. Front. Phys. , 2024, 19(6): 62501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1427-2
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/62501
Category Supervised Unsupervised Semi-supervised
Input data All data is labeled All data is unlabeled Partially labeled
Training External supervision No supervision External/internal supervision
Example algorithms Decision trees, Support vector machine, Linear discriminant analysis, Linear regression, K-nearest neighbor, Logistic regression, Naive Bayes K-means, Principal component Analysis, Hierarchical clustering, Generative adversarial networks, Iterative self-organizing data Generate semi-supervised models, Self-trained models (e.g., Self-trained Naïve Bayes classifier), Co-trained models (e.g., Co-trained K-nearest neighbor), Semi-supervised support vector machines.
Advantages/disadvantages High accuracy, time-consuming, a large number of known samples are needed for modeling, cannot give “unknown” information Time-saving, less accurate predictions for high-dimensional datasets, sensitivity to noise and outliers Fewer labeled samples are needed, complex iterative process, not as accurate as supervised learning, cannot handle more “complex tasks”
Tab.1  Comparison of supervised, unsupervised, and semi-supervised.
Fig.1  The role of machine learning for data preprocessing in LIBS.
Fig.2  Comparison of original and reconstructed spectra. Reproduced from Ref. [50].
Fig.3  The original spectrum and the reconstruction spectrum by the hybrid feature selection method. Reproduced from Ref. [61].
Fig.4  PCA analysis for the LIBS spectra of ancient and recent bovine bone. Reproduced from Ref. [86].
Fig.5  The role of machine learning for qualitative and quantitative analysis in LIBS.
Methods Improvement Comparison Materials Best results Ref.
LDA IFALS MLS-LDA, ASPI-LDA Rocks Accuracy: 98.54% [110]
PCA, DT, RF, PLS-DA, SVM Rice Accuracy: 99.20% [94]
RSM KNN, LDA Blood Accuracy: 98.34% [65]
PCA PCA-SVM Olive oil Accuracy: 100% [111]
RF Aluminium alloy Accuracy: 98.45% [112]
SBS RF, VIRF Ceramics Sensitivity: 0.9526 Specificity: 0.9910 Accuracy: 97.82% [76]
CWT PCA-RF Huanglongbing-infected navel oranges Accuracy: 97.89% [113]
VI PLS-DA, SVM, RF Slag Sensitivity: 0.9889Specificity: 0.9944Accuracy: 0.9926% [93]
SVM Steel Accuracy: 95.3% [114]
LDA Mineral Recall: 0.53Precision: 0.73 [115]
KNN Fat, skin and muscle tissues Accuracy: 99.83%Sensitivity: 0.995Specificity: 0.998 [103]
PCA, PLS-DA, LDA Nephrite Accuracy: 99.3% [96]
PCA Metal Accuracy: 100% [116]
PCA LDA Plant leaves Accuracy: 98.89% [102]
LDA Honey Accuracy: 99.7% [98]
SFS SFS-RF, SVM Soil Accuracy: 97.88% [64]
PCA Steel Accuracy: 100% [88]
PCA PCA-KNN, CA-ANN Rocks Accuracy: 98% [117]
Restricted Boltzmann machines PCA-SVM Steel Accuracy: 100% [118]
CNN SVM Rocks Accuracy: 100% [119]
PCA BP-ANN, SVM, KNN, RF Soil Accuracy: 99.60% [120]
SVM Fish Accuracy: 98.2% [121]
KNN Paint Accuracy: 100% [20]
Multiplicative scatter correction (MSC) Meat Accuracy: 100% [122]
Explosive Accuracy: 99.58% [44]
PLSR Biochar ARSDP: 8.13% [123]
SIMCA E-waste Accuracy: 98% [124]
PCA BP-ANN Pencil writing marks Accuracy: 98.33% [125]
PLS-DA VI PLS-DA, RF, VI-RF Plastic Accuracy: 99.55% [83]
SW PLS-DA, SVM, RF Plastic bottles Accuracy: 93.93% [126]
Organic materials Accuracy: 95% [17]
ANN WT Copper and steel Accuracy: 100% [22]
PCA Aged epoxy micro-nanocomposites Accuracy: 100% [104]
PCA Nergetic materials Accuracy: 100% [87]
PCA PCA-LDA Mineralized tissues and bio-mineral Accuracy: 87.5% [40]
PCA Milk Accuracy: 95.8% [127]
Rosewood Accuracy: 100% [128]
Tooth Accuracy: 100% [129]
BP PCA-GA Plastic Accuracy: 99.72% [130]
PCA PCA-SVM Ginseng Accuracy: 99.5% [131]
KELM PSO PSO-LSSVM, PSO-RF Salvia miltiorrhiza Accuracy: 94.87% [37]
LSSVM PSO PSO–SVM, SVM, LSSVM Aviation alloy Accuracy: 99.56% [49]
PCA-LS-SVM Mentha haplocalyx Accuracy: 99.2% [132]
Tab.2  A summary of sample classification using LIBS combined with machine learning algorithms.
Fig.6  Schematic description of combining spectral knowledge and machine learning for LIBS data analysis. Reproduced from Ref. [165].
Methods Improvement Comparison Materials Target Best results Ref.
SVR WPT-DC-RFECV WPT-RFECV Coal C, Si, Al, Ca, Na, H, N, O, Mg, K, Li, Fe RMSEP: 0.5786ARE: 2.27% [202]
WTD-RFECV SVR, RFECV-SVR Coal Fe, Cu, Si, K RMSEP: 0.010281%ARE: 2.16%R2: 0.9911 [73]
Coal C, H, N RSD: 4.16%ARE: 3.28% [66]
GKR-ANN Plutonium alloys Ga RMSEP: 0.33%LOD:0.015% [142]
PLSR Sedimentary rock Si, Ca, Mg, Fe, Al RMSE: 0.40wt.%RSD: 1.86% [144]
CCA PCA-SVRPCA-PLSRCCA-PLSR T91 steel Fe, Cr, Mo, Mn, V MRE: 2.47%RSD: 2.94%RMSEP: 6.14% [163]
RBF Liquid steel Mn MSE: 0.599%RSD: 8.26%R2: 0.997 [203]
ALASSO LASSO-SVR Soil Cr R2: 0.998RMSEV: 0.033wt.%RSD: 2.343% [204]
PLSR RF-SVR, PCA-SVR, CARS-SVR, MC-UVE-SVR Edible gelatin C, H, O, N, Na, K, Ca, Mg, Cr RP2: 0.9708RMSEP: 5.69wt.% [162]
PLSR Soil C, Ca, Na, O, H, Mg, Al, Fe R2: 0.987RMSE: 0.079% [154]
MLR, PLSR, BP-ANN Soil Pb, Cd R2: 0.9877RMSEP: 0.1521 [147]
SPLSR PLSR, LS-SVR Iron ore Fe, Si, Al, Ca and Mg, Ti RMSEP: 0.6242%AREP: 0.85% [205]
CARS LS-SVR Edible vegetable oil Cr R2: 0.9926RMSEP: 0.000586% [80]
PLSR SDVS PLSR, iPLSR, NrVS-PLSR Iron Fe, Si, Ca, Na, H, O RMSEP: 0.75%R2: 0.76 [63]
Dominant Factor PLSR Brass Cu, Pb, Zn, Fe, P, Sn, Sb RMSEP: 5.25%R2: 0.999 [206]
Dominant Factor PLSR water Mn, Sr, Li R2: 0.999 [172]
Dominant Factor PLSR Coal C, H, N, O, Si, Al, Fe, Ca, Mg, K, etc. RSD: 0.3% [173]
SVR, MLR Coal C R2: 0.99RMSEP: 1.43% [176]
Backward interval Interval-PLSR, PLSR Soil Cu, Ni R2: 0.9449RMSEP: 0.0363% [16]
UVE-CARS PLSR Agricultural fungicide CI RMSE: 0.66% R2: 0.9905 [68]
GA Manure Ca R2: 0.90RPD: 3.04 [69]
Double GA Copper Cu, Fe, S, Si, Ca, Mg, Al, As, Zn, etc. RMSECV: 0.29%RMSEP: 0.21% [207]
FSC-mIPW GA, SPA Soil Cu, Ba, Cr RMSEP: 0.2747% [71]
mIPW Interval-PLS Soil Cu, Ba, Cr, Mg, Ca RMSEP: 0.4232wt.%Rp2: 0.9746 [72]
Ridge-RFE PLSR, GA-PLSR, Aluminum alloy Fe, Si, Mg, Cu, Zn, Mn Rcv2: 0.9566RMSECV: 0.0601wt.%RMSEP: 0.0476wt.% [74]
Alloy Cu, Zn, Fe, Pb RSD: 1.80%R2: 0.992RMSEP: 1.30% [208]
MSC Pork Pb R2: 0.9908RMSEP: 0.282ARPE: 7.8% [209]
MSC Egg Cu R2: 0.9789RMSEP: 50ARPE: 7.14% [210]
Navel orange Cu R2: 0.9928ARE: 5.55% [211]
PLSR Navel orange Pb R2: 0.9633 RMSECV: 1.56ARPE: 6.9% [212]
SVR Alloy steel Cr, Ni, Mn, Fe R2: 0.9896 RMSE: 0.8230% [213]
PLSR, SVR Alloy steel Cr, Ni, Mn, Fe R2: 0.9617 RMSE: 1.519 [214]
Mineral Fe, Si, Al, P RMSE: 3.4wt.% R2: 0.95 [215]
Savitzky-Golay PCA River Al, Ca, Cd, Cr, Fe, K, Mg, Na, Ni, etc. R2: 0.9836 RMSEC: 0.7120RMSECV: 0.9430 [216]
Liquid steel Mn, Si ARE: 6.125R2: 0.997 [217]
GA Boron B R2: 0.9888 RMSEP: 0.8667wt.%MPE: 10.9685% [218]
PCA, ANN Plutonium metal Fe, Ni RMSE: 0.00132%R2: 0.997 [137]
Univariate Analysis, MLR Steel alloys Cr, Ni R2: 0.995 [139]
Savitzky-Golay River Ca, C R2: 0.9753RMSEP: 9.7339% [219]
Multi-block PCR, PLSR S-PLSR Iron ore Fe R2: 0.94RMSEP: 3.1% [140]
RFR PLSR River C, Na, H R2: 0.9248RMSE: 25.1215% [148]
PLSR Steel S, P R2: 0.9981 [146]
PLSR Sinter ore Al, Fe, Si, Ca, Mg RSD: 0.59% [153]
VI PLSR, LS-SVM Iron ore Ca, Mg, Si, Al RMSE: 0.0554wt.%R2: 0.9103 [152]
MI-VIM Oily sludge Cu, Cr, Pb and Zn Rp2: 0.9681RMSEP: 0.6009 [220]
SBS PLSR, RFR Steel S, P R2: 0.9991 [75]
ANN LR-SUAC PLSR Ceramic Si, Al, Mg, Fe, Ti R2: 0.93 [79]
GA Steel C RMSE: 0.0114% [221]
feature selection BPNN Rock Li, Rb, Sr, Ba RMSEP: 0.0162wt.% [161]
PLSR PLSR, ANN Plant Mg, Fe, N, Al, B, Ca, K, Mn, P RMSEC: 0.0028wt.%MPE: 4.22% [160]
PLSR, SVR, PCR Coal C, H, O, N, Fe, Mg, Al, Ca, Si, Li, etc. AAE: 0.69% [155]
GA-BP BP-ANN Alloy steel C, Fe, Cr, Mn, Si R2: 0.9893 [164]
MSLC Alloy Cu, Zn, Sn, Pb, Si R2: 0.99 [158]
MSLC Steel Cr, Ni RMSE: 0.023wt.%RSD: 12.9% [159]
GA Steel Cu, V RMSEP: 0.0040wt.% [89]
Rectified linear units Coal C, H, N, O, Li, Na, Mg, Al, K, Ca, etc. R2: 0.7102 RMSE: 0.4786% [222]
LASSO PCA-ANN, CARS-ANN, KBest-ANN Rocks and mineral Cu, Fe, As RMSEP: 0.18%R2: 0.97 [223]
CNN Lightweight PLSR, SVR Phosphate ore P RMSEP: 0.89%R2: 0.9874 [91]
BPNN, PLSR Mineral Si, Al, Fe, Ca, Mg, K, Na RMSE: 0.022 [224]
KELM SVR, LS-SVM, BP-ANN Coal C, S RMSE: 0.7704%R2: 0.9832 [225]
PLSR Sinter ore Al, Fe, Si, Ca, Mg R2: 0.9 [145]
MI-PSO KELM Coal C, Si, Ca, Mg, Al, Fe, Mn, Na, Ti RMSECV: 1.2886RCV2: 0.9868 [70]
Dominant factor MLR, PLSR, DF-PLSR, SVR, DF-SVR and KELM Coal C, H, O, I, N, Mg, Si, Al, Mn, Ca, Na, RMSE: 1.075%R2: 0.965 [165]
Tab.3  A summary of works dealing with quantitative analysis using LIBS combined with machine learning algorithms.
1 Wang Z., S. Afgan M., Gu W., Song Y., Wang Y., Hou Z., Song W., and Li Z., Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing, Trends Analyt. Chem. 143, 116385 (2021)
https://doi.org/10.1016/j.trac.2021.116385
2 T. Fu Y., L. Gu W., Y. Hou Z., A. Muhammed S., Q. Li T., Wang Y., and Wang Z., Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)
https://doi.org/10.1007/s11467-020-1006-0
3 Sheta S., S. Afgan M., Y. Hou Z., C. Yao S., Zhang L., Li Z., and Wang Z., Coal analysis by laser-induced breakdown spectroscopy: A tutorial review, J. Anal. At. Spectrom. 34(6), 1047 (2019)
https://doi.org/10.1039/C9JA00016J
4 C. Dingari N., Barman I., K. Myakalwar A., P. Tewari S., and K. Gundawar M., Incorporation of support vector machines in the LIBS toolbox for sensitive and robust classification amidst unexpected sample and system variability, Anal. Chem. 84(6), 2686 (2012)
https://doi.org/10.1021/ac202755e
5 L. Zhang T., U. Shan W., S. Tang H., Wang K., X. Duan Y., and I. Hua L., Progress of chemometrics in laser-induced breakdown spectroscopy analysis, Chin. J. Anal. Chem. 43(6), 939 (2015)
https://doi.org/10.1016/S1872-2040(15)60832-5
6 Zhang T., Tang H., and Li H., Chemometrics in laser‐induced breakdown spectroscopy, J. Chemometr. 32(11), e2983 (2018)
https://doi.org/10.1002/cem.2983
7 Zhang D.Zhang H.Zhao Y.Chen Y.Ke C. Xu T.He Y., A brief review of new data analysis methods of laser-induced breakdown spectroscopy: Machine learning, Appl. Spectrosc. Rev. 57(2), 89 (2022)
8 R. Wójcik M., Zdunek R., and J. Antończak A., Unsupervised verification of laser-induced breakdown spectroscopy dataset clustering, Spectrochim. Acta B 126, 84 (2016)
https://doi.org/10.1016/j.sab.2016.10.009
9 Tang Y., Guo Y., Sun Q., Tang S., Li J., Guo L., and Duan J., Industrial polymers classification using laser-induced breakdown spectroscopy combined with self-organizing maps and K-means algorithm, Optik (Stuttg.) 165, 179 (2018)
https://doi.org/10.1016/j.ijleo.2018.03.121
10 Guo Y., Tang Y., Du Y., Tang S., Guo L., Li X., Lu Y., and Zeng X., Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means, Plasma Sci. Technol. 20(6), 065505 (2018)
https://doi.org/10.1088/2058-6272/aaaade
11 Pořízka P., Klus J., Kepes E., Prochazka D., W. Hahn D., and Kaiser J., On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review, Spectrochim. Acta B 148, 65 (2018)
https://doi.org/10.1016/j.sab.2018.05.030
12 A. He L., Q. Wang X., Zhao Y., Liu L., and Peng Z., Study on cluster analysis used with laser-induced breakdown spectroscopy, Plasma Sci. Technol. 18(6), 647 (2016)
https://doi.org/10.1088/1009-0630/18/6/11
13 Chen T., Huang L., Yao M., Hu H., Wang C., and Liu M., Quantitative analysis of chromium in potatoes by laser-induced breakdown spectroscopy coupled with linear multivariate calibration, Appl. Opt. 54(25), 7807 (2015)
https://doi.org/10.1364/AO.54.007807
14 Sha W., T. Li J., P. Lu C., and H. Zhen C., Quantitative analysis of P in compound fertilizer by laser-induced breakdown spectroscopy coupled with linear multivariate calibration, Spectroscopy & Spectral Anal. 39(6), 1958 (2019)
https://doi.org/10.3964/j.issn.1000-0593(2019)06-1958-07
15 Y. Li H., Mazzei L., D. Wallis C., and S. Wexler A., Improving quantitative analysis of spark-induced breakdown spectroscopy: Multivariate calibration of metal particles using machine learning, J. Aerosol Sci. 159, 105874 (2022)
https://doi.org/10.1016/j.jaerosci.2021.105874
16 N. Zhu S., Ding Y., J. Chen Y., Deng F., F. Chen F., and Yan F., Quantitative analysis of Cu and Ni in oil-contaminated soil by LIBS combined with variable selection method and PLS, Spectroscopy & Spectral Anal. 40(12), 3812 (2020)
https://doi.org/10.3964/j.issn.1000-0593(2020)12-3812-06
17 J. L. Gottfried. Jr De Lucia, Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification, Spectrochim. Acta B 66(2), 122 (2011)
https://doi.org/10.1016/j.sab.2010.12.007
18 Lee Y., H. Han S., and H. Nam S., Soft independent modeling of class analogy (SIMCA) modeling of laser-induced plasma emission spectra of edible salts for accurate classification, Appl. Spectrosc. 71(9), 2199 (2017)
https://doi.org/10.1177/0003702817697337
19 Cao Z., Cheng J., Han X., Li L., Wang J., Fan Q., and Lin Q., Rapid classification of coal by laser-induced breakdown spectroscopy (LIBS) with K-nearest neighbor (KNN) chemometrics, Instrum. Sci. Technol. 51(1), 59 (2023)
https://doi.org/10.1080/10739149.2022.2087185
20 ShangGuan J., Tong Y., Yuan A., Ren X., Liu J., Duan H., Lian Z., Hu X., Ma J., Yang Z., and Wang D., Online detection of laser paint removal based on laser-induced breakdown spectroscopy and the K-nearest neighbor method, J. Laser Appl. 34(2), 022009 (2022)
https://doi.org/10.2351/7.0000597
21 Yan X., Peng X., Qin Y., Xu Z., Xu B., Li C., Zhao N., Li J., Ma Q., and Zhang Q., Classification of plastics using laser-induced breakdown spectroscopy combined with principal component analysis and K nearest neighbor algorithm, Results in Optics 4, 100093 (2021)
https://doi.org/10.1016/j.rio.2021.100093
22 Liang L., Zhang T., Wang K., Tang H., Yang X., Zhu X., Duan Y., and Li H., Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines, Appl. Opt. 53(4), 544 (2014)
https://doi.org/10.1364/AO.53.000544
23 V. Dastjerdi M., J. Mousavi S., Soltanolkotabi M., and N. Zadeh A., Identification and sorting of PVC polymer in recycling process by laser-induced breakdown spectroscopy (LIBS) combined with support vector machine (SVM) model, Iranian J. Sci. Technol. A 42(2), 959 (2018)
https://doi.org/10.1007/s40995-016-0084-x
24 Yang P., T. Liu H., L. Nie Z., and N. Qu X., Accuracy improvement of geographical indication of rice by laser-induced breakdown spectroscopy using support vector machine with multi-spectral line, J. Appl. Spectrosc. 89(3), 579 (2022)
https://doi.org/10.1007/s10812-022-01397-3
25 Jia J., Fu H., Hou Z., Wang H., Ni Z., and Dong F., Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy, Plasma Sci. Technol. 21(3), 034003 (2019)
https://doi.org/10.1088/2058-6272/aae3e1
26 Cisewski J., Snyder E., Hannig J., and Oudejans L., Support vector machine classification of suspect powders using laser‐induced breakdown spectroscopy (LIBS) spectral data, J. Chemometr. 26(5), 143 (2012)
https://doi.org/10.1002/cem.2422
27 D’Andrea E.Pagnotta S.Grifoni E. Legnaioli S.Lorenzetti G.Palleschi V.Lazzerini B., A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra, Appl. Phys. B 118(3), 353 (2015)
28 G. Rendon-Sauz F., Flores-Reyes T., and Ponce-Flores A., Rapid classification of bacteria using libs in multi-pulse laser regime and neural networks processing, Revista Cubana De Fisica 35(1), 10 (2018)
29 Cui X., Wang Q., Zhao Y., Qiao X., and Teng G., Laser-induced breakdown spectroscopy (LIBS) for classification of wood species integrated with artificial neural network (ANN), Appl. Phys. B 125(4), 56 (2019)
https://doi.org/10.1007/s00340-019-7166-3
30 El Haddad J.Villot-Kadri M.Ismael A.Gallou G.Michel K. Bruyere D.Laperche V.Canioni L.Bousquet B., Artificial neural network for on-site quantitative analysis of soils using laser induced breakdown spectroscopy, Spectrochim. Acta B 79–80, 51 (2013)
31 Q. Wang Q., W. Huang Z., Liu K., J. Li W., and X. Yan J., Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model, Spectroscopy & Spectral Anal. 32(12), 3179 (2012)
https://doi.org/10.3964/j.issn.1000-0593(2012)12-3179-04
32 Li N., Qi J., Wang P., Zhang X., Zhang T., and Li H., Quantitative structure-activity relationship (QSAR) study of carcinogenicity of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate matter by random forest (RF), Anal. Methods 11(13), 1816 (2019)
https://doi.org/10.1039/C8AY02720J
33 Sheng L., Zhang T., Niu G., Wang K., Tang H., Duan Y., and Li H., Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF), J. Anal. At. Spectrom. 30(2), 453 (2015)
https://doi.org/10.1039/C4JA00352G
34 Zhan L.Ma X.Fang W.Wang R.Liu Z. Song Y.Zhao H., A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm, Plasma Sci. Technol. 21(3), 034018 (2019)
35 Feng T., Zhang X., Li M., Chen T., Jiao L., Xu Y., Tang H., Zhang T., and Li H., Pollution risk estimation of the Cu element in atmospheric sedimentation samples by laser induced breakdown spectroscopy (LIBS) combined with random forest (RF), Anal. Methods 13(30), 3424 (2021)
https://doi.org/10.1039/D1AY00879J
36 Liu K., Tian D., Xu H., Wang H., and Yang G., Quantitative analysis of toxic elements in polypropylene (PP) via laser-induced breakdown spectroscopy (LIBS) coupled with random forest regression based on variable importance (VI-RFR), Anal. Methods 11(37), 4769 (2019)
https://doi.org/10.1039/C9AY01796H
37 Liang J., Yan C., Zhang Y., Zhang T., Zheng X., and Li H., Rapid discrimination of Salvia miltiorrhiza according to their geographical regions by laser induced breakdown spectroscopy (LIBS) and particle swarm optimization-kernel extreme learning machine (PSO-KELM), Chemom. Intell. Lab. Syst. 197, 103930 (2020)
https://doi.org/10.1016/j.chemolab.2020.103930
38 Mei Y., Cheng S., Hao Z., Guo L., Li X., Zeng X., and Ge J., Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM, Plasma Sci. Technol. 21(3), 034020 (2019)
https://doi.org/10.1088/2058-6272/aaf6f3
39 Yan C.Zhang T.Sun Y.Tang H.Li H., A hybrid variable selection method based on wavelet transform and mean impact value for calorific value determination of coal using laser-induced breakdown spectroscopy and kernel extreme learning machine, Spectrochim. Acta B 154, 75 (2019)
40 Vítková G., Novotny K., Prokes L., Hrdlicka A., Kaiser J., Novotny J., Malina R., and Prochazka D., Fast identification of biominerals by means of stand-off laser-induced breakdown spectroscopy using linear discriminant analysis and artificial neural networks, Spectrochim. Acta B 73, 1 (2012)
https://doi.org/10.1016/j.sab.2012.05.010
41 Yang P., Zhou R., Zhang W., S. Tang S., Q. Hao Z., Y. Li X., F. Lu Y., and Y. Zeng X., Laser-induced breakdown spectroscopy assisted chemometric methods for rice geographic origin classification, Appl. Opt. 57(28), 8297 (2018)
https://doi.org/10.1364/AO.57.008297
42 F. Zhao Z., Chen L., Liu F., Zhou F., Y. Peng J., and H. Sun M., Fast classification of geographical origins of honey based on laser-induced breakdown spectroscopy and multivariate analysis, Sensors (Basel) 20(7), 1878 (2020)
https://doi.org/10.3390/s20071878
43 M. Li X., L. Lu H., H. Yang J., and Chang F., Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples, Plasma Sci. Technol. 21(3), 034015 (2018)
https://doi.org/10.1088/2058-6272/aaee14
44 Wang Q., Teng G., Li C., Zhao Y., and Peng Z., Identification and classification of explosives using semi-supervised learning and laser-induced breakdown spectroscopy, J. Hazard. Mater. 369, 423 (2019)
https://doi.org/10.1016/j.jhazmat.2019.02.015
45 Xie S., Xu T., Han X., Lin Q., and Duan Y., Accuracy improvement of quantitative LIBS analysis using wavelet threshold de-noising, J. Anal. At. Spectrom. 32(3), 629 (2017)
https://doi.org/10.1039/C6JA00403B
46 Wang R., Ma X., Yu Q., Song Y., Zhao H., Zhang M., and Liao Y., Methods of data processing for trace elements analysis using laser induced breakdown spectroscopy, Plasma Sci. Technol. 17(11), 944 (2015)
https://doi.org/10.1088/1009-0630/17/11/10
47 Yang H., Huang L., B. Chen T., F. Rao G., H. Liu M., Y. Chen J., and Y. Yao M., Spectral filtering method for improvement of detection accuracy of lead in vegetables by laser induced breakdown spectroscopy, Chin. J. Anal. Chem. 45(8), 1123 (2017)
https://doi.org/10.11895/j.issn.0253-3820.170213
48 Ali N.Huang Z.Zong J.Ma Y.Xiao Y. Wang L.Zhang P.Chen D., Real-time analysis of mineral elements in oat using laser-induced breakdown spectroscopy, J. Food Safety & Food Quality 72(4), 131 (2021)
49 Guo H., Cui M., Feng Z., Zhang D., and Zhang D., Classification of aviation alloys using laser-induced breakdown spectroscopy based on a WT-PSO-LSSVM model, Chemosensors (Basel) 10(6), 220 (2022)
https://doi.org/10.3390/chemosensors10060220
50 Yuan T.Wang Z.Li Z.Ni W.Liu J., A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy, Anal. Chim. Acta 807, 29 (2014)
51 Zhang B.Sun L.Yu H.Xin Y.Cong Z., A method for improving wavelet threshold denoising in laser-induced breakdown spectroscopy, Spectrochim. Acta B 107, 32 (2015)
52 Wei J., Dong J., Zhang T., Wang Z., and Li H., Quantitative analysis of the major components of coal ash using laser induced breakdown spectroscopy coupled with a wavelet neural network (WNN), Anal. Methods 8(7), 1674 (2016)
https://doi.org/10.1039/C5AY02994E
53 Yang L., Zhang Y., Liu J., Zhang Z., Xu M., Ji F., Chen J., Zhang T., and Lu R., Spectral preprocessing to improve accuracy of quantitative detection of elemental Cr in austenitic stainless steel by laser-induced breakdown spectroscopy, Rev. Sci. Instrum. 93(3), 033002 (2022)
https://doi.org/10.1063/5.0067518
54 Duan H.Ma S.Han L.Huang G., A novel denoising method for laser-induced breakdown spectroscopy: Improved wavelet dual threshold function method and its application to quantitative modeling of Cu and Zn in Chinese animal manure composts, Microchem. J. 134, 262 (2017)
55 Chappell J., Martinez M., and Baudelet M., Statistical evaluation of spectral interferences in laser-induced breakdown spectroscopy, Spectrochim. Acta B 149, 167 (2018)
https://doi.org/10.1016/j.sab.2018.07.028
56 Liu K., Zhou R., Zhang W., Tang Z., Yan J., Lv M., Li X., Lu Y., and Zeng X., Interference correction for laser-induced breakdown spectroscopy using a deconvolution algorithm, Anal. At. Spectrom. 35, 762 (2020)
https://doi.org/10.1039/C9JA00383E
57 Tan B., Huang M., Zhu Q., Guo Y., and Qin J., Decomposition and correction overlapping peaks of LIBS using an error compensation method combined with curve fitting, Appl. Opt. 56(25), 7116 (2017)
https://doi.org/10.1364/AO.56.007116
58 Wang Y.Bu Y.Wu F.Cao Y.Yu Y. Wang X., Research on LIBS quantitative analysis of heavy metal concentration in polluted water-based on Fourier self-deconvolution method, in: AOPC 2019: Optical Spectroscopy and Imaging, SPIE, 2019, pp 167–172
59 Guezenoc J., Gallet-Budynek A., and Bousquet B., Critical review and advices on spectral-based normalization methods for LIBS quantitative analysis, Spectrochim. Acta B 160, 105688 (2019)
https://doi.org/10.1016/j.sab.2019.105688
60 Wang R. and Ma X., Study on LIBS Standard Method via Key Parameter Monitoring and Backpropagation Neural Network, Chemosensors (Basel) 10(8), 312 (2022)
https://doi.org/10.3390/chemosensors10080312
61 Lu P.Zhuo Z. H. Zhang W.Tang J.Wang Y.L. Zhou H.L. Huang X. F. Sun T.Q. Lu J., A hybrid feature selection combining wavelet transform for quantitative analysis of heat value of coal using laser-induced breakdown spectroscopy, Appl. Phys. B 127(2), 19 (2021)
62 Xie S., Xu T., Niu G., Liao W., Lin Q., and Duan Y., Quantitative analysis of steel samples by laser-induced-breakdown spectroscopy with wavelet-packet-based relevance vector machines, J. Anal. At. Spectrom. 33(6), 975 (2018)
https://doi.org/10.1039/C7JA00421D
63 Chen T., Sun L., Yu H., Qi L., Shang D., and Xie Y., Efficient weakly supervised LIBS feature selection method in quantitative analysis of iron ore slurry, Appl. Opt. 61(7), D22 (2022)
https://doi.org/10.1364/AO.441098
64 Harefa E. and Zhou W., Performing sequential forward selection and variational autoencoder techniques in soil classification based on laser-induced breakdown spectroscopy, Anal. Methods 13(41), 4926 (2021)
https://doi.org/10.1039/d1ay01257f
65 Chu Y., Chen F., Sheng Z., Zhang D., Zhang S., Wang W., Jin H., Qi J., and Guo L., Blood cancer diagnosis using ensemble learning based on a random subspace method in laser-induced breakdown spectroscopy, Biomed. Opt. Express 11(8), 4191 (2020)
https://doi.org/10.1364/BOE.395332
66 Jiang Y., Lu Z., Chen X., Yu Z., Qin H., Chen J., Lu J., and Yao S., Optimizing the quantitative analysis of solid biomass fuel properties using laser induced breakdown spectroscopy (LIBS) coupled with a kernel partial least squares (KPLS) model, Anal. Methods 13(45), 5467 (2021)
https://doi.org/10.1039/D1AY01639C
67 Y. Kong H., X. Sun L., T. Hu J., and Zhang P., Automatic method for selecting characteristic lines based on genetic algorithm to quantify laser-induced breakdown spectroscopy, Spectroscopy & Spectral Anal. 36(5), 1451 (2016)
https://doi.org/10.3964/j.issn.1000-0593(2016)09-2725-07
68 P. Gan L., Sun T., Liu J., and H. Liu M., Double pulse LIBS combined with variable screening to detect procymidone content, Spectroscopy & Spectral Anal. 39(02), 584 (2019)
https://doi.org/10.3964/j.issn.1000-0593(2019)02-0584-05
69 Ma S., Ma Q., Han L., and Huang G., Modelling of calcuim content in manure using laser-induced breakdown spectroscopy and genetic algorithm combined with partial least squares, Spectroscopy & Spectral Anal. 37(5), 1532 (2017)
https://doi.org/10.3964/j.issn.1000-0593(2017)05-1530-05
70 He T., Liang J., Tang H., Zhang T., Yan C., and Li H., Quantitative analysis of coal quality by mutual information-particle swarm optimization (MI-PSO) hybrid variable selection method coupled with spectral fusion strategy of laser-induced breakdown spectroscopy (LIBS) and fourier transform infrared spectroscopy (FTIR), Spectrochim. Acta B 178, 106112 (2021)
https://doi.org/10.1016/j.sab.2021.106112
71 Duan F., Fu X., Jiang J., Huang T., Ma L., and Zhang C., Automatic variable selection method and a comparison for quantitative analysis in laser-induced breakdown spectroscopy, Spectrochim. Acta B 143, 12 (2018)
https://doi.org/10.1016/j.sab.2018.02.010
72 Fu X.J. Duan F. T. Huang T.Ma L.J. Jiang J.C. Li Y., A fast variable selection method for quantitative analysis of soils using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 32(6), 1166 (2017)
73 Lu P., Zhuo Z., Zhang W., Tang J., Tang H., and Lu J., Accuracy improvement of quantitative LIBS analysis of coal properties using a hybrid model based on a wavelet threshold de-noising and feature selection method, Appl. Opt. 59(22), 6443 (2020)
https://doi.org/10.1364/AO.394746
74 Wang G.Sun L.Wang W.Chen T.Guo M. Zhang P., A feature selection method combined with ridge regression and recursive feature elimination in quantitative analysis of laser induced breakdown spectroscopy, Plasma Sci. Technol. 22(7), 074002 (2020)
75 Ruan F., Qi J., Yan C., Tang H., Zhang T., and Li H., Quantitative detection of harmful elements in alloy steel by LIBS technique and sequential backward selection-random forest (SBS-RF), J. Anal. At. Spectrom. 32(11), 2194 (2017)
https://doi.org/10.1039/C7JA00231A
76 Ruan F.Hou L.Zhang T.Li H., A modified backward elimination approach for the rapid classification of Chinese ceramics using laser-induced breakdown spectroscopy and chemometrics, J. Anal. At. Spectrom. 35(3), 518 (2020)
77 Ding Y., Shu Y., Hu A., Zhao M., Chen J., Yang L., Chen W., and Wang Y., Determination of soil source using laser induced breakdown spectroscopy combined with feature selection, J. Anal. At. Spectrom. 38(11), 2499 (2023)
https://doi.org/10.1039/D3JA00133D
78 You W., P. Xia Y., T. Huang Y., J. Lin J., and M. Lin X., Research on selection method of LIBS feature variables based on CART regression tree, Spectroscopy & Spectral Anal. 41(10), 3240 (2021)
https://doi.org/10.3964/j.issn.1000-0593(2021)10-3240-05
79 Lv Z., Yu H., Sun L., and Zhang P., Composition analysis of ceramic raw materials using laser-induced breakdown spectroscopy and autoencoder neural network, Anal. Methods 14(13), 1320 (2022)
https://doi.org/10.1039/D1AY02189C
80 Wu Y.Sun T. Liu J.Gan L.Liu M., Detection of chromium content in edible vegetable oil with DP-LIBS combined with LSSVM and CARS methods, Laser & Optoelectron. Prog. 55(1), 013005–1 (2018) (in Chinese)
81 H. Zhu D., C. Wang M., J. Xu L., J. Chen X., T. Sun B., Zhang J., W. Liu W., Cao Y., M. Yuan L., and Cai Y., Detection of Pb element composition in irregular copper alloy samples based on multi-line internal standard method, Spectroscopy & Spectral Anal. 39(10), 3159 (2019)
https://doi.org/10.3964/j.issn.1000-0593(2019)10-3159-05
82 Long J.Song W.Hou Z.Wang Z., A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy, Plasma Sci. Technol. 25(7), 075501 (2023)
83 a. Liu J., m. Li J., Zhao N., x. Ma Q., Guo L., and m. Zhang Q., Rapid classification and identification of plastic using laser-induced breakdown spectroscopy with principal component analysis and support vector machine, Spectroscopy & Spectral Anal. 41(6), 1955 (2021)
https://doi.org/10.3964/j.issn.1000-0593(2021)06-1955-06
84 Pořízka P., Klus J., Képeš E., Prochazka D., W. Hahn D., and Kaiser J., On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis ‒ A review, Spectrochim. Acta B 148, 65 (2018)
https://doi.org/10.1016/j.sab.2018.05.030
85 B. Sirven J., Salle B., Mauchien P., L. Lacour J., Maurice S., and Manhes G., Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods, J. Anal. At. Spectrom. 22(12), 1471 (2007)
https://doi.org/10.1039/b704868h
86 A. Abdel-Salam Z., Palleschi V., and A. Harith M., Study of the feeding effect on recent and ancient bovine bones by nanoparticle-enhanced laser-induced breakdown spectroscopy and chemometrics, J. Adv. Res. 17, 65 (2019)
https://doi.org/10.1016/j.jare.2018.12.009
87 H. Farhadian A., K. Tehrani M., H. Keshavarz M., and M. R. Darbani S., Energetic materials identification by laser-induced breakdown spectroscopy combined with artificial neural network, Appl. Opt. 56(12), 3372 (2017)
https://doi.org/10.1364/AO.56.003372
88 Yuan M., Zeng Q., Wang J., Li W., Chen G., Li Z., Liu Y., Guo L., Li X., and Yu H., Rapid classification of steel via a modified support vector machine algorithm based on portable fiber-optic laser-induced breakdown spectroscopy, Opt. Eng. 60(12), 124114 (2021)
https://doi.org/10.1117/1.OE.60.12.124114
89 Li K., Guo L., Li J., Yang X., Yi R., Li X., Lu Y., and Zeng X., Quantitative analysis of steel samples using laser-induced breakdown spectroscopy with an artificial neural network incorporating a genetic algorithm, Appl. Opt. 56(4), 935 (2017)
https://doi.org/10.1364/AO.56.000935
90 X. Zhong Q., Z. Zhao T., Li X., Q. Lian F., Xiao H., Z. Nie S., N. Sun S., and W. Fan Z., Standardized cross-validation and its optimization for multi-element LIBS analysis, Spectroscopy & Spectral Anal. 40(2), 622 (2020)
https://doi.org/10.3964/j.issn.1000-0593(2020)02-0622-06
91 Dong H.Sun L.Qi L.Yu H.Zeng P., A lightweight convolutional neural network model for quantitative analysis of phosphate ore slurry based on laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 36(11), 2528 (2021)
92 Prochazka D., Porízka P., Hruska J., Novotny K., Hrdlicka A., and Kaiser J., Machine learning in laser-induced breakdown spectroscopy as a novel approach towards experimental parameter optimization, J. Anal. At. Spectrom. 37(3), 603 (2022)
https://doi.org/10.1039/D1JA00389E
93 Tang H., Zhang T., Yang X., and Li H., Classification of different types of slag samples by laser-induced breakdown spectroscopy (LIBS) coupled with random forest based on variable importance (VIRF), Anal. Methods 7(21), 9171 (2015)
https://doi.org/10.1039/C5AY02208H
94 Yang P., Zhou R., Zhang W., Tang S., Hao Z., Li X., Lu Y., and Zeng X., Laser-induced breakdown spectroscopy assisted chemometric methods for rice geographic origin classification, Appl. Opt. 57(28), 8297 (2018)
https://doi.org/10.1364/AO.57.008297
95 I. Alarsan F. and Younes M., Analysis and classification of heart diseases using heartbeat features and machine learning algorithms, J. Big Data 6(1), 81 (2019)
https://doi.org/10.1186/s40537-019-0244-x
96 Yu J., Hou Z., Sheta S., Dong J., Han W., Lu T., and Wang Z., Provenance classification of nephrite jades using multivariate LIBS: A comparative study, Anal. Methods 10(3), 281 (2018)
https://doi.org/10.1039/C7AY02643A
97 Gyftokostas N., Stefas D., Kokkinos V., Bouras C., and Couris S., Laser-induced breakdown spectroscopy coupled with machine learning as a tool for olive oil authenticity and geographic discrimination, Sci. Rep. 11(1), 5360 (2021)
https://doi.org/10.1038/s41598-021-84941-z
98 Zhao Z., Chen L., Liu F., Zhou F., Peng J., and Sun M., Fast classification of geographical origins of honey based on laser-induced breakdown spectroscopy and multivariate analysis, Sensors (Basel) 20(7), 1878 (2020)
https://doi.org/10.3390/s20071878
99 Luo Z., Zhang L., Chen T., Liu M., Chen J., Zhou H., and Yao M., Rapid identification of rice species by laser-induced breakdown spectroscopy combined with pattern recognition, Appl. Opt. 58(7), 1631 (2019)
https://doi.org/10.1364/AO.58.001631
100 Huang W., Guo L., Kou W., Zhang D., Hu Z., Chen F., Chu Y., and Cheng W., Identification of adulterated milk powder based on convolutional neural network and laser-induced breakdown spectroscopy, Microchem. J. 176, 107190 (2022)
https://doi.org/10.1016/j.microc.2022.107190
101 Kiss K., Sindelárová A., Krbal L., Stejskal V., Mrázová K., Vrábel J., Kaska M., Modlitbová P., Porízka P., and Kaiser J., Imaging margins of skin tumors using laser-induced breakdown spectroscopy and machine learning, J. Anal. At. Spectrom. 36(5), 909 (2021)
https://doi.org/10.1039/D0JA00469C
102 Ding J., C. Zhang D., W. Wang B., Q. Feng Z., Y. Liu X., and F. Zhu J., The classification of plant leaves by applying chemometrics methods on laser-induced breakdown spectroscopy, Spectroscopy & Spectral Anal. 41(2), 606 (2021)
https://doi.org/10.3964/j.issn.1000-0593(2021)02-0606-06
103 Li X., Yang S., Fan R., Yu X., and Chen D., Discrimination of soft tissues using laser-induced breakdown spectroscopy in combination with k nearest neighbors (kNN) and support vector machine (SVM) classifiers, Opt. Laser Technol. 102, 233 (2018)
https://doi.org/10.1016/j.optlastec.2018.01.028
104 S. Babu M., Imai T., and Sarathi R., Classification of aged epoxy micro-nanocomposites through PCA- and ANN-adopted LIBS analysis, IEEE Trans. Plasma Sci. 49(3), 1088 (2021)
https://doi.org/10.1109/TPS.2021.3061410
105 Singh M. and Sarkar A., Comparative study of the plsr and pcr methods in laser-induced breakdown spectroscopic analysis, J. Appl. Spectrosc. 85(5), 962 (2018)
https://doi.org/10.1007/s10812-018-0746-x
106 Liu Y., Zhao S., Gao X., Fu S., Song Chao, Dou Y., Song Shaozhong, Qi C., and Lin J., Combined laser-induced breakdown spectroscopy and hyperspectral imaging with machine learning for the classification and identification of rice geographical origin, RSC Adv. 12(53), 34520 (2022)
https://doi.org/10.1039/D2RA06892C
107 Campanella B., Grifoni E., Legnaioli S., Lorenzetti G., Pagnotta S., Sorrentino F., and Palleschi V., Classification of wrought aluminum alloys by artificial neural networks evaluation of laser induced breakdown spectroscopy spectra from aluminum scrap samples, Spectrochim. Acta B 134, 52 (2017)
https://doi.org/10.1016/j.sab.2017.06.003
108 Park S.Lee J.Kwon E.Kim D.Shin S. Jeong S.Park K., 3D sensing system for laser-induced breakdown spectroscopy-based metal scrap identification, Int. J. Precis. Eng. & Manuf. -Green Tech. 9, 695 (2022)
109 Demir A.K. Ürk D.Akben K.Doğan M.Pehlivan E. Yalçın Ö.A. Kıştan M.Gökçe G.Obalı A., Elemental Analysis and Classification of Molten Aluminum Alloys by LIBS, Springer Nature Switzerland, Cham, 2024, pp. 984-990.
110 Yan J., Li S., Liu K., Zhou R., Zhang W., Hao Z., Li X., Wang D., Li Q., and Zeng X., An image features assisted line selection method in laser-induced breakdown spectroscopy, Anal. Chim. Acta 1111, 139 (2020)
https://doi.org/10.1016/j.aca.2020.03.030
111 Gyftokostas N., Nanou E., Stefas D., Kokkinos V., Bouras C., and Couris S., Classification of greek olive oils from different regions by machine learning-aided laser-induced breakdown spectroscopy and absorption spectroscopy, Molecules 26(5), 1241 (2021)
https://doi.org/10.3390/molecules26051241
112 Zhang T., Yan C., Qi J., Tang H., and Li H., Classification and discrimination of coal ash by laser-induced breakdown spectroscopy (LIBS) coupled with advanced chemometric methods, J. Anal. At. Spectrom. 32(10), 1960 (2017)
https://doi.org/10.1039/C7JA00218A
113 Rao G., Huang L., Liu M., Chen T., Chen J., Luo Z., Xu F., Xu X., and Yao M., Identification of Huanglongbing-infected navel oranges based on laser-induced breakdown spectroscopy combined with different chemometric methods, Appl. Opt. 57(29), 8738 (2018)
https://doi.org/10.1364/AO.57.008738
114 Lu S., Dong M., Huang J., Li W., Lu J., and Li J., Estimation of the aging grade of T91 steel by laser-induced breakdown spectroscopy coupled with support vector machines, Spectrochim. Acta B 140, 35 (2018)
https://doi.org/10.1016/j.sab.2017.11.005
115 Müller S. and A. Meima J., Mineral classification of lithium-bearing pegmatites based on laser-induced breakdown spectroscopy: Application of semi-supervised learning to detect known minerals and unknown material, Spectrochim. Acta B 189, 106370 (2022)
https://doi.org/10.1016/j.sab.2022.106370
116 M. Narla L. and V. Rao S., Identification of metals and alloys using color CCD images of laser-induced breakdown emissions coupled with machine learning, Appl. Phys. B 126(6), 113 (2020)
https://doi.org/10.1007/s00340-020-07469-6
117 Yelameli M., Thornton B., Takahashi T., Weerakoon T., and Ishii K., Classification and statistical analysis of hydrothermal seafloor rocks measured underwater using laser-induced breakdown spectroscopy, J. Chemometr. 33(2), e3092 (2019)
https://doi.org/10.1002/cem.3092
118 Zeng Q., Chen G., Li W., Li Z., Tong J., Yuan M., Wang B., Ma H., Liu Y., Guo L., and Yu H., Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine, Plasma Sci. Technol. 24(8), 084009 (2022)
https://doi.org/10.1088/2058-6272/ac72e3
119 Chen T., Sun L., Yu H., Wang W., Qi L., Zhang P., and Zeng P., Deep learning with laser-induced breakdown spectroscopy (LIBS) for the classification of rocks based on elemental imaging, Appl. Geochem. 136, 105135 (2022)
https://doi.org/10.1016/j.apgeochem.2021.105135
120 Hao W., Hao X., Yang Y., Liu X., Liu Y., Sun P., and Sun R., Rapid classification of soils from different mining areas by laser-induced breakdown spectroscopy (LIBS) coupled with a PCA-based convolutional neural network, J. Anal. At. Spectrom. 36(11), 2509 (2021)
https://doi.org/10.1039/D1JA00078K
121 H. Yan W., Y. Yang X., Geng X., S. Wang L., Lu L., Tian Y., Li Y., and Lin H., Rapid identification of fish products using handheld laser induced breakdown spectroscopy combined with random forest, Spectroscopy & Spectral Anal. 42(12), 3714 (2022)
https://doi.org/10.3964/j.issn.1000-0593(2022)12-3714-05
122 W. Chu Y., S. Tang S., X. Ma S., Y. Ma Y., Q. Hao Z., M. Guo Y., B. Guo L., F. Lu Y., and Y. Zeng X., Accuracy and stability improvement for meat species identification using multiplicative scatter correction and laser-induced breakdown spectroscopy, Opt. Express 26(8), 10119 (2018)
https://doi.org/10.1364/OE.26.010119
123 Guo M., Zhu R., Zhang L., Zhang R., Huang G., and Duan H., Quantitative detection of chromium pollution in biochar based on matrix effect classification regression model, Molecules 26(7), 2069 (2021)
https://doi.org/10.3390/molecules26072069
124 C. Costa V., W. B. Aquino F., M. Paranhos C., and R. Pereira-Filho E., Identification and classification of polymer e-waste using laser-induced breakdown spectroscopy (LIBS) and chemometric tools, Polym. Test. 59, 390 (2017)
https://doi.org/10.1016/j.polymertesting.2017.02.017
125 Chen Y., Liu Y., Han B., Yu W., and Wan E., Identification of writing marks from pencil lead through machine learning based on laser-induced breakdown spectroscopy, Optik (Stuttg.) 259, 169008 (2022)
https://doi.org/10.1016/j.ijleo.2022.169008
126 Liu K., Tian D., Deng X., Wang H., and Yang G., Rapid classification of plastic bottles by laser-induced breakdown spectroscopy (LIBS) coupled with partial least squares discrimination analysis based on spectral windows (SW-PLS-DA), J. Anal. At. Spectrom. 34(8), 1665 (2019)
https://doi.org/10.1039/C9JA00105K
127 A. Abdel-Salam Z., A. M. Abdel-Salam S., I. Abdel-Mageed I., and A. Harith M., Evaluation of proteins in sheep colostrum via laser-induced breakdown spectroscopy and multivariate analysis, J. Adv. Res. 15, 19 (2019)
https://doi.org/10.1016/j.jare.2018.07.001
128 Yu W., Sun Z., and Liu Y., Rapid detection and identification of objects using a self-designed methodology based on LIBS and PCA-DVSM – taking rosewood for example, Optik (Stuttg.) 248, 168069 (2021)
https://doi.org/10.1016/j.ijleo.2021.168069
129 K. Pathak A., Singh A., Kumar R., and K. Rai A., Laser-induced breakdown spectroscopy coupled with PCA study of human tooth, Natl. Acad. Sci. Lett. 42(1), 87 (2019)
https://doi.org/10.1007/s40009-018-0735-x
130 Song H.Ma L.Zhu E.Wang Y.Liu Y. Sun W.Peng P.Li C., Plastic classification and recognition by laser-induced breakdown spectroscopy and GA-BP neural network, Laser & Optoelectron. Prog. 57(15), 153002 (2020) (in Chinese)
131 Dong P., Zhao S., Zheng K., Wang J., Gao X., Hao Z., and Lin J., Rapid identification of ginseng origin by laser induced breakdown spectroscopy combined with neural network and support vector machine algorithm, Acta Phys. Sin. 70(4), 040201 (2021)
https://doi.org/10.7498/aps.70.20201520
132 Liu X., Che X., Li K., Wang X., Lin Z., Wu Z., and Zheng Q., Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyses, Plasma Sci. Technol. 22(7), 074006 (2020)
https://doi.org/10.1088/2058-6272/ab7eda
133 Godoi Q.O. Leme F.C. Trevizan L.R. Pereira Filho E.A. Rufini I.Santos JrJ. Krug F., Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements, Spectrochim. Acta B 66(2), 138 (2011)
134 M. Mukhono P., H. Angeyo K., Dehayem-Kamadjeu A., and A. Kaduki K., Laser induced breakdown spectroscopy and characterization of environmental matrices utilizing multivariate chemometrics, Spectrochim. Acta B 87, 81 (2013)
https://doi.org/10.1016/j.sab.2013.05.031
135 F. Akhmetzhanov T. and M. Popov A., Direct determination of lanthanides by LIBS in REE-rich ores: Comparison between univariate and DoE based multivariate calibrations with respect to spectral resolution, J. Anal. At. Spectrom. 37(11), 2330 (2022)
https://doi.org/10.1039/D2JA00188H
136 F. Akhmetzhanov T., A. Labutin T., M. Korshunov D., A. Samsonov A., and M. Popov A., Determination of Ce and La in REE-rich ores using handheld LIBS and PLS regression, J. Anal. At. Spectrom. 38(10), 2134 (2023)
https://doi.org/10.1039/D3JA00143A
137 P. Rao A., R. Jenkins P., M. Vu D., D. Auxier Ii J., K. Patnaik A., and B. Shattan M., Rapid quantitative analysis of trace elements in plutonium alloys using a handheld laser-induced breakdown spectroscopy (LIBS) device coupled with chemometrics and machine learning, Anal. Methods 13(30), 3368 (2021)
https://doi.org/10.1039/D1AY00826A
138 P. Rao A., R. Jenkins P., D. II Auxier J., and B. Shattan M., Comparison of machine learning techniques to optimize the analysis of plutonium surrogate material via a portable LIBS device, J. Anal. At. Spectrom. 36(2), 399 (2021)
https://doi.org/10.1039/D0JA00435A
139 H. Gu Y., Li Y., Tian Y., and Lu Y., Study on the multivariate quantitative analysis method for steel alloy elements using LIBS, Spectroscopy & Spectral Anal. 34(8), 2244 (2014)
https://doi.org/10.3964/j.issn.1000-0593(2014)08-2244-06
140 Yaroshchyk P., L. Death D., and J. Spencer S., Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS, J. Anal. At. Spectrom. 27(1), 92 (2012)
https://doi.org/10.1039/C1JA10164A
141 Erler A., Riebe D., Beitz T., G. Löhmannsröben H., Gebbers R., nutrient detection for precision agriculture using handheld laser-induced breakdown spectroscopy (LIBS) Soil, and regression methods (PLSR multivariate, Lasso and GPR), Sensors (Basel) 20(2), 418 (2020)
https://doi.org/10.3390/s20020418
142 P. Rao A., R. Jenkins P., B. Auxier M., and K. Patnaik Shattan, Development of advanced machine learning models for analysis of plutonium surrogate optical emission spectra, Appl. Opt. 61(7), D30 (2022)
https://doi.org/10.1364/AO.444093
143 J. Yuan R., Wan X., He Q., and P. Wang H., Research on olivine component analysis using LIBS combined with back-propagation algorithm, Spectroscopy & Spectral Anal. 39(12), 3861 (2019)
https://doi.org/10.3964/j.issn.1000-0593(2019)12-3861-07
144 Shi Q., Niu G., Lin Q., Xu T., Li F., and Duan Y., Quantitative analysis of sedimentary rocks using laser-induced breakdown spectroscopy: Comparison of support vector regression and partial least squares regression chemometric methods, J. Anal. At. Spectrom. 30(12), 2384 (2015)
https://doi.org/10.1039/C5JA00255A
145 Ding Y., Yan F., Yang G., Chen H., and Song Z., Quantitative analysis of sinters using laser-induced breakdown spectroscopy (LIBS) coupled with kernel-based extreme learning machine (K-ELM), Anal. Methods 10(9), 1074 (2018)
https://doi.org/10.1039/C7AY02748F
146 Wu S., Zhang T., Tang H., Wang K., Yang X., and Li H., Quantitative analysis of nonmetal elements in steel using laser-induced breakdown spectroscopy combined with random forest, Anal. Methods 7(6), 2425 (2015)
https://doi.org/10.1039/C4AY02601B
147 R. Xiang L., H. Ma Z., Y. Zhao X., Liu F., He Y., and Feng L., Comparative analysis of chemometrics method on heavy metal detection in soil with laser-induced breakdown spectroscopy, Spectroscopy & Spectral Anal. 37(12), 3871 (2017)
https://doi.org/10.3964/j.issn.1000-0593(2017)12-3871-06
148 Ye S., Chen X., Dong D., Wang J., Wang X., and Wang F., Rapid determination of water COD using laser-induced breakdown spectroscopy coupled with partial least-squares and random forest, Anal. Methods 10(40), 4879 (2018)
https://doi.org/10.1039/C8AY01266K
149 A. Labutin T., M. Zaytsev S., M. Popov A., and B. Zorov N., Carbon determination in carbon-manganese steels under atmospheric conditions by laser-induced breakdown spectroscopy, Opt. Express 22(19), 22382 (2014)
https://doi.org/10.1364/OE.22.022382
150 Sun L.Liu L.Zhu M.Wang M.Wang Q. Peng X.Qu J., Quantitative analysis of laser-induced breakdown spectroscopy of Pb in water using particle swarm optimization algorithm, in: 2015 Optoelectronics Global Conference (OGC), Shenzhen, China, 2015, pp 29–31
151 Q. Hao Z., M. Li C., Shen M., Y. Yang X., H. Li K., B. Guo L., Y. Li X., F. Lu Y., and Y. Zeng X., Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression, Opt. Express 23(6), 7795 (2015)
https://doi.org/10.1364/OE.23.007795
152 Wang P., Li N., Yan C., Feng Y., Ding Y., Zhang T., and Li H., Rapid quantitative analysis of the acidity of iron ore by the laser-induced breakdown spectroscopy (LIBS) technique coupled with variable importance measures-random forests (VIM-RF), Anal. Methods 11(27), 3419 (2019)
https://doi.org/10.1039/C9AY00926D
153 Yang G., Han X., Wang C., Ding Y., Liu K., Tian D., and Yao L., The basicity analysis of sintered ore using laserinduced breakdown spectroscopy (LIBS) combined with random forest regression (RFR), Anal. Methods 9(36), 5365 (2017)
https://doi.org/10.1039/C7AY01389B
154 Lu C., Lv G., Shi C., Qiu D., Jin F., Gu M., and Sha W., Quantitative analysis of pH value in soil using laser-induced breakdown spectroscopy coupled with a multivariate regression method, Appl. Opt. 59(28), 8582 (2020)
https://doi.org/10.1364/AO.401405
155 Zhang Y., Xiong Z., Ma Y., Zhu C., Zhou R., Li X., Li Q., and Zeng Q., Quantitative analysis of coal quality by laser-induced breakdown spectroscopy assisted with different chemometric methods, Anal. Methods 12(27), 3530 (2020)
https://doi.org/10.1039/D0AY00905A
156 Képeš E., Saeidfirozeh H., Laitl V., Vrábel J., Kubelík P., Pořízka P., Ferus M., and Kaiser J., Interpreting neural networks trained to predict plasma temperature from optical emission spectra, J. Anal. At. Spectrom. 39(4), 1160 (2024)
https://doi.org/10.1039/D3JA00363A
157 Saeidfirozeh H.K. Myakalwar A.Kubelík P.Ghaderi A.Laitl V.Petera L. B. Rimmer P.Shorttle O.N. Heays A.Krivková A.Krus M.Civis S.Yáñez J.Képes E.Porízka P.Ferus M., ANN-LIBS analysis of mixture plasmas: Detection of Xenon, J. Anal. At. Spectrom. 37(9), 1815 (2022)
158 Ahmed N., A. Awan J., Fatima K., M. Z. Iqbal S., Rafique M., A. Abbasi S., and A. Baig M., Machine learning-based calibration LIBS analysis of aluminium-based alloys, Eur. Phys. J. Plus 137(6), 671 (2022)
https://doi.org/10.1140/epjp/s13360-022-02892-4
159 H. Li K., B. Guo L., M. Li C., Y. Li X., Shen M., Zheng Z., Yu Y., F. Hao R., Q. Hao Z., D. Zeng Q., F. Lu Y., and Y. Zeng X., Analytical-performance improvement of laserinduced breakdown spectroscopy for steel using multi-spectral-line calibration with an artificial neural network, J. Anal. At. Spectrom. 30(7), 1623 (2015)
https://doi.org/10.1039/C5JA00089K
160 Yang P., Li X., and Nie Z., Determination of the nutrient profile in plant materials using laser-induced breakdown spectroscopy with partial least squares-artificial neural network hybrid models, Opt. Express 28(15), 23037 (2020)
https://doi.org/10.1364/OE.399909
161 Shabbir S., Xu W., Zhang Y., Sun C., Yue Z., Zou L., Chen F., and Yu J., Machine learning and transfer learning for correction of the chemical and physical matrix effects in the determination of alkali and alkaline earth metals with LIBS in rocks, Spectrochim. Acta B 194, 106478 (2022)
https://doi.org/10.1016/j.sab.2022.106478
162 Zhang H., Wang S., Li D., Zhang Y., Hu J., and Wang L., Edible gelatin diagnosis using laser-induced breakdown spectroscopy and partial least square assisted support vector machine, Sensors (Basel) 19(19), 4225 (2019)
https://doi.org/10.3390/s19194225
163 Huang J., Dong M., Lu S., Li W., Lu J., Liu C., and H. Yoo J., Estimation of the mechanical properties of steel via LIBS combined with canonical correlation analysis (CCA) and support vector regression (SVR), J. Anal. At. Spectrom. 33(5), 720 (2018)
https://doi.org/10.1039/C8JA00030A
164 P. Yu F., J. Lin J., M. Lin X., and Li L., Detection of C element in alloy steel by double pulse laser induced breakdown spectroscopy with a multivariable GA-BP-ANN, Spectroscopy & Spectral Anal. 42(1), 197 (2022)
https://doi.org/10.3964/j.issn.1000-0593(2022)01-0197-06
165 Song W., Hou Z., Gu W., S. Afgan M., Cui J., Wang H., Wang Y., and Wang Z., Incorporating domain knowledge into machine learning for laser-induced breakdown spectroscopy quantification, Spectrochim. Acta B 195, 106490 (2022)
https://doi.org/10.1016/j.sab.2022.106490
166 Wang Z.Feng J.Li L.Ni W.Li Z., A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)
167 Feng J.Wang Z.West L.Li Z.Ni W., A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy, Anal. Bioanal. Chem. 400(10), 3261 (2011)
168 Wang Z.Feng J.Li L.Ni W.Li Z., A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2289 (2011)
169 Li X.Wang Z. Fu Y.Li Z. Ni W., A model combining spectrum standardization and dominant factor based partial least square method for carbon analysis in coal using laser-induced breakdown spectroscopy, Spectrochim. Acta B 99, 82 (2014)
170 Hou Z., Wang Z., Li L., Yu X., Li T., Yao H., Yan G., Ye Q., Liu Z., and Zheng H., Fast measurement of coking properties of coal using laser induced breakdown spectroscopy, Spectrochim. Acta B 191, 106406 (2022)
https://doi.org/10.1016/j.sab.2022.106406
171 Wang Z.Feng J.Li L.Ni W.Li Z., A non-linearized PLS model based on multivariate dominant factor for laser-induced breakdown spectroscopy measurements, J. Anal. At. Spectrom. 26(11), 2175 (2011)
172 Zhang Y., Lu Y., Tian Y., Li Y., Ye W., Guo J., and Zheng R., Quantitation improvement of underwater laser induced breakdown spectroscopy by using self-absorption correction based on plasma images, Anal. Chim. Acta 1195, 339423 (2022)
https://doi.org/10.1016/j.aca.2021.339423
173 Hou Z.Wang Z.Yuan T.Liu J.Li Z. Ni W., A hybrid quantification model and its application for coal analysis using laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(3), 722 (2016)
174 Feng J.Wang Z.Li L.Li Z.Ni W., A nonlinearized multivariate dominant factor-based partial least squares (PLS) model for coal analysis by using laser-induced breakdown spectroscopy, Appl. Spectrosc. 67(3), 291 (2013)
175 Dong M.Wei L.Lu J.Li W.Lu S. Li S.Liu C. H. Yoo J., A comparative model combining carbon atomic and molecular emissions based on partial least squares and support vector regression correction for carbon analysis in coal using LIBS, J. Anal. At. Spectrom. 34(3), 480 (2019)
176 Song W., S. Afgan M., H. Yun Y., Wang H., Cui J., Gu W., Hou Z., and Wang Z., Spectral knowledge-based regression for laser-induced breakdown spectroscopy quantitative analysis, Expert Syst. Appl. 205, 117756 (2022)
https://doi.org/10.1016/j.eswa.2022.117756
177 Kepes E., Vrábel J., Brázdil T., Holub P., Porízka P., and Kaiser J., Interpreting convolutional neural network classifiers applied to laser-induced breakdown optical emission spectra, Talanta 266, 124946 (2024)
https://doi.org/10.1016/j.talanta.2023.124946
178 P. Rao A., R. Jenkins P., D. Auxier J., B. Shattan M., and K. Patnaik A., Analytical comparisons of handheld LIBS and XRF devices for rapid quantification of gallium in a plutonium surrogate matrix, J. Anal. At. Spectrom. 37(5), 1090 (2022)
https://doi.org/10.1039/D1JA00404B
179 Amador-Hernández J., E. García-Ayuso L., M. Fernández-Romeroa J., and D. Luque de Castro M., Partial least squares regression for problem solving in precious metal analysis by laser induced breakdown spectrometry, J. Anal. At. Spectrom. 15, 587 (2000)
https://doi.org/10.1039/B000813N
180 L. Death D., P. Cunningham A., and J. Pollard L., Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression, Spectrochim. Acta Part B 63(7), 763 (2008)
https://doi.org/10.1016/j.sab.2008.04.014
181 M. Zaytsev S., M. Popov A., V. Chernykh E., D. Voronina R., B. Zorov N., A. Labutin T., of single- Comparison, and calibration for determination of Si multivariate, Cr and Ni in high-alloyed stainless steels by laser-induced breakdown spectrometry, J. Anal. At. Spectrom. 29(8), 1417 (2014)
https://doi.org/10.1039/C3JA50389E
182 M. Zaytsev S., N. Krylov I., M. Popov A., B. Zorov N., and A. Labutin T., Accuracy enhancement of a multivariate calibration for lead determination in soils by laser induced breakdown spectroscopy, Spectrochim. Acta B 140, 65 (2018)
https://doi.org/10.1016/j.sab.2017.12.005
183 C. Huang Y., S. Harilal S., Bais A., and E. Hussein A., Progress toward machine learning methodologies for laser-induced breakdown spectroscopy with an emphasis on soil analysis, IEEE Trans. Plasma Sci. 51(7), 1729 (2023)
https://doi.org/10.1109/TPS.2022.3231985
184 Rethfeldt N., Brinkmann P., Riebe D., Beitz T., Köllner N., Altenberger U., and G. Löhmannsröben H., Detection of rare earth elements in minerals and soils by laser-induced breakdown spectroscopy (LIBS) using interval PLS, Minerals (Basel) 11(12), 1379 (2021)
https://doi.org/10.3390/min11121379
185 R. Bhatt C., Y. Yueh F., and P. Singh J., Univariate and multivariate analyses of rare earth elements by laser-induced breakdown spectroscopy, Appl. Opt. 56(8), 2280 (2017)
https://doi.org/10.1364/AO.56.002280
186 H. Kwapis E., Borrero J., S. Latty K., B. Andrews H., Phongikaroon S., and C. Hartig K., Laser ablation plasmas and spectroscopy for nuclear applications, Appl. Spectrosc. 78(1), 9 (2024)
https://doi.org/10.1177/00037028231211559
187 Sun C., J. Xu W., Q. Tan Y., Q. Zhang Y., Q. Yue Z., Zou L., Shabbir S., T. Wu M., Y. Chen F., and Yu J., From machine learning to transfer learning in laser-induced breakdown spectroscopy analysis of rocks for Mars exploration, Sci. Rep. 11(1), 21379 (2021)
https://doi.org/10.1038/s41598-021-00647-2
188 Motto-Ros V., S. Koujelev A., R. Osinski G., and E. Dudelzak A., Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks, J. Eur. Opt. Soc. Rapid Publ. 3, 08011 (2008)
https://doi.org/10.2971/jeos..08011
189 B. Sirven J., Bousquet B., Canioni L., and Sarger L., Laser-induced breakdown spectroscopy of composite SampIes: Comparison of advanced chemometrics methods, Anal. Chem. 78(5), 1462 (2006)
https://doi.org/10.1021/ac051721p
190 B. Xu X., Ma F., M. Zhou J., and W. Du C., Applying convolutional neural networks (CNN) for end-to-end soil analysis based on laser-induced breakdown spectroscopy (LIBS) with less spectral preprocessing, Comput. Electron. Agric. 199, 107171 (2022)
https://doi.org/10.1016/j.compag.2022.107171
191 H. Yang J.C. Yi C.W. Xu J.H. Ma X., A laser induced breakdown spectroscopy quantitative analysis method based on the robust least squares support vector machine regression model, J. Anal. At. Spectrom. 30(7), 1541 (2015)
192 Yang Z., Tang B., and Qiu Y., Measurement of transient temperature using laser induced breakdown spectroscopy (LIBS) with the surface temperature effect, J. Anal. At. Spectrom. (10), 38 (2023)
https://doi.org/10.1039/d3ja00128h
193 Sun L., Yu H., Cong Z., Xin Y., Li Y., and Qi L., In situ analysis of steel melt by double-pulse laser-induced breakdown spectroscopy with a Cassegrain telescope, Spectrochim. Acta B 112, 40 (2015)
https://doi.org/10.1016/j.sab.2015.08.008
194 X. Sun L.Xin Y.B. Cong Z.Li Y.F. Qi L., Online compositional analysis of molten steel by laser-induced breakdown spectroscopy, Adv. Mater. Res. 694–697, 1260 (2013)
195 Lee Y., I. Foster R., Kim H., and Choi S., Machine learning-assisted laser-induced breakdown spectroscopy for monitoring molten salt compositions of small modular reactor fuel under varying laser focus positions, Anal. Chim. Acta 1241, 340804 (2023)
https://doi.org/10.1016/j.aca.2023.340804
196 J. Gasda P., B. Anderson R., Cousin A., Forni O., M. Clegg S., Ollila A., Lanza N., Frydenvang J., Lamm S., C. Wiens R., Maurice S., Gasnault O., Beal R., Reyes-Newell A., and Delapp D., Quantification of manganese for ChemCam Mars and laboratory spectra using a multivariate model, Spectrochim. Acta B 181, 106223 (2021)
https://doi.org/10.1016/j.sab.2021.106223
197 Yang F., N. Li L., M. Xu W., F. Liu X., C. Cui Z., C. Jia L., Liu Y., H. Xu J., W. Chen Y., S. Xu X., Y. Wang J., Qi H., and Shu R., Laser-induced breakdown spectroscopy combined with a convolutional neural network: A promising methodology for geochemical sample identification in Tianwen-1 Mars mission, Spectrochim. Acta B 192, 106417 (2022)
https://doi.org/10.1016/j.sab.2022.106417
198 Takahashi T., Thornton B., Sato T., Ohki T., Ohki K., and Sakka T., Temperature based segmentation for spectral data of laser-induced plasmas for quantitative compositional analysis of brass alloys submerged in water, Spectrochim. Acta B 124, 87 (2016)
https://doi.org/10.1016/j.sab.2016.08.025
199 Takahashi T., Thornton B., Sato T., Ohki T., Ohki K., and Sakka T., Partial least squares regression calculation for quantitative analysis of metals submerged in water measured using laser-induced breakdown spectroscopy, Appl. Opt. 57(20), 5872 (2018)
https://doi.org/10.1364/AO.57.005872
200 Liu C., Guo J., Tian Y., Zhang C., Cheng K., Ye W., and Zheng R., Development and field tests of a deep-sea laser-induced breakdown spectroscopy (LIBS) system for solid sample analysis in seawater, Sensors (Basel) 20(24), 7341 (2020)
https://doi.org/10.3390/s20247341
201 Li A., Zhang X., Liu X., He Y., Shan Y., Sun H., Yi W., and Liu R., Real time and high-precision online determination of main components in iron ore using spectral refinement algorithm based LIBS, Opt. Express 31(23), 38728 (2023)
https://doi.org/10.1364/OE.505574
202 Lu P.Zhuo Z. Zhang W.Tang J.Wang Y.Zhou H.Huang X. Sun T.Lu J., A hybrid feature selection combining wavelet transform for quantitative analysis of heat value of coal using laser-induced breakdown spectroscopy, Appl. Phys. B 127(2), 19 (2021)
203 Yang Y.Wang P.Ma C., Quantitative analysis of Mn element in liquid steel by LIBS based on particle swarm optimized support vector machine, Laser & Optoelectron. Prog. 52(7), 073004–1 (2015) (in Chinese)
204 Huang Y., Lin J., Lin X., and Zheng W., Quantitative analysis of Cr in soil based on variable selection coupled with multivariate regression using laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 36(11), 2553 (2021)
https://doi.org/10.1039/D1JA00257K
205 M. Guo Y., B. Guo L., Q. Hao Z., Tang Y., X. Ma S., D. Zeng Q., S. Tang S., Y. Li X., F. Lu Y., and Y. Zeng X., Accuracy improvement of iron ore analysis using laser-induced breakdown spectroscopy with a hybrid sparse partial least squares and least-squares support vector machine model, J. Anal. At. Spectrom. 33(8), 1330 (2018)
https://doi.org/10.1039/C8JA00119G
206 Wang Z.Li L.West L.Li Z.Ni W., A spectrum standardization approach for laser-induced breakdown spectroscopy measurements, Spectrochim. Acta B 68, 58 (2012)
207 Li H., Huang M., and Xu H., High accuracy determination of copper in copper concentrate with double genetic algorithm and partial least square in laser-induced breakdown spectroscopy, Opt. Express 28(2), 2142 (2020)
https://doi.org/10.1364/OE.381582
208 Chang F., Yang J., Lu H., and Li H., Repeatability enhancing method for one-shot LIBS analysis via spectral intensity correction based on probability distribution, J. Anal. At. Spectrom. 36(8), 1712 (2021)
https://doi.org/10.1039/D1JA00040C
209 B. Chen T., H. Liu M., Huang L., M. Zhou H., H. Wang C., Yang H., Q. Hu H., and Y. Yao M., Effects of different pretreatment method on laser-induced breakdown spectroscopy measurement of Pb in pork, Chin. J. Anal. Chem. 44(7), 1029 (2016)
https://doi.org/10.11895/j.issn.0253.3820.160040
210 Q. Hu H., H. Xu X., H. Liu M., P. Tu J., Huang L., Huang L., Y. Yao M., B. Chen T., and Yang P., Determination of Cu in shell of preserved egg by LIBS coupled with PLS, Spectroscopy & Spectral Anal. 35(12), 3500 (2015)
https://doi.org/10.3964/j.issn.1000-0593(2015)12-3500-05
211 B. Li W., T. Yao L., H. Liu M., Huang L., Y. Yao M., B. Chen T., W. He X., Yang P., Q. Hu H., and H. Nie J., Influence of spectral pre-processing on PLS quantitative model of detecting Cu in navel orange by LIBS, Spectroscopy & Spectral Anal. 35(5), 1392 (2015)
https://doi.org/10.3964/j.issn.1000-0593(2015)05-1392-06
212 Yang H., Huang L., Liu M., Chen T., Wang C., Hu H., and Yao M., Detection of Pb in navel orange by peel laser induced breakdown spectroscopy coupled with PLS, Chin. J. Anal. Lab. 35(7), 760 (2016)
https://doi.org/10.13595/j.cnki.issn1000-0720.2016.0174
213 Ke K., Lu Y., and c. Yi C., Improvement of convex optimization baseline correction in laser-induced breakdown spectral quantitative analysis, Spectroscopy & Spectral Anal. 38(7), 2256 (2018)
https://doi.org/10.3964/j.issn.1000-0593(2018)07-2256-06
214 Yi C.Lv Y. Xiao H.Ke K.Yu X., A novel baseline correction method using convex optimization framework in laser-induced breakdown spectroscopy quantitative analysis, Spectrochim. Acta B 138, 72 (2017)
215 Yaroshchyk P. and E. Eberhardt J., Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm, Spectrochim. Acta B 99, 138 (2014)
https://doi.org/10.1016/j.sab.2014.06.020
216 Yoon S., Choi J., J. Moon S., and H. Choi J., Determination and quantification of heavy metals in sediments through laser-induced breakdown spectroscopy and partial least squares regression, Appl. Sci. (Basel) 11(15), 7154 (2021)
https://doi.org/10.3390/app11157154
217 Ma C. and Cui J., Quantitative analysis of composition in molten steel by LIBS based on improved partial least squares, Laser Technology 40(6), 876 (2016)
https://doi.org/10.7510/jgjs.issn.1001-3806.2016.06.021
218 Zhu Z., Li J., Guo Y., Cheng X., Tang Y., Guo L., Li X., Lu Y., and Zeng X., Accuracy improvement of boron by molecular emission with a genetic algorithm and partial least squares regression model in laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 33(2), 205 (2018)
https://doi.org/10.1039/C7JA00356K
219 Ye S., H. Gu Y., F. Du X., T. Zhang W., J. Wang J., Q. Wang X., and M. Dong D., Chemometrics method for real-time measurement of water COD based on laser-induced breakdown spectroscopy, Spectroscopy & Spectral Anal. 37(11), 3585 (2017)
https://doi.org/10.3964/j.issn.1000-0593(2017)11-3585-05
220 Li M., Fu H., Du Y., Huang X., Zhang T., Tang H., and Li H., Laser induced breakdown spectroscopy combined with hybrid variable selection for the prediction of the environmental risk Nemerow index of heavy metals in oily sludge, J. Anal. At. Spectrom. 37(5), 1099 (2022)
https://doi.org/10.1039/D2JA00048B
221 He J., Pan C., Liu Y., and Du X., Quantitative analysis of carbon with laser-induced breakdown spectroscopy (LIBS) using genetic algorithm and back propagation neural network models, Appl. Spectrosc. 73(6), 678 (2019)
https://doi.org/10.1177/0003702819829555
222 Chen J., Li Q., Liu K., Li X., Lu B., and Li G., Correction of moisture interference in laser-induced breakdown spectroscopy detection of coal by combining neural networks and random spectral attenuation, J. Anal. At. Spectrom. 37(8), 1658 (2022)
https://doi.org/10.1039/D2JA00138A
223 Luarte D., K. Myakalwar A., Velásquez M., Álvarez J., Sandoval C., Fuentes R., Yañez J., and Sbarbaro D., Combining prior knowledge with input selection algorithms for quantitative analysis using neural networks in laser induced breakdown spectroscopy, Anal. Methods 13(9), 1181 (2021)
https://doi.org/10.1039/D0AY02300K
224 N. Li L.F. Liu X.M. Xu W.Y. Wang J.Shu R., A laser-induced breakdown spectroscopy multi-component quantitative analytical method based on a deep convolutional neural network, Spectrochim. Acta B 169, 105850 (2020)
225 Yan C., Qi J., Ma J., Tang H., Zhang T., and Li H., Determination of carbon and sulfur content in coal by laser induced breakdown spectroscopy combined with kernel-based extreme learning machine, Chemom. Intell. Lab. Syst. 167, 226 (2017)
https://doi.org/10.1016/j.chemolab.2017.06.006
[1] Kaifan Zhang, Weiran Song, Zongyu Hou, Zhe Wang. Effect of ambient pressures on laser-induced breakdown spectroscopy signals[J]. Front. Phys. , 2024, 19(4): 42203-.
[2] Sue Sin Chong, Yi Sheng Ng, Hui-Qiong Wang, Jin-Cheng Zheng. Advances of machine learning in materials science: Ideas and techniques[J]. Front. Phys. , 2024, 19(1): 13501-.
[3] Yongjia Wang, Qingfeng Li. Machine learning transforms the inference of the nuclear equation of state[J]. Front. Phys. , 2023, 18(6): 64402-.
[4] Zongyu Hou, Weilun Gu, Tianqi Li, Zhe Wang, Liang Li, Xiang Yu, Yecai Zhang, Zijun Liu. A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors[J]. Front. Phys. , 2022, 17(6): 62503-.
[5] Jinyu Wan, Yi Jiao. Machine learning-based direct solver for one-to-many problems on temporal shaping of relativistic electron beams[J]. Front. Phys. , 2022, 17(6): 64601-.
[6] Cuiqian Yu, Yulou Ouyang, Jie Chen. Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard−Jones solids[J]. Front. Phys. , 2022, 17(5): 53507-.
[7] Daryl Ryan Chong, Minhyuk Kim, Jaewook Ahn, Heejeong Jeong. Machine learning identification of symmetrized base states of Rydberg atoms[J]. Front. Phys. , 2022, 17(1): 12504-.
[8] Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen. Machine learning approach for the prediction and optimization of thermal transport properties[J]. Front. Phys. , 2021, 16(4): 43200-.
[9] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[10] Lian-Bo Guo (郭连波), Deng Zhang (张登), Lan-Xiang Sun (孙兰香), Shun-Chun Yao (姚顺春), Lei Zhang (张雷), Zhen-Zhen Wang (王珍珍), Qian-Qian Wang (王茜蒨), Hong-Bin Ding (丁洪斌), Yuan Lu (卢渊), Zong-Yu Hou (侯宗余), Zhe Wang (王哲). Development in the application of laser-induced breakdown spectroscopy in recent years: A review[J]. Front. Phys. , 2021, 16(2): 22500-.
[11] Wen Tong, Qun Wei, Hai-Yan Yan, Mei-Guang Zhang, Xuan-Min Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes[J]. Front. Phys. , 2020, 15(6): 63501-.
[12] Ce Wang, Hui Zhai. Machine learning of frustrated classical spin models (II): Kernel principal component analysis[J]. Front. Phys. , 2018, 13(5): 130507-.
[13] Shuai Zhang, Sahar Sheta, Zong-Yu Hou, Zhe Wang. On the improvement of signal repeatability in laser-induced air plasmas[J]. Front. Phys. , 2018, 13(2): 135201-.
[14] Yong Zhang,Yun-Hai Jia,Chun Yang,Dong-Ling Li,Jia Liu,Yong-Yan Chen,Ying Liu,Yi-Xiang Duan. Characterization of the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(6): 115205-.
[15] Yang Zhao (赵洋),Lei Zhang (张雷),Shu-Xia Zhao (赵书霞),Yu-Fang Li (李郁芳),Yao Gong (弓瑶),Lei Dong (董磊),Wei-Guang Ma (马维光),Wang-Bao Yin (尹王保),Shun-Chun Yao (姚顺春),Ji-Dong Lu (陆继东),Lian-Tuan Xiao (肖连团),Suo-Tang Jia (贾锁堂). Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China[J]. Front. Phys. , 2016, 11(6): 114211-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed