Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63210    https://doi.org/10.1007/s11467-024-1434-3
Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters
Yu Guo1, Yang Zhao1, Qiao Ling1, Si Zhou1,2,3(), Jijun Zhao1,2,3()
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
2. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
3. Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
 Download: PDF(2451 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cluster-assembled materials have long been pursued as they can create some unprecedented and desirable properties. Herein, we assemble a class of one-dimensional (1D) ReNX4 (X = F, Cl, Br and I) and MF5 (M = V, Nb and Ta) nanowires by covalently linking their superatomic clusters. These assembled 1D nanowires exhibit outstanding energetic and dynamic stabilities, and hold sizable spontaneous polarization, low ferroelectric switching barriers and high critical temperature. Their superior ferroelectricity is originated from d0-configuration transition metal ions generated by the hybridization of empty d orbitals of metal atoms and p orbitals of non-metal atoms. These critical insights pave a new avenue to fabricate 1D ferroelectrics toward the development of miniaturized and high-density electronic devices using building blocks as cluster with precise structures and functionalities.

Keywords ferroelectricity      superatom      cluster-assembled materials      electronic properties      first-principles calculations     
Corresponding Author(s): Si Zhou,Jijun Zhao   
Issue Date: 22 August 2024
 Cite this article:   
Yu Guo,Yang Zhao,Qiao Ling, et al. Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters[J]. Front. Phys. , 2024, 19(6): 63210.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1434-3
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63210
Fig.1  (a) Atomic structure of ReNCl4 cluster. (b) Molecular orbitals referred to the vacuum energy level as zero and a classification of orbital pattern into superatomic 1S, 1P, 1D, 2S, 1F and 2P states for ReNCl4 cluster. Blue and red colors denote positive and negative phases of the wavefunction, respectively. The isosurface value is ±0.05 a.u. The Re, N and Cl atoms are shown in purple, pink and green colors, respectively.
Materials ReNF4 ReNCl4 ReNBr4 ReNI4 VF5 NbF5 TaF5
a (Å) 4.10 4.08 4.04 3.88 4.63 4.23 4.11
d2?d1 (Å) 0.74 0.70 0.63 0.41 0.82 0.40 0.20
d3 (Å) 0.32 0.36 0.35 0.28 0.43 0.34 0.21
Ef (eV) −0.28 −0.22 −0.28 −0.43 −0.10 −0.12 −0.18
Eg (eV) 4.25 (d) 2.25 1.43 4.94 (d) 6.97 6.60
EB (eV) 0.74 0.81 0.85 0.50 0.10 0.09
PFE (10−10 C/m) 52.03 25.64 28.58 55.5 24.64 36.96
TC (K) 224 280 321 95 86 72
e11 (10−10 C/m) 30.29 22.86 22.21 35.47 31.47 61.28
p (10−10 C/(K·m−2)) 0.06 0.02 0.02 0.13 0.07 0.12
Tab.1  Lattice parameters a, off-center displacement (d2?d1 and d3) of metal along the axial z direction, formation energy Ef, band gaps Eg, potential barrier of EB, spontaneous polarization PFE, Curie temperature TC, piezoelectric response e11 and pyroelectric response p.
Fig.2  Atomic structures of cluster-assembled nanowires with (a) FE, (b) PE and (c) ?FE state, respectively. The Re (or V, Nb and Ta), N (or F) and Cl (or F and Br) atoms are shown in purple, pink and green colors, respectively. d1 and d2 represents the bond length of metal-linked atoms, and d3 represents displacements of metal and halogen atoms along (001) chain direction. Phonon spectrum of (d) FE and (e) PE phase of ReNCl4 nanowire, respectively.
Fig.3  The energy contour plot (in eV) of 1D (a) ReNCl4 and (b) VF5 unit cell as a function of polar displacements of the metal ions. The energy of the PE phase is set to zero.
Fig.4  The PDOS of (a) ReNCl4 and (b) VF5. Here, F is the atom linking two clusters and four F1 atoms are located at xy plane. −COOP curves for (c) ReNCl4 and (d) VF5.
Fig.5  (a) Double-well potential versus polarization for ReNCl4 nanowire. EB is the potential barrier. (b) The dipole-dipole interaction energy for ReNCl4 nanowires calculated by the mean-field method. (c) Temperature dependence of polarization obtained from ab initio molecular dynamics (orange balls). Blue line is a sigmoid fit to MD results and grey line is the pyroelectric response (dP/dT) for ReNCl4 nanowire. (d) Piezoelectric response (relaxed-ion e11 coefficient) for ReNCl4 nanowire from DFT calculations. The polarization and strain are all along the x direction. The corresponding relaxed-ion piezoelectric coefficient e11 can be obtained from slope of the line.
1 Zhang K.Wang C.Zhang M.Bai Z.F. Xie F. Z. Tan Y.Guo Y.J. Hu K.Cao L.Zhang S. Tu X.Pan D. Kang L.Chen J.Wu P.Wang X.Wang J. Liu J.Song Y.Wang G.Song F.Ji W. Y. Xie S.F. Shi S.A. Reed M.Wang B., A Gd@C82 single-molecule electret, Nat. Nanotechnol. 15(12), 1019 (2020)
2 Müller J., Böscke T., Bräuhaus D., Schröder U., Böttger U., Sundqvist J., Kücher P., Mikolajick T., and Frey L., Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications, Appl. Phys. Lett. 99(11), 112901 (2011)
https://doi.org/10.1063/1.3636417
3 Si M.K. Saha A. Gao S.Qiu G.Qin J.Duan Y.Jian J. Niu C.Wang H.Wu W.K. Gupta S.D. Ye P., A ferroelectric semiconductor field-effect transistor, Nat. Electron. 2(12), 580 (2019)
4 Muralt P., Ferroelectric thin films for micro-sensors and actuators: A review, J. Micromech. Microeng. 10(2), 136 (2000)
https://doi.org/10.1088/0960-1317/10/2/307
5 Li J., Hou S., R. Yao Y., Zhang C., Wu Q., C. Wang H., Zhang H., Liu X., Tang C., Wei M., Xu W., Wang Y., Zheng J., Pan Z., Kang L., Liu J., Shi J., Yang Y., J. Lambert C., Y. Xie S., and Hong W., Room-temperature logic-in-memory operations in single-metallofullerene devices, Nat. Mater. 21(8), 917 (2022)
https://doi.org/10.1038/s41563-022-01309-y
6 W. Martin L. and M. Rappe A., Thin-film ferroelectric materials and their applications, Nat. Rev. Mater. 2(2), 16087 (2016)
https://doi.org/10.1038/natrevmats.2016.87
7 Wu M. and Jena P., The rise of two-dimensional van der Waals ferroelectrics, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(5), e1365 (2018)
https://doi.org/10.1002/wcms.1365
8 C. Chiang C., Ostwal V., Wu P., S. Pang C., Zhang F., Chen Z., and Appenzeller J., Memory applications from 2D materials, Appl. Phys. Rev. 8(2), 021306 (2021)
https://doi.org/10.1063/5.0038013
9 Qi L., Ruan S., and J. Zeng Y., Review on recent developments in 2D ferroelectrics: Theories and applications, Adv. Mater. 33(13), 2005098 (2021)
https://doi.org/10.1002/adma.202005098
10 Horiuchi S. and Tokura Y., Organic ferroelectrics, Nat. Mater. 7(5), 357 (2008)
https://doi.org/10.1038/nmat2137
11 Tokura Y., Koshihara S., Iwasawa N., and Saito G., Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity, Phys. Rev. Lett. 63(21), 2405 (1989)
https://doi.org/10.1103/PhysRevLett.63.2405
12 Gorshunov B., Torgashev V., Zhukova E., Thomas V., Belyanchikov M., Kadlec C., Kadlec F., Savinov M., Ostapchuk T., Petzelt J., Prokleška J., V. Tomas P., V. Pestrjakov E., A. Fursenko D., S. Shakurov G., S. Prokhorov A., S. Gorelik V., S. Kadyrov L., V. Uskov V., K. Kremer R., and Dressel M., Incipient ferroelectricity of water molecules confined to nano-channels of beryl, Nat. Commun. 7(1), 12842 (2016)
https://doi.org/10.1038/ncomms12842
13 A. Hernandez B., S. Chang K., R. Fisher E., and K. Dorhout P., Sol−gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater. 14(2), 480 (2002)
https://doi.org/10.1021/cm010998c
14 Jena P. and Sun Q., Super atomic clusters: Design rules and potential for building blocks of materials, Chem. Rev. 118(11), 5755 (2018)
https://doi.org/10.1021/acs.chemrev.7b00524
15 Zhao J., Du Q., Zhou S., and Kumar V., Endohedrally doped cage clusters, Chem. Rev. 120(17), 9021 (2020)
https://doi.org/10.1021/acs.chemrev.9b00651
16 Luo Z. and W. Castleman A., Special and general superatoms, Acc. Chem. Res. 47(10), 2931 (2014)
https://doi.org/10.1021/ar5001583
17 Choi B., Lee K., Voevodin A., Wang J., L. Steigerwald M., Batail P., Zhu X., and Roy X., Two-dimensional hierarchical semiconductor with addressable surfaces, J. Am. Chem. Soc. 140(30), 9369 (2018)
https://doi.org/10.1021/jacs.8b05010
18 J. Telford E., C. Russell J., R. Swann J., Fowler B., Wang X., Lee K., Zangiabadi A., Watanabe K., Taniguchi T., Nuckolls C., Batail P., Zhu X., A. Malen J., R. Dean C., and Roy X., Doping-induced superconductivity in the van der Waals superatomic crystal Re6Se8Cl2, Nano Lett. 20(3), 1718 (2020)
https://doi.org/10.1021/acs.nanolett.9b04891
19 Zhong X., Lee K., Choi B., Meggiolaro D., Liu F., Nuckolls C., Pasupathy A., De Angelis F., Batail P., Roy X., and Zhu X., Superatomic two-dimensional semiconductor, Nano Lett. 18(2), 1483 (2018)
https://doi.org/10.1021/acs.nanolett.7b05278
20 Roy X., H. Lee C., C. Crowther A., L. Schenck C., Besara T., A. Lalancette R., Siegrist T., W. Stephens P., E. Brus L., Kim P., L. Steigerwald M., and Nuckolls C., Nanoscale atoms in solid-state chemistry, Science 341(6142), 157 (2013)
https://doi.org/10.1126/science.1236259
21 Guo Y., Du Q., Wang P., Zhou S., Zhao J., and Two-dimensional oxides assembled by M4 clusters (M= B,Mo, and Te), Phys. Rev. Res. 3(4), 043231 (2021)
https://doi.org/10.1103/PhysRevResearch.3.043231
22 Du Q., Wang Z., Zhou S., Zhao J., and Kumar V., Searching for cluster Lego blocks for three-dimensional and two-dimensional assemblies, Phys. Rev. Mater. 5(6), 066001 (2021)
https://doi.org/10.1103/PhysRevMaterials.5.066001
23 Chen X., Fei G., Song Y., Ying T., Huang D., Pan B., Yang D., Yang X., Chen K., Zhan X., Wang J., Zhang Q., Li Y., Gu L., Gou H., Chen X., Li S., Cheng J., Liu X., Hosono H., Guo J., and Chen X., Superatomic-charge-density-wave in cluster-assembled Au6Te12Se8 superconductors, J. Am. Chem. Soc. 144(45), 20915 (2022)
https://doi.org/10.1021/jacs.2c09499
24 Xing S., Wu L., Wang Z., Chen X., Liu H., Han S., Lei L., Zhou L., Zheng Q., Huang L., Lin X., Chen S., Xie L., Chen X., J. Gao H., Cheng Z., Guo J., Wang S., and Ji W., Interweaving polar charge orders in a layered metallic superatomic crystal, Phys. Rev. X 12(4), 041034 (2022)
https://doi.org/10.1103/PhysRevX.12.041034
25 Zhao Y., Guo Y., Qi Y., Jiang X., Su Y., and Zhao J., Coexistence of ferroelectricity and ferromagnetism in fullerene-based one-dimensional chains, Adv. Sci. (Weinh.) 10(21), 2301265 (2023)
https://doi.org/10.1002/advs.202301265
26 R. Dilworth J., Rhenium chemistry – then and now, Coord. Chem. Rev. 436, 213822 (2021)
https://doi.org/10.1016/j.ccr.2021.213822
27 Dehnicke K.Straehle J., N-Halogenoimido complexes of transition metals, Chem. Rev. 93(3), 981 (1993)
28 Liese W., Dehnicke K., Walker I., Strähle J., and und kristallstruktur von rhenium (VII)-nitridchlorid Darstellung, ReNCl4, Z. Naturforsch. B. J. Chem. Sci. 34(5), 693 (1979)
https://doi.org/10.1515/znb-1979-0509
29 Kresse G. and Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
30 Kresse G. and Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
31 P. Perdew J., Burke K., and Ernzerhof M., Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
32 Heyd J., E. Scuseria G., and Ernzerhof M., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
33 Baroni S., de Gironcoli S., Dal Corso A., and Giannozzi P., Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001)
https://doi.org/10.1103/RevModPhys.73.515
34 Krishnan R., S. Binkley J., Seeger R., and A. Pople J., Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72(1), 650 (1980)
https://doi.org/10.1063/1.438955
35 Dolg M., Wedig U., Stoll H., and Preuss H., Energy‐adjusted ab initio pseudopotentials for the first row transition elements, J. Chem. Phys. 86(2), 866 (1987)
https://doi.org/10.1063/1.452288
36 Frisch M.Trucks G.Schlegel H.Scuseria G.Robb M. Cheeseman J.Scalmani G.Barone V.Petersson G.Nakatsuji H., Gaussian 16, Revision A. 03, Gaussian, Inc. Wallingford CT 3 (2016)
37 Tsukamoto T., Haruta N., Kambe T., Kuzume A., and Yamamoto K., Periodicity of molecular clusters based on symmetry-adapted orbital model, Nat. Commun. 10(1), 3727 (2019)
https://doi.org/10.1038/s41467-019-11649-0
38 Henkelman G.Arnaldsson A.Jónsson H., A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
39 Segall M., Shah R., J. Pickard C., and Payne M., Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996)
https://doi.org/10.1103/PhysRevB.54.16317
40 Xiao D., C. Chang M., and Niu Q., Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
41 Bruyer E., Di Sante D., Barone P., Stroppa A., H. Whangbo M., Picozzi S., of combining ferroelectricity Possibility, Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M= Mo, and W; X= S, Te), Phys. Rev. B 94(19), 195402 (2016)
https://doi.org/10.1103/PhysRevB.94.195402
42 Fei R., Kang W., and Yang L., Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides, Phys. Rev. Lett. 117(9), 097601 (2016)
https://doi.org/10.1103/PhysRevLett.117.097601
43 Wan W., Liu C., Xiao W., and Yao Y., Promising ferroelectricity in 2D group IV tellurides: A first-principles study, Appl. Phys. Lett. 111(13), 132904 (2017)
https://doi.org/10.1063/1.4996171
44 E. Cohen R., Origin of ferroelectricity in perovskite oxides, Nature 358(6382), 136 (1992)
https://doi.org/10.1038/358136a0
45 J. Choi K., Biegalski M., L. Li Y., Sharan A., Schubert J., Uecker R., Reiche P., B. Chen Y., Q. Pan X., Gopalan V., Q. Chen L., G. Schlom D., and B. Eom C., Enhancement of ferroelectricity in strained BaTiO3 thin films, Science 306(5698), 1005 (2004)
https://doi.org/10.1126/science.1103218
46 Rouquette J., Haines J., Bornand V., Pintard M., Papet P., G. Marshall W., and Hull S., Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic PbZr0.52Ti0.48O3, Phys. Rev. B 71(2), 024112 (2005)
https://doi.org/10.1103/PhysRevB.71.024112
47 Izyumskaya N., I. Alivov Y., J. Cho S., Morkoç H., Lee H., and S. Kang Y., Processing, structure, properties, and applications of PZT thin films, Crit. Rev. Solid State Mater. Sci. 32(3−4), 111 (2007)
https://doi.org/10.1080/10408430701707347
48 Bersuker I., The Jahn−Teller Effect and Vibronic Interactions in Modern Chemistry, Springer Science & Business Media: 2013
49 van den Brink J. and I. Khomskii D., Multiferroicity due to charge ordering, J. Phys.: Condens. Matter 20(43), 434217 (2008)
https://doi.org/10.1088/0953-8984/20/43/434217
50 Bao Y. and Zhang F., Electronic engineering of ABO3 perovskite metal oxides based on d0 electronic-configuration metallic ions toward photocatalytic water splitting under visible light, Small Struct. 3(6), 2100226 (2022)
https://doi.org/10.1002/sstr.202100226
51 C. Wojdeł J. and Íñiguez J., Testing simple predictors for the temperature of a structural phase transition, Phys. Rev. B 90(1), 014105 (2014)
https://doi.org/10.1103/PhysRevB.90.014105
52 Kresse G. and Hafner J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)
https://doi.org/10.1103/PhysRevB.47.558
53 A. N. Duerloo K., T. Ong M., and J. Reed E., Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012)
https://doi.org/10.1021/jz3012436
54 M. Ok K., O. Chi E., and S. Halasyamani P., Bulk characterization methods for non-centrosymmetric materials: Second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, Chem. Soc. Rev. 35(8), 710 (2006)
https://doi.org/10.1039/b511119f
[1] fop-24434-OF-zhousi_suppl_1 Download
[1] Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction[J]. Front. Phys. , 2024, 19(4): 43204-.
[2] Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2[J]. Front. Phys. , 2024, 19(4): 43200-.
[3] Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe[J]. Front. Phys. , 2024, 19(3): 33202-.
[4] Yun-Qin Li, Qi-Wen He, Dai-Song Tang, Xiao Shang, Xiao-Chun Wang. Intrinsically asymmetric atomic character regulates piezoelectricity in two-dimensional materials[J]. Front. Phys. , 2024, 19(3): 33201-.
[5] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[6] Fang Li, Jun Fu, Mingzhu Xue, You Li, Hualing Zeng, Erjun Kan, Ting Hu, Yi Wan. Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding[J]. Front. Phys. , 2023, 18(5): 53305-.
[7] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[8] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[9] Huili Zhu, Zifan Hong, Changjie Zhou, Qihui Wu, Tongchang Zheng, Lan Yang, Shuqiong Lan, Weifeng Yang. Energy band alignment of 2D/3D MoS2/4H-SiC heterostructure modulated by multiple interfacial interactions[J]. Front. Phys. , 2023, 18(1): 13301-.
[10] Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations[J]. Front. Phys. , 2022, 17(5): 53500-.
[11] Hanxiao Zhang, Jinhui Wu, M. Artoni, G. C. La Rocca. Single-photon-level light storage with distributed Rydberg excitations in cold atoms[J]. Front. Phys. , 2022, 17(2): 22502-.
[12] Chengyong Zhong. Predication of topological states in the allotropes of group-IV elements[J]. Front. Phys. , 2021, 16(6): 63503-.
[13] Zbigniew Tylczyński. Supplement to the paper “A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers [Front. Phys. 14(6), 63301 (2019)]”[J]. Front. Phys. , 2021, 16(5): 53001-.
[14] Zbigniew Tylczyński. A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers[J]. Front. Phys. , 2019, 14(6): 63301-.
[15] Quan Chen (陈泉), Wei Li (李伟), Yong Yang (杨勇). β-PtO2: Phononic, thermodynamic, and elastic properties derived from first-principles calculations[J]. Front. Phys. , 2019, 14(5): 53604-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed