|
|
Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy |
Shangyong Zhao1( ), Yuchen Zhao2, Yujia Dai1, Ziyuan Liu1, Huihui Zha1, Xun Gao3,4( ) |
1. College of Opto–Electro–Mechanical Engineering, Zhejiang A & F University, Hangzhou 311300, China 2. Nottingham University Business School China, University of Nottingham Ningbo China, Ningbo 315100, China 3. School of Science, Changchun University of Science and Technology, Changchun 130022, China 4. Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China |
|
|
Abstract The simplicity and low-cost way to improve qualitative and quantitative analytical performance has always been a crucial concern for laser-induced breakdown spectroscopy (LIBS), and many scientists have been engaged in this evolving research direction. In this review, we investigated an update on recent developments in light-field modulated operation in LIBS. It covered a brief description of LIBS, optical polarization, and beam shaping. Here, the optical polarization is divided into laser beam polarization and plasma polarization. In addition, the methodology and development of light-field modulated LIBS were summarized and discussed. Finally, the existing problems with light-field modulated LIBS were presented, along with some of their own insights and the future direction of their development. This review will provide a guideline for LIBS researchers with basic knowledge, which is very useful in the signal optimization of LIBS research and applications.
|
Keywords
laser-induced breakdown spectroscopy
light-field modulated
laser beam polarization
plasma polarization
beam shaping
|
Corresponding Author(s):
Shangyong Zhao,Xun Gao
|
Issue Date: 06 August 2024
|
|
1 |
D. Winefordner J., B. Gornushkin I., Correll T., Gibb E., W. Smith B., Omenetto N., Comparing several atomic spectrometric methods to the superstars, special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. Atom. Spectrom. 19, 1061e1083 (2004)
https://doi.org/10.1039/b400355c
|
2 |
Wang Z., Yuan T., Hou Z., Zhou W., Lu J., Ding H., and Zeng X., Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
|
3 |
Zhao S., Song C., Gao X., and Lin J., Quantitative analysis of Pb in soil by femtosecond–nanosecond double-pulse laser-induced breakdown spectroscopy, Results Phys. 15, 102736 (2019)
https://doi.org/10.1016/j.rinp.2019.102736
|
4 |
Wang Q., Chen A., and Gao X., Sensitivity improvement of laser-induced breakdown spectroscopy to detect heavy metals in water by Tesla coil discharge, J. Anal. At. Spectrom. 39(1), 261 (2024)
https://doi.org/10.1039/D3JA00345K
|
5 |
Ikeda Y., K. Soriano J., Ohba H., and Wakaida I., Analysis of gadolinium oxide using microwave-enhanced fiber‑coupled micro‑laser‑induced breakdown spectroscopy, Sci. Rep. 13(1), 4828 (2023)
https://doi.org/10.1038/s41598-023-32146-x
|
6 |
Ma S., Liu Y., Tian H., Guo L., and Dong D., Investigation of resonance excitation of trace elements using resonant laser-induced breakdown spectroscopy (RLIBS), J. Anal. At. Spectrom. 38(2), 342 (2023)
https://doi.org/10.1039/D2JA00302C
|
7 |
Song Y., Song W., Li L., Gu W., Kou K., S. Afgan M., Hou Z., Li Z., and Wang Z., Flame-assisted plasma modulation to improve the raw signal quality for laser-induced breakdown spectroscopy, Opt. Lasers Eng. 162, 107433 (2023)
https://doi.org/10.1016/j.optlaseng.2022.107433
|
8 |
Zhao S., Gao X., Chen A., and Lin J., Effect of spatial confinement on Pb measurements in soil by femtosecond laser‑induced breakdown spectroscopy, Appl. Phys. B 126(1), 7 (2020)
https://doi.org/10.1007/s00340-019-7354-1
|
9 |
A. Khan M., Bashir S., A. Chishti N., Bonyah E., Dawood A., and Ahmad Z., Effect of ambient environment and magnetic field on laser-induced cobalt plasma, AIP Adv. 13(1), 015017 (2023)
https://doi.org/10.1063/5.0118908
|
10 |
Wang Q., Liu Y., Jiang L., Chen A., Han J., and Jin M., Metal micro/nanostructure enhanced laser-induced breakdown spectroscopy, Anal. Chim. Acta 1241, 340802 (2023)
https://doi.org/10.1016/j.aca.2023.340802
|
11 |
Zhu Y., Deng N., Hu Z., Wang W., Lau C., Liu Y., and Guo L., Droplet constraint by a superhydrophobic−superhydrophilic hybrid surface with a SiO2 NP coating for determination of heavy metals using LIBS, ACS Appl. Nano Mater. 5(12), 17508 (2022)
https://doi.org/10.1021/acsanm.2c02816
|
12 |
Yu J., Hou Z., Ma Y., Li T., Fu Y., Wang Y., Li Z., and Wang Z., Improvement of laser induced breakdown spectroscopy signal using gas mixture, Spectrochim. Acta B 174, 105992 (2020)
https://doi.org/10.1016/j.sab.2020.105992
|
13 |
Zehra K., Bashir S., A. Hassan S., S. Ahmed Q., Akram M., and Hayat A., The effect of nature and pressure of ambient environment on laser-induced breakdown spectroscopy and ablation mechanisms of Si, Laser Part. Beams 35(3), 492 (2017)
https://doi.org/10.1017/S0263034617000477
|
14 |
Zhao Y., Singha S., Liu Y., and J. Gordon R., Polarization-resolved laser-induced breakdown spectroscopy, Opt. Lett. 34(4), 494 (2009)
https://doi.org/10.1364/OL.34.000494
|
15 |
Liu Y., S. Penczak J., and J. Gordon R., Nanosecond polarization-resolved laser-induced breakdown spectroscopy, Opt. Lett. 35(2), 112 (2010)
https://doi.org/10.1364/OL.35.000112
|
16 |
Nagli L. and Gaft M., Fraunhofer-type absorption line splitting and polarization in confocal double-pulse laser induced plasma, Spectrochim. Acta B 88, 127 (2013)
https://doi.org/10.1016/j.sab.2013.06.009
|
17 |
Sheta S., Hou Z., Wang Y., and Wang Z., Evaluation of femtosecond laser‑induced breakdown spectroscopy system as an offline coal analyzer, Sci. Rep. 11(1), 15968 (2021)
https://doi.org/10.1038/s41598-021-95317-8
|
18 |
Ma S.Guo L. Dong D., A molecular laser-induced breakdown spectroscopy technique for the detection of nitrogen in water, J. Anal. At. Spectrom. 37(3), 663 (2022)
|
19 |
Wang W., Sun L., Wang G., Zhang P., Qi L., Zheng L., and Dong W., The effect of sample surface roughness on microanalysis of microchip laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(2), 357 (2020)
https://doi.org/10.1039/C9JA00377K
|
20 |
Liu R., Rong K., Wang Z., Cui M., Deguchi Y., Tanaka S., Yan J., and Liu J., Sample temperature effect on steel measurement using SP-LIBS and collinear long-short DP-LIBS, ISIJ Int. 60(8), 1724 (2020)
https://doi.org/10.2355/isijinternational.ISIJINT-2019-740
|
21 |
Poggialini F., Campanella B., Legnaioli S., Pagnotta S., and Palleschi V., Investigating double pulse nanoparticle enhanced laser induced breakdown spectroscopy, Spectrochim. Acta B 167, 105845 (2020)
https://doi.org/10.1016/j.sab.2020.105845
|
22 |
Li H., Wang C., Wang Y., Fu S., and Fang L., Double-enhanced LIBS system with N2 atmosphere and cylindrical cavity confinement for quantitative analysis of Sr element in soil, Meas. Sci. Technol. 34(9), 095204 (2023)
https://doi.org/10.1088/1361-6501/acdc44
|
23 |
Ji J., Song W., Hou Z., Li L., Yu X., and Wang Z., Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy, Anal. Chim. Acta 1235, 340551 (2022)
https://doi.org/10.1016/j.aca.2022.340551
|
24 |
Gao J., Yang J., Wang Z., Sun S., Hu B., and Liu Z., The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations, Appl. Phys. B 129(8), 119 (2023)
https://doi.org/10.1007/s00340-023-08064-1
|
25 |
Lv J., Zhu C., Tang Z., Li Q., Liu K., Zhang W., Liu K., and Li X., Bessel beams: A potential strategy for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 36(12), 2756 (2021)
https://doi.org/10.1039/D1JA00270H
|
26 |
Hu M., Shi S., Yan M., Wu E., and Zeng H., Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating, J. Anal. At. Spectrom. 37(4), 841 (2022)
https://doi.org/10.1039/D1JA00376C
|
27 |
K. Adarsh U., K. Unnikrishnan V., Vasa P., D. George S., Chidangil S., and Mathur D., Effect of laser polarization on atomic and ionic emissions in laser‑induced breakdown spectroscopy (LIBS), Appl. Phys. B 129(12), 185 (2023)
https://doi.org/10.1007/s00340-023-08127-3
|
28 |
Yang L., Liu M., Liu Y., Li Q., Li S., Jiang Y., Chen A., and Jin M., Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy, Chin. Phys. B 29(6), 065203 (2020)
https://doi.org/10.1088/1674-1056/ab84dc
|
29 |
Zhao S., Zhao Y., Hou Z., and Wang Z., Rapid and high-resolution visualization elements analysis of material surface based on laser-induced breakdown spectroscopy and hyperspectral imaging, Appl. Surf. Sci. 629, 157415 (2023)
https://doi.org/10.1016/j.apsusc.2023.157415
|
30 |
Zhao S., Song C., Gao X., Guo K., Hao Z., and Lin J., The plasma characteristics of femtosecond–nanosecond dual–pulse laser ablated soil, Results Phys. 19, 103601 (2020)
https://doi.org/10.1016/j.rinp.2020.103601
|
31 |
S. Hsu P., K. Patnaik A., J. Stolt A., Estevadeordal J., Roy S., and R. Gord J., Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal, Appl. Phys. Lett. 113(21), 214103 (2018)
https://doi.org/10.1063/1.5054805
|
32 |
Fu Y., Hou Z., Li T., Li Z., and Wang Z., Investigation of intrinsic origins of the signal uncertainty for laser-induced breakdown spectroscopy, Spectrochim. Acta B 155, 67 (2019)
https://doi.org/10.1016/j.sab.2019.03.007
|
33 |
Fu Y., Gu W., Hou Z., A. Muhammed S., Li T., Wang Y., and Wang Z., Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)
https://doi.org/10.1007/s11467-020-1006-0
|
34 |
A. Labutin T., N. Lednev V., A. Ilyin A., and M. Popov A., Femtosecond laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(1), 90 (2016)
https://doi.org/10.1039/C5JA00301F
|
35 |
Zhao S., Zhao Y., Hou Z., and Wang Z., Stability and accuracy improvement of element analysis in steel alloys using polarization-resolved laser-induced breakdown spectroscopy, Spectrochim. Acta B 203, 106666 (2023)
https://doi.org/10.1016/j.sab.2023.106666
|
36 |
Wang Z., S. Afgan M., L. Gu W., Z. Song Y., Wang Y., Y. Hou Z., R. Song W., and Li Z., Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing, Trends Analyt. Chem. 143, 116385 (2021)
https://doi.org/10.1016/j.trac.2021.116385
|
37 |
Le H., Penchev P., Henrottin A., Bruneel D., Nasrollahi V., A. Ramos-de-Campos J., and Dimov S., Effects of top-hat laser beam processing and scanning strategies in laser micro-structuring, Micromachines (Basel) 11(2), 221 (2020)
https://doi.org/10.3390/mi11020221
|
38 |
Liu C. and Guo Y., Flat-top line-shaped beam shaping and system design, Sensors 22(11), 4199 (2022)
https://doi.org/10.3390/s22114199
|
39 |
A. Poletti M., Spherical coordinate descriptions of cylindrical and spherical Bessel beams, J. Acoust. Soc. Am. 141(3), 2069 (2017)
https://doi.org/10.1121/1.4978787
|
40 |
Zhao X. and Jia X., Vectorial structure of arbitrary vector vortex beams diffracted by a circular aperture in the far field, Laser Phys. 28(1), 015004 (2018)
https://doi.org/10.1088/1555-6611/aa9813
|
41 |
Zhang Z., Wang S., Hu X., Wang S., Pu Y., Li H., and Wang J., All-fiber passively Q-switched laser with flat-top beam emissions, Opt. Lett. 47(3), 521 (2022)
https://doi.org/10.1364/OL.446956
|
42 |
K. Unnikrishnan V., Alti K., B. Kartha V., Santhosh C., P. Gupta G., and M. Suri B., Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana 74(6), 983 (2010)
https://doi.org/10.1007/s12043-010-0089-5
|
43 |
Man B., Dong Q., Liu A., Wei X., Zhang Q., He J., and Wang X., Line-broadening analysis of plasma emission produced by laser ablation of metal Cu, J. Opt. A 6(1), 17 (2004)
https://doi.org/10.1088/1464-4258/6/1/304
|
44 |
Wang J., Li X., Li H., Li X., and Li Z., Lens-to-sample distance effect on the quantitative analysis of steel by laser-induced breakdown spectroscopy, J. Phys. D 53(25), 255203 (2020)
https://doi.org/10.1088/1361-6463/ab7f74
|
45 |
Yin H., Hou Z., Yuan T., Wang Z., Ni W., and Li Z., Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability, J. Anal. At. Spectrom. 30(4), 922 (2015)
https://doi.org/10.1039/C4JA00437J
|
46 |
Song W., Song Z., Vincent J., Wang H., and Wang Z., Quantification of extra virgin olive oil adulteration using smartphone videos, Talanta 216, 120920 (2020)
https://doi.org/10.1016/j.talanta.2020.120920
|
47 |
L. Goueguel C., Soumare A., Nault C., and Nault J., Direct determination of soil texture using laser-induced breakdown spectroscopy and multivariate linear regressions, J. Anal. At. Spectrom. 34(8), 1588 (2019)
https://doi.org/10.1039/C9JA00090A
|
48 |
R. Bhatt C., Hartzler D., C. Jain J., and L. McIntyre D., Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements, Opt. Laser Technol. 126, 106110 (2020)
https://doi.org/10.1016/j.optlastec.2020.106110
|
49 |
M. Garcell E. and Guo C., Polarization-controlled microgroove arrays induced by femtosecond laser pulses, J. Appl. Phys. 123(21), 213103 (2018)
https://doi.org/10.1063/1.5028197
|
50 |
Li X., Rong W., Jiang L., Zhang K., Li C., Cao Q., Zhang G., and Lu Y., Generation and elimination of polarization dependent ablation of cubic crystals by femtosecond laser radiation, Opt. Express 22(24), 30170 (2014)
https://doi.org/10.1364/OE.22.030170
|
51 |
Ji X., Jiang L., Li X., Han W., Liu Y., Huang Q., and Lu Y., Polarization-dependent elliptical crater morphologies formed on a silicon surface by single-shot femtosecond laser ablation, Appl. Opt. 53(29), 6742 (2014)
https://doi.org/10.1364/AO.53.006742
|
52 |
M. Pimenov S., V. Zavedeev E., Jaeggi B., and Neuenschwander B., Femtosecond laser-induced periodic surface structures in titanium-doped diamond-like nanocomposite films: Effects of the beam polarization rotation, Materials (Basel) 16(2), 795 (2023)
https://doi.org/10.3390/ma16020795
|
53 |
Bai F., Li H., Huang Y., Fan W., Pan H., Wang Z., Wang C., Qian J., Li Y., and Zhao Q., Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon, Chem. Phys. Lett. 662, 102 (2016)
https://doi.org/10.1016/j.cplett.2016.08.080
|
54 |
K. Krasin G., S. Kovalev M., I. Kudryashov S., A. Danilov P., P. Martovitskii V., V. Gritsenko I., M. Podlesnykh I., A. Khmelnitskii R., V. Kuzmin E., S. Gulina Y., and O. Levchenko A., Polarization-dependent near-IR ultrashort-pulse laser ablation of natural diamond surfaces, Appl. Surf. Sci. 595, 153549 (2022)
https://doi.org/10.1016/j.apsusc.2022.153549
|
55 |
Wanie V., Shao T., Lassonde P., Calegari F., Vidal F., Ibrahim H., Bian X., and Légaré F., Laser polarization dependence of strong-field ionization in lithium niobate, Phys. Rev. B 101(21), 214311 (2020)
https://doi.org/10.1103/PhysRevB.101.214311
|
56 |
Liu X., Cheng W., Petrarca M., and Polynkin P., Universal threshold for femtosecond laser ablation with oblique illumination, Appl. Phys. Lett. 109(16), 161604 (2016)
https://doi.org/10.1063/1.4965850
|
57 |
M. Guay J., Villafranca A., Baset F., Popov K., Ramunno L., and R. Bhardwaj V., Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate, New J. Phys. 14(8), 085010 (2012)
https://doi.org/10.1088/1367-2630/14/8/085010
|
58 |
A. Tomko J., Jimenez R., J. Naddeo J., M. Bubb D., and M. O’Malley S., Effects of laser polarization and linear surface features on nanoparticle synthesis during laser ablation in liquids, Laser Phys. 28(3), 035602 (2018)
https://doi.org/10.1088/1555-6611/aa9cc8
|
59 |
Liu Y., Gruner A., G. K. Aboud D., Bonse J., Schille J., Loeschner U., and M. Kietzig A., Polarization effects on laser-inscribed angled micro-structures, Appl. Surf. Sci. 649, 159191 (2024)
https://doi.org/10.1016/j.apsusc.2023.159191
|
60 |
Shin S., Hur J., K. Park J., and Kim D., Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials — developing a pattern generation model for laser scanning, Opt. Express 30(11), 18018 (2022)
https://doi.org/10.1364/OE.459377
|
61 |
Cheng H., Li P., Liu S., Lu H., Han L., and Zhao J., Polarization-switchable nanoripples fabricated on a silicon surface by femtosecond-laser-assisted nanopatterning, Appl. Opt. 59(24), 7211 (2020)
https://doi.org/10.1364/AO.397888
|
62 |
Lazzini G., Romoli L., Tantussi F., and Fuso F., Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization, Opt. Laser Technol. 107, 435 (2018)
https://doi.org/10.1016/j.optlastec.2018.06.023
|
63 |
Guo Y., Qiu P., and Xu S., Combined effects of polarization and secondary ablation on precision machining of microgrooves by laser-induced microjet-assisted ablation, Opt. Express 30(25), 44665 (2022)
https://doi.org/10.1364/OE.471491
|
64 |
Torres R., Kaempfe T., Delaigue M., Parriaux O., Hoenninger C., Lopez J., Kling R., and Mottay E., Influence of laser beam polarization on laser micro-machining of molybdenum, J. Laser Micro Nanoeng. 8(3), 188 (2013)
https://doi.org/10.2961/jlmn.2013.03.0001
|
65 |
N. Lednev V., M. Pershin S., A. Ionin A., I. Kudryashov S., V. Makarov S., E. Ligachev A., A. Rudenko A., A. Chmelnitsky R., and F. Bunkin A., Laser ablation of polished and nanostructured titanium surfaces by nanosecond laser pulses, Spectrochim. Acta B 88, 15 (2013)
https://doi.org/10.1016/j.sab.2013.07.010
|
66 |
Al-Khazraji H. and R. Bhardwaj V., Polarization dependent micro-structuring of silicon with a femtosecond laser, Appl. Surf. Sci. 353, 600 (2015)
https://doi.org/10.1016/j.apsusc.2015.06.081
|
67 |
Guo H., Zhu Z., Wang T., Chen N., Liu Y., Zhang J., Sun H., Liu J., and Li R., Polarization-gated filament-induced remote breakdown spectroscopy, Chin. Opt. Lett. 16(3), 033201 (2018)
https://doi.org/10.3788/COL201816.033201
|
68 |
Hou J., Zhang L., Yin W., Zhao Y., Ma W., Dong L., Yang G., Xiao L., and Ji S., Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics, J. Anal. At. Spectrom. 32(8), 1519 (2017)
https://doi.org/10.1039/C7JA00175D
|
69 |
Wang Q., Chen A., Wang Y., Sui L., Li S., and Jin M., Spectral intensity clamping in linearly and circularly polarized femtosecond filament-induced Cu plasmas, J. Anal. At. Spectrom. 33(7), 1154 (2018)
https://doi.org/10.1039/C8JA00072G
|
70 |
Wang Q., Chen A., Wang X., Li S., Jiang J., and Jin M., Signal improvement using circular polarization for focused femtosecond laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 34(6), 1242 (2019)
https://doi.org/10.1039/C9JA00033J
|
71 |
Li S., Jiang Y., Chen A., He L., Liu D., and Jin M., Revisiting the mechanism of nitrogen fluorescence emission induced by femtosecond filament in air, Phys. Plasmas 24(3), 033111 (2017)
https://doi.org/10.1063/1.4978480
|
72 |
Chen Y., Liu Y., Wang Q., Li S., Jiang Y., Chen A., and Jin M., Effect of laser polarization on molecular emission from femtosecond LIBS, J. Anal. At. Spectrom. 37(1), 82 (2022)
https://doi.org/10.1039/D1JA00308A
|
73 |
A. Wubetu G., T. Costello J., J. Kelly T., Wachulak P., Bartnik A., Skrzeczanowski W., and Fiedorowicz H., Comparison of LIBS and polarization resolved LIBS emission for aluminium alloy, J. Appl. Spectrosc. 90(1), 116 (2023)
https://doi.org/10.1007/s10812-023-01512-y
|
74 |
Shi Y., Chen A., Jiang Y., Li S., and Jin M., Influence of laser polarization on plasma fluorescence emission during the femtosecond filamentation in air, Opt. Commun. 367, 174 (2016)
https://doi.org/10.1016/j.optcom.2016.01.051
|
75 |
Zhao D., Farid N., Hai R., Wu D., and Ding H., Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy, Plasma Sci. Technol. 16(2), 149 (2014)
https://doi.org/10.1088/1009-0630/16/2/11
|
76 |
Xu J., Wang X., and Yao M., Optimization of copper detection based on polarization-resolved laser-induced breakdown spectroscopy, Appl. Opt. 60(17), 5266 (2021)
https://doi.org/10.1364/AO.424283
|
77 |
Wang X., Yao M., Zeng M., and Xu J., Detection model of copper based on polarization degree induced by low-energy density laser, Appl. Opt. 60(35), 10780 (2021)
https://doi.org/10.1364/AO.443563
|
78 |
S. Penczak J., Liu Y., and J. Gordon R., Polarization and fluence dependence of the polarized emission in nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 66(2), 186 (2011)
https://doi.org/10.1016/j.sab.2010.12.009
|
79 |
Xu J., Wang X., Yao M., and Liu M., Detection model of the plasma spectrum based on the polarization recognition rate induced by a low energy density laser, Appl. Opt. 61(16), 4768 (2022)
https://doi.org/10.1364/AO.460092
|
80 |
Eslami Majd A., S. Arabanian A., and Massudi R., Polarization resolved laser induced breakdown spectroscopy by single shot nanosecond pulsed Nd: YAG laser, Opt. Lasers Eng. 48(7-8), 750 (2010)
https://doi.org/10.1016/j.optlaseng.2010.03.010
|
81 |
Agnes N.Y. Tao H.Q. Hao Z.K. Sun C.Gao X. Q. Lin J., A comparison of single shot nanosecond and femtosecond polarization-resolved laser-induced breakdown spectroscopy of Al, Chin. Phys. B 22(1), 014209 (2013)
|
82 |
Aghababaei Nejad M., Soltanolkotabi M., Eslami Majd A., and investigation of laser-induced breakdown plasma emission from Al Polarization, Mo, W, and Pb elements using nongated detector, J. Laser Appl. 30(2), 022005 (2018)
https://doi.org/10.2351/1.5012507
|
83 |
S. Penczak J., Liu Y., and J. Gordon R., Polarization resolved laser-induced breakdown spectroscopy of Al, J. Phys. Chem. A 113(47), 13310 (2009)
https://doi.org/10.1021/jp904728n
|
84 |
E. Asgill M., Y. Moon H., Omenetto N., and W. Hahn D., Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 65(12), 1033 (2010)
https://doi.org/10.1016/j.sab.2010.11.010
|
85 |
Yurdanur-Tasel E.Berberoglu H.Bilikmen S., Investigation of materials of different crystal structure under various time delays using double pulse laser induced breakdown spectroscopy, Spectrochim. Acta B 74–75, 74 (2012)
|
86 |
Jr Penczak Y.D. Liu R.H. Schaller D.J. Gordon RichR., The mechanism for continuum polarization in laser induced breakdown spectroscopy of Si (111), Spectrochim. Acta B 74–75, 3 (2012)
|
87 |
Aghababaei Nejad M. and Eslami Majd A., Temporal evolution of polarization resolved laser‑induced breakdown spectroscopy of Cu, Plasma Chem. Plasma Process. 40(1), 325 (2020)
https://doi.org/10.1007/s11090-019-10042-5
|
88 |
P. Williamson A. and Kiefer J., Strategies for suppressing elastically scattered laser light in ungated laser-induced breakdown spectroscopy, Spectrochim. Acta B 149, 267 (2018)
https://doi.org/10.1016/j.sab.2018.09.005
|
89 |
Aghababaei Nejad M., Soltanolkotabi M., and Eslami Majd A., Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy, Appl. Phys. B 124(1), 6 (2018)
https://doi.org/10.1007/s00340-017-6880-y
|
90 |
Zhao H., Cai L., and Wu G., On polarization resolved laser induced breakdown spectroscopy combined with support-vector regression to improve the accuracy of soil heavy-metal (Cd) detection, Chin. J. Anal. Chem. 51(2), 100176 (2023)
https://doi.org/10.1016/j.cjac.2022.100176
|
91 |
Xu J., Wang X., Yao M., and Liu M., Improving the stability of LIBS for chromium in soil based on the model of micro-linear spectrum, J. Anal. At. Spectrom. 38(11), 2441 (2023)
https://doi.org/10.1039/D3JA00279A
|
92 |
Teng G., Wang Q., Hao Q., Fan A., Yang H., Xu X., Chen G., Wei K., Zhao Z., N. Khan M., S. Idrees B., Bao M., Luo T., Zheng Y., and Lu B., Full-Stokes polarization laser-induced breakdown spectroscopy detection of infiltrative glioma boundary tissue, Biomed. Opt. Express 14(7), 3469 (2023)
https://doi.org/10.1364/BOE.492983
|
93 |
Li J., Tang Y., Kuang Z., Schille J., Loeschner U., Perrie W., Liu D., Dearden G., and Edwardson S., Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators, Opt. Lasers Eng. 112, 59 (2019)
https://doi.org/10.1016/j.optlaseng.2018.09.002
|
94 |
Rung S., Barth J., and Hellmann R., Characterization of laser beam shaping optics based on their ablation geometry of thin films, Micromachines (Basel) 5(4), 943 (2014)
https://doi.org/10.3390/mi5040943
|
95 |
K. Anoop K., Rubano A., Fittipaldi R., Wang X., Paparo D., Vecchione A., Marrucci L., Bruzzese R., and Amoruso S., Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate, Appl. Phys. Lett. 104(24), 241604 (2014)
https://doi.org/10.1063/1.4884116
|
96 |
Kong D., Sun X., Hu Y., and Duan J., Theoretical and experimental research on a spatially modulated femtosecond bessel-like laser for microdrilling in silica glass, Opt. Commun. 542, 129594 (2023)
https://doi.org/10.1016/j.optcom.2023.129594
|
97 |
Ackermann L., Gehring M., Roider C., Cvecek K., and Schmidt M., Spot arrays for uniform material ablation with ultrashort pulsed lasers, Opt. Laser Technol. 163, 109358 (2023)
https://doi.org/10.1016/j.optlastec.2023.109358
|
98 |
Doan D., Iida R., Kim B., Satoh I., and Fushinobu K., Bessel beam laser-scribing of thin film silicon solar cells by ns pulsed laser, J. Therm. Sci. Tech. 11(1), JTST0011 (2016)
https://doi.org/10.1299/jtst.2016jtst0011
|
99 |
Sahin R. and Kabacelik I., Nanostructuring of ITO thin films through femtosecond laser ablation, Appl. Phys. A 122(4), 314 (2016)
https://doi.org/10.1007/s00339-016-9847-7
|
100 |
Yin P., Xu B., Liu Y., Wang Y., Zhao W., and Tang J., Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam, Acta Phys. Sin. 73(9), 095202 (2024)
https://doi.org/10.7498/aps.73.20231625
|
101 |
Choi J., Choi W., Shin Y., Han S., Kim K., and Cho S., Enhancement periodic regularity of surface nano ripple structures on Si wafer using a square shaped flat‑top beam femtosecond NIR laser, Appl. Phys. A 128(1), 46 (2022)
https://doi.org/10.1007/s00339-021-05144-x
|
102 |
Burger M., Polynkin P., and Jovanovic I., Filament-induced breakdown spectroscopy with structured beams, Opt. Express 28(24), 36812 (2020)
https://doi.org/10.1364/OE.412480
|
103 |
Figueiras E., Olivieri D., Paredes A., and Michinel H., An open source virtual laboratory for the Schrödinger equation, Eur. J. Phys. 39(5), 055802 (2018)
https://doi.org/10.1088/1361-6404/aac999
|
104 |
Ackermann L., Roider C., Cvecek K., and Schmidt M., Methods for uniform beam shaping and their effect on material ablation, Appl. Phys. A 128(10), 877 (2022)
https://doi.org/10.1007/s00339-022-06004-y
|
105 |
Pallarés-Aldeiturriaga D., Abou Khalil A., P. Colombier J., Stoian R., and Sedao X., Ultrafast Cylindrical Vector Beams for Improved Energy Feedthrough and Low Roughness Surface Ablation of Metals, Materials (Basel) 16(1), 176 (2022)
https://doi.org/10.3390/ma16010176
|
106 |
Kim H., Yoon J., Choi W., Kim K., and Cho S., Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser, Opt. Lasers Eng. 84, 44 (2016)
https://doi.org/10.1016/j.optlaseng.2016.03.025
|
107 |
Kuang Z., Li J., Edwardson S., Perrie W., Liu D., and Dearden G., Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator, Opt. Lasers Eng. 70, 1 (2015)
https://doi.org/10.1016/j.optlaseng.2015.02.004
|
108 |
Shin Y., Choi J., and Cho S., Fine ablation with depth control of 25‑nm resolution and morphologies irradiated by femtosecond laser pulses via beam shaping, Appl. Phys. A 129(8), 534 (2023)
https://doi.org/10.1007/s00339-023-06799-4
|
109 |
Liu D., Wang Y., Zhai Z., Fang Z., Tao Q., Perrie W., P. Edwarson S., and Dearden G., Dynamic laser beam shaping for material processing using hybrid holograms, Opt. Laser Technol. 102, 68 (2018)
https://doi.org/10.1016/j.optlastec.2017.12.022
|
110 |
Sahin R., Ersoy T., and Akturk S., Ablation of metal thin films using femtosecond laser Bessel vortex beams, Appl. Phys. A 118(1), 125 (2015)
https://doi.org/10.1007/s00339-014-8808-2
|
111 |
Häfner T., Strauß J., Roider C., Heberle J., and Schmidt M., Tailored laser beam shaping for efficient and accurate microstructuring, Appl. Phys. A 124(2), 111 (2018)
https://doi.org/10.1007/s00339-017-1530-0
|
112 |
Zhang D., Li X., Fu Y., Yao Q., Li Z., and Sugioka K., Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS, Opto-Electron. Adv. 5(2), 210066 (2022)
https://doi.org/10.29026/oea.2021.210066
|
113 |
Yan W., Lv J., Zhu C., Li Q., Chen J., Kang L., Lu B., and Li X., Classification of uneven steel samples by laser induced breakdown spectroscopy based on a Bessel beam, J. Anal. At. Spectrom. 38(6), 1232 (2023)
https://doi.org/10.1039/D3JA00064H
|
114 |
Hou Z., S. Afgan M., Sheta S., Liu J., and Wang Z., Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(8), 1671 (2020)
https://doi.org/10.1039/D0JA00195C
|
115 |
Jia J., Fu H., Hou Z., Wang H., Wang Z., Dong F., Ni Z., and Zhang Z., Effect of laser beam shaping on the determination of manganese and chromium elements in steel samples using laser-induced breakdown spectroscopy, Spectrochim. Acta B 163, 105747 (2020)
https://doi.org/10.1016/j.sab.2019.105747
|
116 |
Jia J., Fu H., Hou Z., Wang H., Ni Z., Wang Z., Dong F., and Zhang Z., Analysis of element content in cement by Gaussian and flattop laser-induced breakdown spectroscopy, J. Phys. D 52(40), 405102 (2019)
https://doi.org/10.1088/1361-6463/ab3128
|
117 |
Gao J., Yang J., Wang Z., Sun S., Hu B., and Liu Z., The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations, Appl. Phys. B 129(8), 119 (2023)
https://doi.org/10.1007/s00340-023-08064-1
|
118 |
Ciucci A., Corsi M., Palleschi V., Rastelli S., Salvetti A., and Tognoni E., New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53(8), 960 (1999)
https://doi.org/10.1366/0003702991947612
|
119 |
Gu W., Nishi N., Hou Z., Wang Z., and Sakka T., Investigation of the signal uncertainty in laser-induced breakdown spectroscopy based on error propagation considering self-absorption, Spectrochim. Acta B 206, 106732 (2023)
https://doi.org/10.1016/j.sab.2023.106732
|
120 |
P. Joglekar A.Liu H.J. Spooner G.Meyhöfer E.Mourou G.J. Hunt A., A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining, Appl. Phys. B 77(1), 25 (2003)
|
121 |
V. Temnov V., Sokolowski-Tinten K., Zhou P., El-Khamhawy A., and von der Linde D., Multiphoton ionization in dielectrics: Comparison of circular and linear polarization, Phys. Rev. Lett. 97(23), 237403 (2006)
https://doi.org/10.1103/PhysRevLett.97.237403
|
122 |
Zhang K., Song W., Hou Z., and Wang Z., Effect of ambient pressures on laser-induced breakdown spectroscopy signals, Front. Phys. 19(4), 42203 (2024)
https://doi.org/10.1007/s11467-023-1380-5
|
123 |
Guo L., Zhang D., Sun L., Yao S., Zhang L., Wang Z., Wang Q., Ding H., Lu Y., Hou Z., and Wang Z., Development in the application of laser-induced breakdown spectroscopy in recent years: A review, Front. Phys. 16(2), 22500 (2021)
https://doi.org/10.1007/s11467-020-1007-z
|
124 |
Wang Z., Deguchi Y., Zhang Z., Wang Z., Zeng X., and Yan J., Laser-induced breakdown spectroscopy in Asia, Front. Phys. 11(6), 114213 (2016)
https://doi.org/10.1007/s11467-016-0607-0
|
125 |
Hou Z.Gu W.Li T.Wang Z.Li L. Yu X.Zhang Y. Liu Z., A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors, Front. Phys. 17(6), 62503 (2022)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|