Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63208    https://doi.org/10.1007/s11467-024-1432-5
Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes
Julienne Impundu1,2, Wenxiang Wang1,2, Zheng Wei1,2, Yushi Xu1, Yu Wang1, Jiawang You1, Wenbin Huang3(), Yong Jun Li1,2(), Lianfeng Sun1,2()
1. CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Nanofabrication laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Mechanical Engineering Research Institute, Xi’an 710032, China
 Download: PDF(11187 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon nanotubes (CNTs) have garnered significant attention due to their remarkable electronic and magnetic properties. In this research, we introduced multiwalled carbon nanotubes covered with tantalum (MWNTs/Ta) to systematically modulate the magnetoresistive properties of the MWNTs/Ta hybrid nanostructures. We observed distinct changes in both positive and negative magnetoresistances of MWNTs/Ta across a broad temperature range using a physical property measurement system and a four-terminal method. This study on temperature-dependent magnetoresistive behavior of the MWNTs/Ta sheds light on the fundamental properties of carbon-based materials and holds promise for practical applications in the field of spintronic devices.

Keywords multiwalled carbon nanotubes      tantalum      magnetoresistance      temperature dependence      physical property measurement system      four-terminal method     
Corresponding Author(s): Wenbin Huang,Yong Jun Li,Lianfeng Sun   
Issue Date: 23 July 2024
 Cite this article:   
Julienne Impundu,Wenxiang Wang,Zheng Wei, et al. Temperature dependence of positive and negative magnetoresistances of tantalum-covered multiwalled carbon nanotubes[J]. Front. Phys. , 2024, 19(6): 63208.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1432-5
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63208
Fig.1  Fabrication of aligned MWNTs covered with tantalum. (a) Aligned MWNTs grown on silicon wafers. (b) A metal mask with a dumbbell is positioned onto MWNTs. (c) The metal tantalum (Ta) is deposited onto the MWNTs using magnetron sputtering. (d) Optical images of MWNTs/Ta bar devices.
Fig.2  Characterization of aligned MWNTs covered with Ta. (a) Optical images of (i) MWNTs/Ta device, (ii) pure Ta device, and (b) the height profile of Ta device. (c) AFM image of aligned MWNTs/Ta. (d) MWNTs/Ta height profile. (e, f) SEM image of pristine MWNTs and aligned MWNTs/Ta. (g, h) The elements distribution of Ta-covered MWNTs.
Fig.3  Bar structures and transport properties of MWNTs/Ta and Ta bar devices. (a) Photograph of MWNTs/Ta bar (left) and Ta bar (right) devices. (b) The schematic drawing of the four-terminal method. (c) I?V characteristics of the devices in (a). (d) Resistance versus temperature of the devices in (a).
Fig.4  Magnetotransport properties for the MWNTs/Ta bar device and the pure Ta bar device were examined as a function of temperature in: (a) x direction, (b) y direction, and (c) z direction.
Fig.5  Magnetoresistance (MR) behavior at different temperatures along different magnetic field directions: (a) x axis, (b) y axis, and (c) z axis of MWNTs/Ta bar device.
1 W. Odom T. , L. Huang J. , Kim P. , and M. Lieber C. , Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B 104(13), 2794 (2000)
https://doi.org/10.1021/jp993592k
2 W. Ebbesen T. , J. Lezec H. , Hiura H. , W. Bennett J. , F. Ghaemi H. , and Thio T. , Electrical conductivity of individual carbon nanotubes, Nature 382(6586), 54 (1996)
https://doi.org/10.1038/382054a0
3 R. Falvo M. , J. Clary G. , II Taylor V. , P. Jr Chi F. , Jr Brooks S. , Washburn S. , and Superfine R. , Bending and buckling of carbon nanotubes under large strain, Nature 389(6651), 582 (1997)
https://doi.org/10.1038/39282
4 Avouris P. , Freitag M. , and Perebeinos V. , Carbon-nanotube photonics and optoelectronics, Nat. Photonics 2(6), 341 (2008)
https://doi.org/10.1038/nphoton.2008.94
5 Avouris P. and Martel R. , Progress in carbon nanotube electronics and photonics, MRS Bull. 35(4), 306 (2010)
https://doi.org/10.1557/mrs2010.553
6 Kuemmeth F. , Ilani S. , C. Ralph D. , and L. McEuen P. , Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature 452(7186), 448 (2008)
https://doi.org/10.1038/nature06822
7 Guo J. , Jiang H. , Teng Y. , Xiong Y. , Chen Z. , You L. , and Xiao D. , Recent advances in magnetic carbon nanotubes: Synthesis, challenges and highlighted applications, J. Mater. Chem. B 9(44), 9076 (2021)
https://doi.org/10.1039/D1TB01242H
8 Wang W. , Impundu J. , Jin J. , Peng Z. , Liu H. , Wei Z. , Xu Y. , Wang Y. , You J. , Fan W. , J. Li Y. , and Sun L. , Ferromagnetism in sp2 carbon, Nano Res. 16, 12883 (2023)
https://doi.org/10.1007/s12274-023-5972-8
9 Li Z. , Li S. , Xu Y. , and Tang N. , Recent advances in magnetism of graphene from 0D to 2D, Chem. Commun. (Camb.) 59(42), 6286 (2023)
https://doi.org/10.1039/D3CC01311A
10 F. Mak K. , Shan J. , and C. Ralph D. , Probing and controlling magnetic states in 2D layered magnetic materials, Nat. Rev. Phys. 1(11), 646 (2019)
https://doi.org/10.1038/s42254-019-0110-y
11 Impundu J. , Hussain S. , Minani E. , Liu H. , J. Li Y. , and Sun L. , Local magnetic characterization of 1D and 2D carbon nanomaterials with magnetic force microscopy techniques: A review, Mater. Today Commun. 35, 106103 (2023)
https://doi.org/10.1016/j.mtcomm.2023.106103
12 Chen Z.Li J.Li T.Fan T.Meng C.Li C.Kang J.Chai L.Hao Y.Tang Y.A. Al-Hartomy O.Wageh S.G. Al-Sehemi A.Luo Z.Yu J.Shao Y.Li D.Feng S.J. Liu W.He Y.Ma X.Xie Z.Zhang H., A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2, Natl. Sci. Rev. 9(8), nwac104 (2022)
13 Zheng F.Chen Z.Li J.Wu R.Zhang B.Nie G.Xie Z.Zhang H., A highly sensitive CRISPR‐empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification, Adv. Sci. (Weinh.) 9(14), 2105231 (2022)
14 Gu Y. , Qiu Z. , and Müllen K. , Nanographenes and graphene nanoribbons as multitalents of present and future materials science, J. Am. Chem. Soc. 144(26), 11499 (2022)
https://doi.org/10.1021/jacs.2c02491
15 Liu Y. , Zeng C. , Zhong J. , Ding J. , M. Wang Z. , and Liu Z. , Spintronics in two-dimensional materials, Nano-Micro Lett. 12(1), 93 (2020)
https://doi.org/10.1007/s40820-020-00424-2
16 C. Ahn E., 2D materials for spintronic devices, npj 2D Mater. Appl. 4(1), 17 (2020)
17 Ghising P. , Biswas C. , and H. Lee Y. , Graphene spin valves for spin logic devices, Adv. Mater. 35(23), 2209137 (2023)
https://doi.org/10.1002/adma.202209137
18 A. Laird E. , Kuemmeth F. , A. Steele G. , Grove-Rasmussen K. , Nygård J. , Flensberg K. , and P. Kouwenhoven L. , Quantum transport in carbon nanotubes, Rev. Mod. Phys. 87(3), 703 (2015)
https://doi.org/10.1103/RevModPhys.87.703
19 D. Rice W. , T. Weber R. , Nikolaev P. , Arepalli S. , Berka V. , L. Tsai A. , and Kono J. , Spin relaxation times of single-wall carbon nanotubes, Phys. Rev. B 88(4), 041401 (2011)
https://doi.org/10.1103/PhysRevB.88.041401
20 G. Márkus B. , Gmitra M. , Dóra B. , Csősz G. , Fehér T. , Szirmai P. , Náfrádi B. , Zólyomi V. , Forró L. , Fabian J. , and Simon F. , Ultralong 100 ns spin relaxation time in graphite at room temperature, Nat. Commun. 14(1), 2831 (2023)
https://doi.org/10.1038/s41467-023-38288-w
21 Idzuchi H.B. Martin M.Otani Y.Dlubak B.Seneor P.Anane A.Jaffres H.Fert A., Handbook of Spintronics, Dordrecht, Springer, 2015
22 Gu X. , Guo L. , Qin Y. , Yang T. , Meng K. , Hu S. , and Sun X. , Challenges and prospects of molecular spintronics, Precis. Chem. 2(1), 1 (2024)
https://doi.org/10.1021/prechem.3c00071
23 Liu Y. , Zeng C. , Zhong J. , Ding J. , M. Wang Z. , and Liu Z. , Spintronics in two-dimensional materials, Nano-Micro Lett. 12(1), 93 (2020)
https://doi.org/10.1007/s40820-020-00424-2
24 W. McClure J. , Diamagnetism of graphite, Phys. Rev. 104(3), 666 (1956)
https://doi.org/10.1103/PhysRev.104.666
25 C. Lee E. , S. Kim Y. , G. Jin Y. , and J. Chang K. , First-principles study of hydrogen adsorption on carbon nanotube surfaces, Phys. Rev. B 66(7), 073415 (2002)
https://doi.org/10.1103/PhysRevB.66.073415
26 Liu H. , Wang H. , Peng Z. , Jin J. , Wang Z. , Peng K. , Wang W. , Xu Y. , Wang Y. , Wei Z. , Zhang D. , J. Li Y. , Chu W. , and Sun L. , An anomalous Hall effect in edge-bonded monolayer graphene, Nanoscale Horiz. 8(9), 1235 (2023)
https://doi.org/10.1039/D3NH00233K
27 Liu J.Peng Z.Cai J.Yue J.Wei H.Impundu J.Liu H.Jin J.Yang Z.Chu W.J. Li Y.Wang G.Sun L., A room-temperature four-terminal spin field effect transistor, Nano Today 38, 101138 (2021)
28 Kapitza P. and Rutherford E. , The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems, Proc. R. Soc. Lond. A 119(782), 358 (1928)
https://doi.org/10.1098/rspa.1928.0103
29 Kapitza P. , The change of electrical conductivity in strong magnetic fields (Part II): The analysis and the interpretation of the experimental results, Proc. R. Soc. Lond. 123, 292 (1929)
30 V. Coleman R. and Isin A. , Magnetoresistance in iron single crystals, J. Appl. Phys. 37(3), 1028 (1966)
https://doi.org/10.1063/1.1708320
31 Li Y. , F. Cao Y. , N. Wei G. , Li Y. , Ji Y. , Y. Wang K. , W. Edmonds K. , P. Campion R. , W. Rush-forth A. , T. Foxon C. , L. Gallagher B. , and current-controlled magnetization reversal in the ferromagnetic semiconductor (Ga Anisotropic , Mn)As, Appl. Phys. Lett. 103(2), 022401 (2013)
https://doi.org/10.1063/1.4813085
32 Esquinazi P. , Barzola-Quiquia J. , Spemann D. , Rothermel M. , Ohldag H. , García N. , Setzer A. , and Butz T. , Magnetic order in graphite: Experimental evidence, intrinsic and extrinsic difficulties, J. Magn. Magn. Mater. 322(9−12), 1156 (2010)
https://doi.org/10.1016/j.jmmm.2009.06.038
33 Chen L. , Yang X. , Yang F. , Zhao J. , Misuraca J. , Xiong P. , von Molnár S. , and the Curie temperature of ferromagnetic semiconductor (Ga Enhancing , Mn)As to 200 K via nanostructure engineering, Nano Lett. 11(7), 2584 (2011)
https://doi.org/10.1021/nl201187m
34 Li X.W. Li J.Y. You J.Su G.Gu B., High Curie temperature and high hole mobility in diluted magnetic semiconductors (B, Mn)X (X = N, P, As, Sb), cond-mat/2311.11283 (2023)
35 Malter L. and B. Langmuir D. , Resistance, emissivities and melting point of tantalum, Phys. Rev. 55(8), 743 (1939)
https://doi.org/10.1103/PhysRev.55.743
36 Wang Z. , Zuo Y. , Li Y. , Han X. , Guo X. , Wang J. , Cao B. , Xi L. , and Xue D. , Improved field emission properties of carbon nanotubes decorated with Ta layer, Carbon 73, 114 (2014)
https://doi.org/10.1016/j.carbon.2014.02.046
37 V. Yazyev O. and Helm L. , Defect-induced magnetism in graphene, Phys. Rev. B 75(12), 125408 (2007)
https://doi.org/10.1103/PhysRevB.75.125408
38 Wang G. , J. Chen M. , Yu F. , J. Xue L. , Deng Y. , Zhang J. , Y. Qi X. , Gao Y. , G. Chu W. , T. Liu G. , F. Yang H. , Z. Gu C. , and F. Sun L. , Giant magnetic moment at open ends of multiwalled carbon nanotubes, Chin. Phys. B 24(1), 016202 (2015)
https://doi.org/10.1088/1674-1056/24/1/016202
39 Zhang J. , Deng Y. , T. Hao T. , Hu X. , Y. Liu Y. , S. Peng Z. , P. Nshimiyimana J. , N. Chi X. , Wu P. , Y. Liu S. , Zhang Z. , J. Li J. , T. Wang G. , G. Chu W. , Z. Gu C. , and F. Sun L. , Large magnetic moment at sheared ends of single-walled carbon nanotubes, Chin. Phys. B 27(12), 128101 (2018)
https://doi.org/10.1088/1674-1056/27/12/128101
40 Z. Zhuo W. , Lei B. , Wu S. , H. Yu F. , S. Zhu C. , H. Cui J. , L. Sun Z. , H. Ma D. , Z. Shi M. , H. Wang H. , X. Wang W. , Wu T. , J. Ying J. , W. Wu S. , Y. Wang Z. , and H. Chen X. , Manipulating ferromagnetism in few-layered Cr2Ge2Te6, Adv. Mater. 33(31), 2008586 (2021)
https://doi.org/10.1002/adma.202008586
41 L. Jiang K. , Li Q. , and Fan S. , Spinning continuous carbon nanotube yarns, Nature 419(6909), 801 (2002)
https://doi.org/10.1038/419801a
42 Zhang M. , R. Atkinson K. , and H. Baughman R. , Multifunctional carbon nanotube yarns by downsizing an ancient technology, Science 306(5700), 1358 (2004)
https://doi.org/10.1126/science.1104276
43 Lepró X. , D. Lima M. , and H. Baughman R. , Spinnable carbon nanotube forests grown on thin, flexible metallic substrates, Carbon 48(12), 3621 (2010)
https://doi.org/10.1016/j.carbon.2010.06.016
44 Zhang S. , Zhu L. , L. Minus M. , G. Chae H. , Jagannathan S. , P. Wong C. , Kowalik J. , B. Roberson L. , and Kumar S. , Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition, J. Mater. Sci. 43(13), 4356 (2008)
https://doi.org/10.1007/s10853-008-2558-5
45 D. Tran C. , Humphries W. , M. Smith S. , Huynh C. , and Lucas S. , Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process, Carbon 47(11), 2662 (2009)
https://doi.org/10.1016/j.carbon.2009.05.020
46 Xin N. , Lourembam J. , Kumaravadivel P. , E. Kazantsev A. , Wu Z. , Mullan C. , Barrier J. , A. Geim A. , V. Grigorieva I. , Mishchenko A. , Principi A. , I. Fal’ko V. , A. Ponomarenko L. , K. Geim A. , and I. Berdyugin A. , Giant magnetoresistance of Dirac plasma in high-mobility graphene, Nature 616(7956), 270 (2023)
https://doi.org/10.1038/s41586-023-05807-0
47 S. Alexandre S. , S. C. Mazzoni M. , and Chacham H. , Edge states and magnetism in carbon nanotubes with line defects, Phys. Rev. Lett. 100(14), 146801 (2008)
https://doi.org/10.1103/PhysRevLett.100.146801
48 E. Khan M. , Wali Q. , Aamir M. , and H. Kim Y. , Spin transport properties of carbon nanotubes by ferromagnetic zigzag triangular defects: A first-principles study, Mater. Today Commun. 32, 104074 (2022)
https://doi.org/10.1016/j.mtcomm.2022.104074
49 Zhang C. , Zhang E. , Wang W. , Liu Y. , G. Chen Z. , Lu S. , Liang S. , Cao J. , Yuan X. , Tang L. , Li Q. , Zhou C. , Gu T. , Wu Y. , Zou J. , and Xiu F. , Room-temperature chiral charge pumping in Dirac semimetals, Nat. Commun. 8(1), 13741 (2017)
https://doi.org/10.1038/ncomms13741
50 Li Q. , E. Kharzeev D. , Zhang C. , Huang Y. , Pletikosić I. , V. Fedorov A. , D. Zhong R. , A. Schneeloch J. , D. Gu G. , and Valla T. , Chiral magnetic effect in ZrTe5, Nat. Phys. 12(6), 550 (2016)
https://doi.org/10.1038/nphys3648
51 Ong N. and Liang S. , Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals, Nat. Rev. Phys. 3(6), 394 (2021)
https://doi.org/10.1038/s42254-021-00310-9
52 Huang X. , Zhao L. , Long Y. , Wang P. , Chen D. , Yang Z. , Liang H. , Xue M. , Weng H. , Fang Z. , Dai X. , and Chen G. , Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X 5(3), 031023 (2015)
https://doi.org/10.1103/PhysRevX.5.031023
53 Wu J. and Hagelberg F. , Magnetism in finite-sized single-walled carbon nanotubes of the zigzag type, Phys. Rev. B 79(11), 115436 (2009)
https://doi.org/10.1103/PhysRevB.79.115436
[1] Meng Xu, Lei Guo, Lei Chen, Ying Zhang, Shuang-Shuang Li, Weiyao Zhao, Xiaolin Wang, Shuai Dong, Ren-Kui Zheng. Emerging weak antilocalization effect in Ta0.7Nb0.3Sb2 semimetal single crystals[J]. Front. Phys. , 2023, 18(1): 13304-.
[2] Hai-Peng Sun, Hai-Zhou Lu. Quantum transport in topological semimetals under magnetic fields (II)[J]. Front. Phys. , 2019, 14(3): 33405-.
[3] Yang Gao. Semiclassical dynamics and nonlinear charge current[J]. Front. Phys. , 2019, 14(3): 33404-.
[4] Jianing Zhuang,Yin Wang,Yan Zhou,Jian Wang,Hong Guo. Impurity-limited quantum transport variability in magnetic tunnel junctions[J]. Front. Phys. , 2017, 12(4): 127304-.
[5] Hai-Zhou Lu,Shun-Qing Shen. Quantum transport in topological semimetals under magnetic fields[J]. Front. Phys. , 2017, 12(3): 127201-.
[6] Yupeng Li,Zhen Wang,Pengshan Li,Xiaojun Yang,Zhixuan Shen,Feng Sheng,Xiaodong Li,Yunhao Lu,Yi Zheng,Zhu-An Xu. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects[J]. Front. Phys. , 2017, 12(3): 127205-.
[7] Xing-Chen Pan,Yiming Pan,Juan Jiang,Huakun Zuo,Huimei Liu,Xuliang Chen,Zhongxia Wei,Shuai Zhang,Zhihe Wang,Xiangang Wan,Zhaorong Yang,Donglai Feng,Zhengcai Xia,Liang Li,Fengqi Song,Baigeng Wang,Yuheng Zhang,Guanghou Wang. Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2[J]. Front. Phys. , 2017, 12(3): 127203-.
[8] Xiao Yan,Cheng Zhang,Shan-Shan Liu,Yan-Wen Liu,David Wei Zhang,Fa-Xian Xiu,Peng Zhou. Two-carrier transport in SrMnBi2 thin films[J]. Front. Phys. , 2017, 12(3): 127209-.
[9] Yue-Wei Yin, Muralikrishna Raju, Wei-Jin Hu, Xiao-Jun Weng, Ke Zou, Jun Zhu, Xiao-Guang Li, Zhi-Dong Zhang, Qi Li. Multiferroic tunnel junctions[J]. Front. Phys. , 2012, 7(4): 380-385.
[10] Liao-fu LUO (罗辽复). Protein folding as a quantum transition between conformational states[J]. Front. Phys. , 2011, 6(1): 133-140.
[11] DONG Shuai, ZHU Han, LIU Jun-ming. Colossal resistivity change associated with the charge ordered / disordered transition: Monte Carlo study[J]. Front. Phys. , 2006, 1(3): 362-367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed