|
|
Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes |
Julienne Impundu1,2, Wenxiang Wang1,2, Zheng Wei1,2, Yushi Xu1, Yu Wang1, Jiawang You1, Wenbin Huang3( ), Yong Jun Li1,2( ), Lianfeng Sun1,2( ) |
1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Nanofabrication laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Mechanical Engineering Research Institute, Xi’an 710032, China |
|
|
Abstract Carbon nanotubes (CNTs) have garnered significant attention due to their remarkable electronic and magnetic properties. In this research, we introduced multiwalled carbon nanotubes covered with tantalum (MWNTs/Ta) to systematically modulate the magnetoresistive properties of the MWNTs/Ta hybrid nanostructures. We observed distinct changes in both positive and negative magnetoresistances of MWNTs/Ta across a broad temperature range using a physical property measurement system and a four-terminal method. This study on temperature-dependent magnetoresistive behavior of the MWNTs/Ta sheds light on the fundamental properties of carbon-based materials and holds promise for practical applications in the field of spintronic devices.
|
Keywords
multiwalled carbon nanotubes
tantalum
magnetoresistance
temperature dependence
physical property measurement system
four-terminal method
|
Corresponding Author(s):
Wenbin Huang,Yong Jun Li,Lianfeng Sun
|
Issue Date: 23 July 2024
|
|
1 |
W. Odom T. , L. Huang J. , Kim P. , and M. Lieber C. , Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B 104(13), 2794 (2000)
https://doi.org/10.1021/jp993592k
|
2 |
W. Ebbesen T. , J. Lezec H. , Hiura H. , W. Bennett J. , F. Ghaemi H. , and Thio T. , Electrical conductivity of individual carbon nanotubes, Nature 382(6586), 54 (1996)
https://doi.org/10.1038/382054a0
|
3 |
R. Falvo M. , J. Clary G. , II Taylor V. , P. Jr Chi F. , Jr Brooks S. , Washburn S. , and Superfine R. , Bending and buckling of carbon nanotubes under large strain, Nature 389(6651), 582 (1997)
https://doi.org/10.1038/39282
|
4 |
Avouris P. , Freitag M. , and Perebeinos V. , Carbon-nanotube photonics and optoelectronics, Nat. Photonics 2(6), 341 (2008)
https://doi.org/10.1038/nphoton.2008.94
|
5 |
Avouris P. and Martel R. , Progress in carbon nanotube electronics and photonics, MRS Bull. 35(4), 306 (2010)
https://doi.org/10.1557/mrs2010.553
|
6 |
Kuemmeth F. , Ilani S. , C. Ralph D. , and L. McEuen P. , Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature 452(7186), 448 (2008)
https://doi.org/10.1038/nature06822
|
7 |
Guo J. , Jiang H. , Teng Y. , Xiong Y. , Chen Z. , You L. , and Xiao D. , Recent advances in magnetic carbon nanotubes: Synthesis, challenges and highlighted applications, J. Mater. Chem. B 9(44), 9076 (2021)
https://doi.org/10.1039/D1TB01242H
|
8 |
Wang W. , Impundu J. , Jin J. , Peng Z. , Liu H. , Wei Z. , Xu Y. , Wang Y. , You J. , Fan W. , J. Li Y. , and Sun L. , Ferromagnetism in sp2 carbon, Nano Res. 16, 12883 (2023)
https://doi.org/10.1007/s12274-023-5972-8
|
9 |
Li Z. , Li S. , Xu Y. , and Tang N. , Recent advances in magnetism of graphene from 0D to 2D, Chem. Commun. (Camb.) 59(42), 6286 (2023)
https://doi.org/10.1039/D3CC01311A
|
10 |
F. Mak K. , Shan J. , and C. Ralph D. , Probing and controlling magnetic states in 2D layered magnetic materials, Nat. Rev. Phys. 1(11), 646 (2019)
https://doi.org/10.1038/s42254-019-0110-y
|
11 |
Impundu J. , Hussain S. , Minani E. , Liu H. , J. Li Y. , and Sun L. , Local magnetic characterization of 1D and 2D carbon nanomaterials with magnetic force microscopy techniques: A review, Mater. Today Commun. 35, 106103 (2023)
https://doi.org/10.1016/j.mtcomm.2023.106103
|
12 |
Chen Z.Li J.Li T.Fan T.Meng C.Li C.Kang J.Chai L.Hao Y.Tang Y.A. Al-Hartomy O.Wageh S.G. Al-Sehemi A.Luo Z.Yu J.Shao Y.Li D.Feng S.J. Liu W.He Y.Ma X.Xie Z.Zhang H., A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2, Natl. Sci. Rev. 9(8), nwac104 (2022)
|
13 |
Zheng F.Chen Z.Li J.Wu R.Zhang B.Nie G.Xie Z.Zhang H., A highly sensitive CRISPR‐empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification, Adv. Sci. (Weinh.) 9(14), 2105231 (2022)
|
14 |
Gu Y. , Qiu Z. , and Müllen K. , Nanographenes and graphene nanoribbons as multitalents of present and future materials science, J. Am. Chem. Soc. 144(26), 11499 (2022)
https://doi.org/10.1021/jacs.2c02491
|
15 |
Liu Y. , Zeng C. , Zhong J. , Ding J. , M. Wang Z. , and Liu Z. , Spintronics in two-dimensional materials, Nano-Micro Lett. 12(1), 93 (2020)
https://doi.org/10.1007/s40820-020-00424-2
|
16 |
C. Ahn E., 2D materials for spintronic devices, npj 2D Mater. Appl. 4(1), 17 (2020)
|
17 |
Ghising P. , Biswas C. , and H. Lee Y. , Graphene spin valves for spin logic devices, Adv. Mater. 35(23), 2209137 (2023)
https://doi.org/10.1002/adma.202209137
|
18 |
A. Laird E. , Kuemmeth F. , A. Steele G. , Grove-Rasmussen K. , Nygård J. , Flensberg K. , and P. Kouwenhoven L. , Quantum transport in carbon nanotubes, Rev. Mod. Phys. 87(3), 703 (2015)
https://doi.org/10.1103/RevModPhys.87.703
|
19 |
D. Rice W. , T. Weber R. , Nikolaev P. , Arepalli S. , Berka V. , L. Tsai A. , and Kono J. , Spin relaxation times of single-wall carbon nanotubes, Phys. Rev. B 88(4), 041401 (2011)
https://doi.org/10.1103/PhysRevB.88.041401
|
20 |
G. Márkus B. , Gmitra M. , Dóra B. , Csősz G. , Fehér T. , Szirmai P. , Náfrádi B. , Zólyomi V. , Forró L. , Fabian J. , and Simon F. , Ultralong 100 ns spin relaxation time in graphite at room temperature, Nat. Commun. 14(1), 2831 (2023)
https://doi.org/10.1038/s41467-023-38288-w
|
21 |
Idzuchi H.B. Martin M.Otani Y.Dlubak B.Seneor P.Anane A.Jaffres H.Fert A., Handbook of Spintronics, Dordrecht, Springer, 2015
|
22 |
Gu X. , Guo L. , Qin Y. , Yang T. , Meng K. , Hu S. , and Sun X. , Challenges and prospects of molecular spintronics, Precis. Chem. 2(1), 1 (2024)
https://doi.org/10.1021/prechem.3c00071
|
23 |
Liu Y. , Zeng C. , Zhong J. , Ding J. , M. Wang Z. , and Liu Z. , Spintronics in two-dimensional materials, Nano-Micro Lett. 12(1), 93 (2020)
https://doi.org/10.1007/s40820-020-00424-2
|
24 |
W. McClure J. , Diamagnetism of graphite, Phys. Rev. 104(3), 666 (1956)
https://doi.org/10.1103/PhysRev.104.666
|
25 |
C. Lee E. , S. Kim Y. , G. Jin Y. , and J. Chang K. , First-principles study of hydrogen adsorption on carbon nanotube surfaces, Phys. Rev. B 66(7), 073415 (2002)
https://doi.org/10.1103/PhysRevB.66.073415
|
26 |
Liu H. , Wang H. , Peng Z. , Jin J. , Wang Z. , Peng K. , Wang W. , Xu Y. , Wang Y. , Wei Z. , Zhang D. , J. Li Y. , Chu W. , and Sun L. , An anomalous Hall effect in edge-bonded monolayer graphene, Nanoscale Horiz. 8(9), 1235 (2023)
https://doi.org/10.1039/D3NH00233K
|
27 |
Liu J.Peng Z.Cai J.Yue J.Wei H.Impundu J.Liu H.Jin J.Yang Z.Chu W.J. Li Y.Wang G.Sun L., A room-temperature four-terminal spin field effect transistor, Nano Today 38, 101138 (2021)
|
28 |
Kapitza P. and Rutherford E. , The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems, Proc. R. Soc. Lond. A 119(782), 358 (1928)
https://doi.org/10.1098/rspa.1928.0103
|
29 |
Kapitza P. , The change of electrical conductivity in strong magnetic fields (Part II): The analysis and the interpretation of the experimental results, Proc. R. Soc. Lond. 123, 292 (1929)
|
30 |
V. Coleman R. and Isin A. , Magnetoresistance in iron single crystals, J. Appl. Phys. 37(3), 1028 (1966)
https://doi.org/10.1063/1.1708320
|
31 |
Li Y. , F. Cao Y. , N. Wei G. , Li Y. , Ji Y. , Y. Wang K. , W. Edmonds K. , P. Campion R. , W. Rush-forth A. , T. Foxon C. , L. Gallagher B. , and current-controlled magnetization reversal in the ferromagnetic semiconductor (Ga Anisotropic , Mn)As, Appl. Phys. Lett. 103(2), 022401 (2013)
https://doi.org/10.1063/1.4813085
|
32 |
Esquinazi P. , Barzola-Quiquia J. , Spemann D. , Rothermel M. , Ohldag H. , García N. , Setzer A. , and Butz T. , Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties, J. Magn. Magn. Mater. 322(9−12), 1156 (2010)
https://doi.org/10.1016/j.jmmm.2009.06.038
|
33 |
Chen L. , Yang X. , Yang F. , Zhao J. , Misuraca J. , Xiong P. , von Molnár S. , and the Curie temperature of ferromagnetic semiconductor (Ga Enhancing , Mn)As to 200 K via nanostructure engineering, Nano Lett. 11(7), 2584 (2011)
https://doi.org/10.1021/nl201187m
|
34 |
Li X.W. Li J.Y. You J.Su G.Gu B., High Curie temperature and high hole mobility in diluted magnetic semiconductors (B, Mn)X (X = N, P, As, Sb), cond-mat/2311.11283 (2023)
|
35 |
Malter L. and B. Langmuir D. , Resistance, emissivities and melting point of tantalum, Phys. Rev. 55(8), 743 (1939)
https://doi.org/10.1103/PhysRev.55.743
|
36 |
Wang Z. , Zuo Y. , Li Y. , Han X. , Guo X. , Wang J. , Cao B. , Xi L. , and Xue D. , Improved field emission properties of carbon nanotubes decorated with Ta layer, Carbon 73, 114 (2014)
https://doi.org/10.1016/j.carbon.2014.02.046
|
37 |
V. Yazyev O. and Helm L. , Defect-induced magnetism in graphene, Phys. Rev. B 75(12), 125408 (2007)
https://doi.org/10.1103/PhysRevB.75.125408
|
38 |
Wang G. , J. Chen M. , Yu F. , J. Xue L. , Deng Y. , Zhang J. , Y. Qi X. , Gao Y. , G. Chu W. , T. Liu G. , F. Yang H. , Z. Gu C. , and F. Sun L. , Giant magnetic moment at open ends of multiwalled carbon nanotubes, Chin. Phys. B 24(1), 016202 (2015)
https://doi.org/10.1088/1674-1056/24/1/016202
|
39 |
Zhang J. , Deng Y. , T. Hao T. , Hu X. , Y. Liu Y. , S. Peng Z. , P. Nshimiyimana J. , N. Chi X. , Wu P. , Y. Liu S. , Zhang Z. , J. Li J. , T. Wang G. , G. Chu W. , Z. Gu C. , and F. Sun L. , Large magnetic moment at sheared ends of single-walled carbon nanotubes, Chin. Phys. B 27(12), 128101 (2018)
https://doi.org/10.1088/1674-1056/27/12/128101
|
40 |
Z. Zhuo W. , Lei B. , Wu S. , H. Yu F. , S. Zhu C. , H. Cui J. , L. Sun Z. , H. Ma D. , Z. Shi M. , H. Wang H. , X. Wang W. , Wu T. , J. Ying J. , W. Wu S. , Y. Wang Z. , and H. Chen X. , Manipulating ferromagnetism in few-layered Cr2Ge2Te6, Adv. Mater. 33(31), 2008586 (2021)
https://doi.org/10.1002/adma.202008586
|
41 |
L. Jiang K. , Li Q. , and Fan S. , Spinning continuous carbon nanotube yarns, Nature 419(6909), 801 (2002)
https://doi.org/10.1038/419801a
|
42 |
Zhang M. , R. Atkinson K. , and H. Baughman R. , Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306(5700), 1358 (2004)
https://doi.org/10.1126/science.1104276
|
43 |
Lepró X. , D. Lima M. , and H. Baughman R. , Spinnable carbon nanotube forests grown on thin, flexible metallic substrates, Carbon 48(12), 3621 (2010)
https://doi.org/10.1016/j.carbon.2010.06.016
|
44 |
Zhang S. , Zhu L. , L. Minus M. , G. Chae H. , Jagannathan S. , P. Wong C. , Kowalik J. , B. Roberson L. , and Kumar S. , Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition, J. Mater. Sci. 43(13), 4356 (2008)
https://doi.org/10.1007/s10853-008-2558-5
|
45 |
D. Tran C. , Humphries W. , M. Smith S. , Huynh C. , and Lucas S. , Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process, Carbon 47(11), 2662 (2009)
https://doi.org/10.1016/j.carbon.2009.05.020
|
46 |
Xin N. , Lourembam J. , Kumaravadivel P. , E. Kazantsev A. , Wu Z. , Mullan C. , Barrier J. , A. Geim A. , V. Grigorieva I. , Mishchenko A. , Principi A. , I. Fal’ko V. , A. Ponomarenko L. , K. Geim A. , and I. Berdyugin A. , Giant magnetoresistance of Dirac plasma in high-mobility graphene, Nature 616(7956), 270 (2023)
https://doi.org/10.1038/s41586-023-05807-0
|
47 |
S. Alexandre S. , S. C. Mazzoni M. , and Chacham H. , Edge states and magnetism in carbon nanotubes with line defects, Phys. Rev. Lett. 100(14), 146801 (2008)
https://doi.org/10.1103/PhysRevLett.100.146801
|
48 |
E. Khan M. , Wali Q. , Aamir M. , and H. Kim Y. , Spin transport properties of carbon nanotubes by ferromagnetic zigzag triangular defects: A first-principles study, Mater. Today Commun. 32, 104074 (2022)
https://doi.org/10.1016/j.mtcomm.2022.104074
|
49 |
Zhang C. , Zhang E. , Wang W. , Liu Y. , G. Chen Z. , Lu S. , Liang S. , Cao J. , Yuan X. , Tang L. , Li Q. , Zhou C. , Gu T. , Wu Y. , Zou J. , and Xiu F. , Room-temperature chiral charge pumping in Dirac semimetals, Nat. Commun. 8(1), 13741 (2017)
https://doi.org/10.1038/ncomms13741
|
50 |
Li Q. , E. Kharzeev D. , Zhang C. , Huang Y. , Pletikosić I. , V. Fedorov A. , D. Zhong R. , A. Schneeloch J. , D. Gu G. , and Valla T. , Chiral magnetic effect in ZrTe5, Nat. Phys. 12(6), 550 (2016)
https://doi.org/10.1038/nphys3648
|
51 |
Ong N. and Liang S. , Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals, Nat. Rev. Phys. 3(6), 394 (2021)
https://doi.org/10.1038/s42254-021-00310-9
|
52 |
Huang X. , Zhao L. , Long Y. , Wang P. , Chen D. , Yang Z. , Liang H. , Xue M. , Weng H. , Fang Z. , Dai X. , and Chen G. , Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)
https://doi.org/10.1103/PhysRevX.5.031023
|
53 |
Wu J. and Hagelberg F. , Magnetism in finite-sized single-walled carbon nanotubes of the zigzag type, Phys. Rev. B 79(11), 115436 (2009)
https://doi.org/10.1103/PhysRevB.79.115436
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|