|
|
Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters |
Yu Guo1, Yang Zhao1, Qiao Ling1, Si Zhou1,2,3( ), Jijun Zhao1,2,3( ) |
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China 2. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China 3. Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Cluster-assembled materials have long been pursued as they can create some unprecedented and desirable properties. Herein, we assemble a class of one-dimensional (1D) ReNX4 (X = F, Cl, Br and I) and MF5 (M = V, Nb and Ta) nanowires by covalently linking their superatomic clusters. These assembled 1D nanowires exhibit outstanding energetic and dynamic stabilities, and hold sizable spontaneous polarization, low ferroelectric switching barriers and high critical temperature. Their superior ferroelectricity is originated from d0-configuration transition metal ions generated by the hybridization of empty d orbitals of metal atoms and p orbitals of non-metal atoms. These critical insights pave a new avenue to fabricate 1D ferroelectrics toward the development of miniaturized and high-density electronic devices using building blocks as cluster with precise structures and functionalities.
|
Keywords
ferroelectricity
superatom
cluster-assembled materials
electronic properties
first-principles calculations
|
Corresponding Author(s):
Si Zhou,Jijun Zhao
|
Issue Date: 22 August 2024
|
|
1 |
Zhang K.Wang C.Zhang M.Bai Z.F. Xie F. Z. Tan Y.Guo Y.J. Hu K.Cao L.Zhang S. Tu X.Pan D. Kang L.Chen J.Wu P.Wang X.Wang J. Liu J.Song Y.Wang G.Song F.Ji W. Y. Xie S.F. Shi S.A. Reed M.Wang B., A Gd@C82 single-molecule electret, Nat. Nanotechnol. 15(12), 1019 (2020)
|
2 |
Müller J., Böscke T., Bräuhaus D., Schröder U., Böttger U., Sundqvist J., Kücher P., Mikolajick T., and Frey L., Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications, Appl. Phys. Lett. 99(11), 112901 (2011)
https://doi.org/10.1063/1.3636417
|
3 |
Si M.K. Saha A. Gao S.Qiu G.Qin J.Duan Y.Jian J. Niu C.Wang H.Wu W.K. Gupta S.D. Ye P., A ferroelectric semiconductor field-effect transistor, Nat. Electron. 2(12), 580 (2019)
|
4 |
Muralt P., Ferroelectric thin films for micro-sensors and actuators: A review, J. Micromech. Microeng. 10(2), 136 (2000)
https://doi.org/10.1088/0960-1317/10/2/307
|
5 |
Li J., Hou S., R. Yao Y., Zhang C., Wu Q., C. Wang H., Zhang H., Liu X., Tang C., Wei M., Xu W., Wang Y., Zheng J., Pan Z., Kang L., Liu J., Shi J., Yang Y., J. Lambert C., Y. Xie S., and Hong W., Room-temperature logic-in-memory operations in single-metallofullerene devices, Nat. Mater. 21(8), 917 (2022)
https://doi.org/10.1038/s41563-022-01309-y
|
6 |
W. Martin L. and M. Rappe A., Thin-film ferroelectric materials and their applications, Nat. Rev. Mater. 2(2), 16087 (2016)
https://doi.org/10.1038/natrevmats.2016.87
|
7 |
Wu M. and Jena P., The rise of two-dimensional van der Waals ferroelectrics, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(5), e1365 (2018)
https://doi.org/10.1002/wcms.1365
|
8 |
C. Chiang C., Ostwal V., Wu P., S. Pang C., Zhang F., Chen Z., and Appenzeller J., Memory applications from 2D materials, Appl. Phys. Rev. 8(2), 021306 (2021)
https://doi.org/10.1063/5.0038013
|
9 |
Qi L., Ruan S., and J. Zeng Y., Review on recent developments in 2D ferroelectrics: Theories and applications, Adv. Mater. 33(13), 2005098 (2021)
https://doi.org/10.1002/adma.202005098
|
10 |
Horiuchi S. and Tokura Y., Organic ferroelectrics, Nat. Mater. 7(5), 357 (2008)
https://doi.org/10.1038/nmat2137
|
11 |
Tokura Y., Koshihara S., Iwasawa N., and Saito G., Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity, Phys. Rev. Lett. 63(21), 2405 (1989)
https://doi.org/10.1103/PhysRevLett.63.2405
|
12 |
Gorshunov B., Torgashev V., Zhukova E., Thomas V., Belyanchikov M., Kadlec C., Kadlec F., Savinov M., Ostapchuk T., Petzelt J., Prokleška J., V. Tomas P., V. Pestrjakov E., A. Fursenko D., S. Shakurov G., S. Prokhorov A., S. Gorelik V., S. Kadyrov L., V. Uskov V., K. Kremer R., and Dressel M., Incipient ferroelectricity of water molecules confined to nano-channels of beryl, Nat. Commun. 7(1), 12842 (2016)
https://doi.org/10.1038/ncomms12842
|
13 |
A. Hernandez B., S. Chang K., R. Fisher E., and K. Dorhout P., Sol−gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater. 14(2), 480 (2002)
https://doi.org/10.1021/cm010998c
|
14 |
Jena P. and Sun Q., Super atomic clusters: Design rules and potential for building blocks of materials, Chem. Rev. 118(11), 5755 (2018)
https://doi.org/10.1021/acs.chemrev.7b00524
|
15 |
Zhao J., Du Q., Zhou S., and Kumar V., Endohedrally doped cage clusters, Chem. Rev. 120(17), 9021 (2020)
https://doi.org/10.1021/acs.chemrev.9b00651
|
16 |
Luo Z. and W. Castleman A., Special and general superatoms, Acc. Chem. Res. 47(10), 2931 (2014)
https://doi.org/10.1021/ar5001583
|
17 |
Choi B., Lee K., Voevodin A., Wang J., L. Steigerwald M., Batail P., Zhu X., and Roy X., Two-dimensional hierarchical semiconductor with addressable surfaces, J. Am. Chem. Soc. 140(30), 9369 (2018)
https://doi.org/10.1021/jacs.8b05010
|
18 |
J. Telford E., C. Russell J., R. Swann J., Fowler B., Wang X., Lee K., Zangiabadi A., Watanabe K., Taniguchi T., Nuckolls C., Batail P., Zhu X., A. Malen J., R. Dean C., and Roy X., Doping-induced superconductivity in the van der Waals superatomic crystal Re6Se8Cl2, Nano Lett. 20(3), 1718 (2020)
https://doi.org/10.1021/acs.nanolett.9b04891
|
19 |
Zhong X., Lee K., Choi B., Meggiolaro D., Liu F., Nuckolls C., Pasupathy A., De Angelis F., Batail P., Roy X., and Zhu X., Superatomic two-dimensional semiconductor, Nano Lett. 18(2), 1483 (2018)
https://doi.org/10.1021/acs.nanolett.7b05278
|
20 |
Roy X., H. Lee C., C. Crowther A., L. Schenck C., Besara T., A. Lalancette R., Siegrist T., W. Stephens P., E. Brus L., Kim P., L. Steigerwald M., and Nuckolls C., Nanoscale atoms in solid-state chemistry, Science 341(6142), 157 (2013)
https://doi.org/10.1126/science.1236259
|
21 |
Guo Y., Du Q., Wang P., Zhou S., Zhao J., and Two-dimensional oxides assembled by M4 clusters (M= B,Mo, and Te), Phys. Rev. Res. 3(4), 043231 (2021)
https://doi.org/10.1103/PhysRevResearch.3.043231
|
22 |
Du Q., Wang Z., Zhou S., Zhao J., and Kumar V., Searching for cluster Lego blocks for three-dimensional and two-dimensional assemblies, Phys. Rev. Mater. 5(6), 066001 (2021)
https://doi.org/10.1103/PhysRevMaterials.5.066001
|
23 |
Chen X., Fei G., Song Y., Ying T., Huang D., Pan B., Yang D., Yang X., Chen K., Zhan X., Wang J., Zhang Q., Li Y., Gu L., Gou H., Chen X., Li S., Cheng J., Liu X., Hosono H., Guo J., and Chen X., Superatomic-charge-density-wave in cluster-assembled Au6Te12Se8 superconductors, J. Am. Chem. Soc. 144(45), 20915 (2022)
https://doi.org/10.1021/jacs.2c09499
|
24 |
Xing S., Wu L., Wang Z., Chen X., Liu H., Han S., Lei L., Zhou L., Zheng Q., Huang L., Lin X., Chen S., Xie L., Chen X., J. Gao H., Cheng Z., Guo J., Wang S., and Ji W., Interweaving polar charge orders in a layered metallic superatomic crystal, Phys. Rev. X 12(4), 041034 (2022)
https://doi.org/10.1103/PhysRevX.12.041034
|
25 |
Zhao Y., Guo Y., Qi Y., Jiang X., Su Y., and Zhao J., Coexistence of ferroelectricity and ferromagnetism in fullerene-based one-dimensional chains, Adv. Sci. (Weinh.) 10(21), 2301265 (2023)
https://doi.org/10.1002/advs.202301265
|
26 |
R. Dilworth J., Rhenium chemistry – then and now, Coord. Chem. Rev. 436, 213822 (2021)
https://doi.org/10.1016/j.ccr.2021.213822
|
27 |
Dehnicke K.Straehle J., N-Halogenoimido complexes of transition metals, Chem. Rev. 93(3), 981 (1993)
|
28 |
Liese W., Dehnicke K., Walker I., Strähle J., and und kristallstruktur von rhenium (VII)-nitridchlorid Darstellung, ReNCl4, Z. Naturforsch. B. J. Chem. Sci. 34(5), 693 (1979)
https://doi.org/10.1515/znb-1979-0509
|
29 |
Kresse G. and Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
30 |
Kresse G. and Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
31 |
P. Perdew J., Burke K., and Ernzerhof M., Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
32 |
Heyd J., E. Scuseria G., and Ernzerhof M., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
|
33 |
Baroni S., de Gironcoli S., Dal Corso A., and Giannozzi P., Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
https://doi.org/10.1103/RevModPhys.73.515
|
34 |
Krishnan R., S. Binkley J., Seeger R., and A. Pople J., Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72(1), 650 (1980)
https://doi.org/10.1063/1.438955
|
35 |
Dolg M., Wedig U., Stoll H., and Preuss H., Energy‐adjusted ab initio pseudopotentials for the first row transition elements, J. Chem. Phys. 86(2), 866 (1987)
https://doi.org/10.1063/1.452288
|
36 |
Frisch M.Trucks G.Schlegel H.Scuseria G.Robb M. Cheeseman J.Scalmani G.Barone V.Petersson G.Nakatsuji H., Gaussian 16, Revision A. 03, Gaussian, Inc. Wallingford CT 3 (2016)
|
37 |
Tsukamoto T., Haruta N., Kambe T., Kuzume A., and Yamamoto K., Periodicity of molecular clusters based on symmetry-adapted orbital model, Nat. Commun. 10(1), 3727 (2019)
https://doi.org/10.1038/s41467-019-11649-0
|
38 |
Henkelman G.Arnaldsson A.Jónsson H., A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
|
39 |
Segall M., Shah R., J. Pickard C., and Payne M., Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)
https://doi.org/10.1103/PhysRevB.54.16317
|
40 |
Xiao D., C. Chang M., and Niu Q., Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
|
41 |
Bruyer E., Di Sante D., Barone P., Stroppa A., H. Whangbo M., Picozzi S., of combining ferroelectricity Possibility, Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M= Mo, and W; X= S, Te), Phys. Rev. B 94(19), 195402 (2016)
https://doi.org/10.1103/PhysRevB.94.195402
|
42 |
Fei R., Kang W., and Yang L., Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides, Phys. Rev. Lett. 117(9), 097601 (2016)
https://doi.org/10.1103/PhysRevLett.117.097601
|
43 |
Wan W., Liu C., Xiao W., and Yao Y., Promising ferroelectricity in 2D group IV tellurides: A first-principles study, Appl. Phys. Lett. 111(13), 132904 (2017)
https://doi.org/10.1063/1.4996171
|
44 |
E. Cohen R., Origin of ferroelectricity in perovskite oxides, Nature 358(6382), 136 (1992)
https://doi.org/10.1038/358136a0
|
45 |
J. Choi K., Biegalski M., L. Li Y., Sharan A., Schubert J., Uecker R., Reiche P., B. Chen Y., Q. Pan X., Gopalan V., Q. Chen L., G. Schlom D., and B. Eom C., Enhancement of ferroelectricity in strained BaTiO3 thin films, Science 306(5698), 1005 (2004)
https://doi.org/10.1126/science.1103218
|
46 |
Rouquette J., Haines J., Bornand V., Pintard M., Papet P., G. Marshall W., and Hull S., Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic PbZr0.52Ti0.48O3, Phys. Rev. B 71(2), 024112 (2005)
https://doi.org/10.1103/PhysRevB.71.024112
|
47 |
Izyumskaya N., I. Alivov Y., J. Cho S., Morkoç H., Lee H., and S. Kang Y., Processing, structure, properties, and applications of PZT thin films, Crit. Rev. Solid State Mater. Sci. 32(3−4), 111 (2007)
https://doi.org/10.1080/10408430701707347
|
48 |
Bersuker I., The Jahn−Teller Effect and Vibronic Interactions in Modern Chemistry, Springer Science & Business Media: 2013
|
49 |
van den Brink J. and I. Khomskii D., Multiferroicity due to charge ordering, J. Phys.: Condens. Matter 20(43), 434217 (2008)
https://doi.org/10.1088/0953-8984/20/43/434217
|
50 |
Bao Y. and Zhang F., Electronic engineering of ABO3 perovskite metal oxides based on d0 electronic-configuration metallic ions toward photocatalytic water splitting under visible light, Small Struct. 3(6), 2100226 (2022)
https://doi.org/10.1002/sstr.202100226
|
51 |
C. Wojdeł J. and Íñiguez J., Testing simple predictors for the temperature of a structural phase transition, Phys. Rev. B 90(1), 014105 (2014)
https://doi.org/10.1103/PhysRevB.90.014105
|
52 |
Kresse G. and Hafner J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
|
53 |
A. N. Duerloo K., T. Ong M., and J. Reed E., Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
https://doi.org/10.1021/jz3012436
|
54 |
M. Ok K., O. Chi E., and S. Halasyamani P., Bulk characterization methods for non-centrosymmetric materials: Second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, Chem. Soc. Rev. 35(8), 710 (2006)
https://doi.org/10.1039/b511119f
|
[1] |
fop-24434-OF-zhousi_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|