Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 62500    https://doi.org/10.1007/s11467-024-1436-1
Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy
Shangyong Zhao1(), Yuchen Zhao2, Yujia Dai1, Ziyuan Liu1, Huihui Zha1, Xun Gao3,4()
1. College of Opto–Electro–Mechanical Engineering, Zhejiang A & F University, Hangzhou 311300, China
2. Nottingham University Business School China, University of Nottingham Ningbo China, Ningbo 315100, China
3. School of Science, Changchun University of Science and Technology, Changchun 130022, China
4. Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
 Download: PDF(4597 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The simplicity and low-cost way to improve qualitative and quantitative analytical performance has always been a crucial concern for laser-induced breakdown spectroscopy (LIBS), and many scientists have been engaged in this evolving research direction. In this review, we investigated an update on recent developments in light-field modulated operation in LIBS. It covered a brief description of LIBS, optical polarization, and beam shaping. Here, the optical polarization is divided into laser beam polarization and plasma polarization. In addition, the methodology and development of light-field modulated LIBS were summarized and discussed. Finally, the existing problems with light-field modulated LIBS were presented, along with some of their own insights and the future direction of their development. This review will provide a guideline for LIBS researchers with basic knowledge, which is very useful in the signal optimization of LIBS research and applications.

Keywords laser-induced breakdown spectroscopy      light-field modulated      laser beam polarization      plasma polarization      beam shaping     
Corresponding Author(s): Shangyong Zhao,Xun Gao   
Issue Date: 06 August 2024
 Cite this article:   
Shangyong Zhao,Yuchen Zhao,Yujia Dai, et al. Recent advances of light-field modulated operation in laser-induced breakdown spectroscopy[J]. Front. Phys. , 2024, 19(6): 62500.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1436-1
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/62500
Fig.1  Schematic illustration of polarization-resolved LIBS system configuration [35].
Fig.2  Schematic diagram of linear polarization (a) and circular polarization (b).
Fig.3  Comparison of LIBS and PR-LIBS spectra [35].
Fig.4  Laser beam morphology: (a) Gaussian beam, (b) flat-top beam, (c) Bessel beam, (d) fiber arrangement shaping, and (e) vortex beam.
Index Expression Description Ref.
SBR SBR=IB /I A parameter to evaluate the optimization effect of feature signal. [44]
RSD RSD=(δ /x¯)×100% The degree of dispersion of the data set relative to its mean. [45]
R2 R2=1(SSR /S ST) Reflects the goodness of fit between regression line and sample observations. [46]
MAE MAE=((| yi y i|)/m) The average difference between the predicted value and the true value. [47]
RMSE RMSE=sqrt(M SE) The difference between the predicted value and the actual measured value. [46]
EF EF=I/I 0 The feature spectral lines intensity enhancement times value. [48]
LOD LOD=3δ/S An analytical method can detect a minimum concentration in a sample. [3]
Tab.1  Evaluation indexes used in a quantitatively analytical approach ( IB is the background signal intensity, δ is the standard deviation, x is the corresponding average value, SSR is the sum of squares of residuals, SST is the total sum of squares, yi and y i are the predicted and measured values, respectively, I and I0 are the raw and optimized spectral intensities, respectively, and S is the slope of the standard curve).
Fig.5  Polarization laser ablation results: (a) p-polarization and s-polarization [56], (b) damage morphology [51], (c) hole depth [52], (d) polarization direction [58], (e) radially and angularly polarized laser beam [63], (f) simulation of linearly and circularly polarized laser beam ablation [66], and (g) horizontally and circularly polarized laser ablation [53].
Fig.6  Typical results of the laser beam polarization method of LIBS: (a) Polarization-resolved signal intensity [74], (b, c) temperature-related linear-circular polarization signal intensity [28], (d) polarization-resolved plasma temperature and electron density [28], and (e) polarization-resolved RSD [28].
Sample Ele. RSD R2 RMSE Ref.
LIBS PR-LIBS LIBS PR-LIBS LIBS BS-LIBS
Soil Cd 5.26% 4.8% 0.9642 0.9841 50.3812 32.9196 [90]
Steel alloys Si 9.2% 5.9% 0.912 0.970 0.070 0.050 [35]
Mn 7.7% 5.5% 0.904 0.953 0.030 0.020
Cr 9.3% 6.0% 0.965 0.996 1.150 0.790
Ni 7.2% 5.8% 0.952 0.986 0.840 0.680
Steel sample Cr 0.97876 0.99291 [91]
Cu 0.97704 0.98829
Pb 0.98432 0.99603
Fe 0.98202 0.99299
Tab.2  The summary and comparison of experimental results.
Fig.7  Beam shaping laser ablation results: (a) Gaussian beam [100], (b) flat-top beam [100], (c) Gaussian beam and flat-top beam ablation surface [101], (d) Gaussian beam, Laguerre−Gaussian beam, airy beam, and Bessel−Gaussian beam [102], (e) square and triangular beams [107], and (f) spot arrays [97].
Sample Beam type Ele. RSD R2 LOD (ppm) Ref.
LIBS BS-LIBS LIBS BS-LIBS LIBS BS-LIBS
Ore mineral Flat-top beam U 28.2% 15.3% 0.90 21.2 [23]
Al–Mg alloy Flat-top beam Mg 33% 18% [114]
Alloyed steel Bessel beam Mn 39.48% 18.31% 0.933 0.956 0.34 wt.% 0.27 wt.% [25]
Steel sample Flat-top beam Mn 30.17% 16.32% 0.981 0.993 11.06 3.82 [115]
Cr 5.89% 4.69% 0.958 0.966 66.65 30.75
Cement Flat-top beam Fe 2.37% 1.35% 0.9710 0.9775 56.04 29.74 [116]
Mg 0.9936 0.9939 5.65 3.9
Al 0.9121 0.9166 123.51 31.63
Si 0.9755 0.9771 299.07 139.64
Na 0.9909 0.9955 7.3 2.16
K 0.9814 0.9889 10.6 5.67
Sample Beam type Ele. T(K)/FWHM* ne(× 10 16cm3) E F Ref.
LIBS BS-LIBS LIBS BS-LIBS
Ore mineral Flat-top beam U 40% 3% 6 [23]
Cement Flat-top beam Ca 11058 9102 1.29 1.04 [116]
Si sample Vortex beam Si 0.15 nm* 0.16 nm* 2.16 2.25 [117]
Al sample Al 0.25 nm* 0.15 nm* 8.22 4.93
Al–Mg alloy Flat-top beam Mg 7454 10361 1.5–3.5 [113]
Al 1.5 2
Tab.3  The summary and comparison of experimental and plasma parameters (Gaussian beams are generally used for LIBS).
Fig.8  (a) Gaussian and (b) multimode laser beam spots.
Fig.9  Data chart of annual research article statistics with different technology types of light-field modulated LIBS, (a) Paper statistics in 2009–2023, (b) beam shaping, (c) plasma polarization, and (d) laser beam polarization.
1 D. Winefordner J., B. Gornushkin I., Correll T., Gibb E., W. Smith B., Omenetto N., Comparing several atomic spectrometric methods to the superstars, special emphasis on laser induced breakdown spectrometry, LIBS, a future super star, J. Anal. Atom. Spectrom. 19, 1061e1083 (2004)
https://doi.org/10.1039/b400355c
2 Wang Z., Yuan T., Hou Z., Zhou W., Lu J., Ding H., and Zeng X., Laser-induced breakdown spectroscopy in China, Front. Phys. 9(4), 419 (2014)
https://doi.org/10.1007/s11467-013-0410-0
3 Zhao S., Song C., Gao X., and Lin J., Quantitative analysis of Pb in soil by femtosecond–nanosecond double-pulse laser-induced breakdown spectroscopy, Results Phys. 15, 102736 (2019)
https://doi.org/10.1016/j.rinp.2019.102736
4 Wang Q., Chen A., and Gao X., Sensitivity improvement of laser-induced breakdown spectroscopy to detect heavy metals in water by Tesla coil discharge, J. Anal. At. Spectrom. 39(1), 261 (2024)
https://doi.org/10.1039/D3JA00345K
5 Ikeda Y., K. Soriano J., Ohba H., and Wakaida I., Analysis of gadolinium oxide using microwave-enhanced fiber‑coupled micro‑laser‑induced breakdown spectroscopy, Sci. Rep. 13(1), 4828 (2023)
https://doi.org/10.1038/s41598-023-32146-x
6 Ma S., Liu Y., Tian H., Guo L., and Dong D., Investigation of resonance excitation of trace elements using resonant laser-induced breakdown spectroscopy (RLIBS), J. Anal. At. Spectrom. 38(2), 342 (2023)
https://doi.org/10.1039/D2JA00302C
7 Song Y., Song W., Li L., Gu W., Kou K., S. Afgan M., Hou Z., Li Z., and Wang Z., Flame-assisted plasma modulation to improve the raw signal quality for laser-induced breakdown spectroscopy, Opt. Lasers Eng. 162, 107433 (2023)
https://doi.org/10.1016/j.optlaseng.2022.107433
8 Zhao S., Gao X., Chen A., and Lin J., Effect of spatial confinement on Pb measurements in soil by femtosecond laser‑induced breakdown spectroscopy, Appl. Phys. B 126(1), 7 (2020)
https://doi.org/10.1007/s00340-019-7354-1
9 A. Khan M., Bashir S., A. Chishti N., Bonyah E., Dawood A., and Ahmad Z., Effect of ambient environment and magnetic field on laser-induced cobalt plasma, AIP Adv. 13(1), 015017 (2023)
https://doi.org/10.1063/5.0118908
10 Wang Q., Liu Y., Jiang L., Chen A., Han J., and Jin M., Metal micro/nanostructure enhanced laser-induced breakdown spectroscopy, Anal. Chim. Acta 1241, 340802 (2023)
https://doi.org/10.1016/j.aca.2023.340802
11 Zhu Y., Deng N., Hu Z., Wang W., Lau C., Liu Y., and Guo L., Droplet constraint by a superhydrophobic−superhydrophilic hybrid surface with a SiO2 NP coating for determination of heavy metals using LIBS, ACS Appl. Nano Mater. 5(12), 17508 (2022)
https://doi.org/10.1021/acsanm.2c02816
12 Yu J., Hou Z., Ma Y., Li T., Fu Y., Wang Y., Li Z., and Wang Z., Improvement of laser induced breakdown spectroscopy signal using gas mixture, Spectrochim. Acta B 174, 105992 (2020)
https://doi.org/10.1016/j.sab.2020.105992
13 Zehra K., Bashir S., A. Hassan S., S. Ahmed Q., Akram M., and Hayat A., The effect of nature and pressure of ambient environment on laser-induced breakdown spectroscopy and ablation mechanisms of Si, Laser Part. Beams 35(3), 492 (2017)
https://doi.org/10.1017/S0263034617000477
14 Zhao Y., Singha S., Liu Y., and J. Gordon R., Polarization-resolved laser-induced breakdown spectroscopy, Opt. Lett. 34(4), 494 (2009)
https://doi.org/10.1364/OL.34.000494
15 Liu Y., S. Penczak J., and J. Gordon R., Nanosecond polarization-resolved laser-induced breakdown spectroscopy, Opt. Lett. 35(2), 112 (2010)
https://doi.org/10.1364/OL.35.000112
16 Nagli L. and Gaft M., Fraunhofer-type absorption line splitting and polarization in confocal double-pulse laser induced plasma, Spectrochim. Acta B 88, 127 (2013)
https://doi.org/10.1016/j.sab.2013.06.009
17 Sheta S., Hou Z., Wang Y., and Wang Z., Evaluation of femtosecond laser‑induced breakdown spectroscopy system as an offline coal analyzer, Sci. Rep. 11(1), 15968 (2021)
https://doi.org/10.1038/s41598-021-95317-8
18 Ma S.Guo L. Dong D., A molecular laser-induced breakdown spectroscopy technique for the detection of nitrogen in water, J. Anal. At. Spectrom. 37(3), 663 (2022)
19 Wang W., Sun L., Wang G., Zhang P., Qi L., Zheng L., and Dong W., The effect of sample surface roughness on microanalysis of microchip laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(2), 357 (2020)
https://doi.org/10.1039/C9JA00377K
20 Liu R., Rong K., Wang Z., Cui M., Deguchi Y., Tanaka S., Yan J., and Liu J., Sample temperature effect on steel measurement using SP-LIBS and collinear long-short DP-LIBS, ISIJ Int. 60(8), 1724 (2020)
https://doi.org/10.2355/isijinternational.ISIJINT-2019-740
21 Poggialini F., Campanella B., Legnaioli S., Pagnotta S., and Palleschi V., Investigating double pulse nanoparticle enhanced laser induced breakdown spectroscopy, Spectrochim. Acta B 167, 105845 (2020)
https://doi.org/10.1016/j.sab.2020.105845
22 Li H., Wang C., Wang Y., Fu S., and Fang L., Double-enhanced LIBS system with N2 atmosphere and cylindrical cavity confinement for quantitative analysis of Sr element in soil, Meas. Sci. Technol. 34(9), 095204 (2023)
https://doi.org/10.1088/1361-6501/acdc44
23 Ji J., Song W., Hou Z., Li L., Yu X., and Wang Z., Raw signal improvement using beam shaping plasma modulation for uranium detection in ore using laser-induced breakdown spectroscopy, Anal. Chim. Acta 1235, 340551 (2022)
https://doi.org/10.1016/j.aca.2022.340551
24 Gao J., Yang J., Wang Z., Sun S., Hu B., and Liu Z., The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations, Appl. Phys. B 129(8), 119 (2023)
https://doi.org/10.1007/s00340-023-08064-1
25 Lv J., Zhu C., Tang Z., Li Q., Liu K., Zhang W., Liu K., and Li X., Bessel beams: A potential strategy for laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 36(12), 2756 (2021)
https://doi.org/10.1039/D1JA00270H
26 Hu M., Shi S., Yan M., Wu E., and Zeng H., Femtosecond laser-induced breakdown spectroscopy by multidimensional plasma grating, J. Anal. At. Spectrom. 37(4), 841 (2022)
https://doi.org/10.1039/D1JA00376C
27 K. Adarsh U., K. Unnikrishnan V., Vasa P., D. George S., Chidangil S., and Mathur D., Effect of laser polarization on atomic and ionic emissions in laser‑induced breakdown spectroscopy (LIBS), Appl. Phys. B 129(12), 185 (2023)
https://doi.org/10.1007/s00340-023-08127-3
28 Yang L., Liu M., Liu Y., Li Q., Li S., Jiang Y., Chen A., and Jin M., Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy, Chin. Phys. B 29(6), 065203 (2020)
https://doi.org/10.1088/1674-1056/ab84dc
29 Zhao S., Zhao Y., Hou Z., and Wang Z., Rapid and high-resolution visualization elements analysis of material surface based on laser-induced breakdown spectroscopy and hyperspectral imaging, Appl. Surf. Sci. 629, 157415 (2023)
https://doi.org/10.1016/j.apsusc.2023.157415
30 Zhao S., Song C., Gao X., Guo K., Hao Z., and Lin J., The plasma characteristics of femtosecond–nanosecond dual–pulse laser ablated soil, Results Phys. 19, 103601 (2020)
https://doi.org/10.1016/j.rinp.2020.103601
31 S. Hsu P., K. Patnaik A., J. Stolt A., Estevadeordal J., Roy S., and R. Gord J., Femtosecond-laser-induced plasma spectroscopy for high-pressure gas sensing: Enhanced stability of spectroscopic signal, Appl. Phys. Lett. 113(21), 214103 (2018)
https://doi.org/10.1063/1.5054805
32 Fu Y., Hou Z., Li T., Li Z., and Wang Z., Investigation of intrinsic origins of the signal uncertainty for laser-induced breakdown spectroscopy, Spectrochim. Acta B 155, 67 (2019)
https://doi.org/10.1016/j.sab.2019.03.007
33 Fu Y., Gu W., Hou Z., A. Muhammed S., Li T., Wang Y., and Wang Z., Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021)
https://doi.org/10.1007/s11467-020-1006-0
34 A. Labutin T., N. Lednev V., A. Ilyin A., and M. Popov A., Femtosecond laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 31(1), 90 (2016)
https://doi.org/10.1039/C5JA00301F
35 Zhao S., Zhao Y., Hou Z., and Wang Z., Stability and accuracy improvement of element analysis in steel alloys using polarization-resolved laser-induced breakdown spectroscopy, Spectrochim. Acta B 203, 106666 (2023)
https://doi.org/10.1016/j.sab.2023.106666
36 Wang Z., S. Afgan M., L. Gu W., Z. Song Y., Wang Y., Y. Hou Z., R. Song W., and Li Z., Recent advances in laser-induced breakdown spectroscopy quantification: From fundamental understanding to data processing, Trends Analyt. Chem. 143, 116385 (2021)
https://doi.org/10.1016/j.trac.2021.116385
37 Le H., Penchev P., Henrottin A., Bruneel D., Nasrollahi V., A. Ramos-de-Campos J., and Dimov S., Effects of top-hat laser beam processing and scanning strategies in laser micro-structuring, Micromachines (Basel) 11(2), 221 (2020)
https://doi.org/10.3390/mi11020221
38 Liu C. and Guo Y., Flat-top line-shaped beam shaping and system design, Sensors 22(11), 4199 (2022)
https://doi.org/10.3390/s22114199
39 A. Poletti M., Spherical coordinate descriptions of cylindrical and spherical Bessel beams, J. Acoust. Soc. Am. 141(3), 2069 (2017)
https://doi.org/10.1121/1.4978787
40 Zhao X. and Jia X., Vectorial structure of arbitrary vector vortex beams diffracted by a circular aperture in the far field, Laser Phys. 28(1), 015004 (2018)
https://doi.org/10.1088/1555-6611/aa9813
41 Zhang Z., Wang S., Hu X., Wang S., Pu Y., Li H., and Wang J., All-fiber passively Q-switched laser with flat-top beam emissions, Opt. Lett. 47(3), 521 (2022)
https://doi.org/10.1364/OL.446956
42 K. Unnikrishnan V., Alti K., B. Kartha V., Santhosh C., P. Gupta G., and M. Suri B., Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions, Pramana 74(6), 983 (2010)
https://doi.org/10.1007/s12043-010-0089-5
43 Man B., Dong Q., Liu A., Wei X., Zhang Q., He J., and Wang X., Line-broadening analysis of plasma emission produced by laser ablation of metal Cu, J. Opt. A 6(1), 17 (2004)
https://doi.org/10.1088/1464-4258/6/1/304
44 Wang J., Li X., Li H., Li X., and Li Z., Lens-to-sample distance effect on the quantitative analysis of steel by laser-induced breakdown spectroscopy, J. Phys. D 53(25), 255203 (2020)
https://doi.org/10.1088/1361-6463/ab7f74
45 Yin H., Hou Z., Yuan T., Wang Z., Ni W., and Li Z., Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability, J. Anal. At. Spectrom. 30(4), 922 (2015)
https://doi.org/10.1039/C4JA00437J
46 Song W., Song Z., Vincent J., Wang H., and Wang Z., Quantification of extra virgin olive oil adulteration using smartphone videos, Talanta 216, 120920 (2020)
https://doi.org/10.1016/j.talanta.2020.120920
47 L. Goueguel C., Soumare A., Nault C., and Nault J., Direct determination of soil texture using laser-induced breakdown spectroscopy and multivariate linear regressions, J. Anal. At. Spectrom. 34(8), 1588 (2019)
https://doi.org/10.1039/C9JA00090A
48 R. Bhatt C., Hartzler D., C. Jain J., and L. McIntyre D., Evaluation of analytical performance of double pulse laser-induced breakdown spectroscopy for the detection of rare earth elements, Opt. Laser Technol. 126, 106110 (2020)
https://doi.org/10.1016/j.optlastec.2020.106110
49 M. Garcell E. and Guo C., Polarization-controlled microgroove arrays induced by femtosecond laser pulses, J. Appl. Phys. 123(21), 213103 (2018)
https://doi.org/10.1063/1.5028197
50 Li X., Rong W., Jiang L., Zhang K., Li C., Cao Q., Zhang G., and Lu Y., Generation and elimination of polarization dependent ablation of cubic crystals by femtosecond laser radiation, Opt. Express 22(24), 30170 (2014)
https://doi.org/10.1364/OE.22.030170
51 Ji X., Jiang L., Li X., Han W., Liu Y., Huang Q., and Lu Y., Polarization-dependent elliptical crater morphologies formed on a silicon surface by single-shot femtosecond laser ablation, Appl. Opt. 53(29), 6742 (2014)
https://doi.org/10.1364/AO.53.006742
52 M. Pimenov S., V. Zavedeev E., Jaeggi B., and Neuenschwander B., Femtosecond laser-induced periodic surface structures in titanium-doped diamond-like nanocomposite films: Effects of the beam polarization rotation, Materials (Basel) 16(2), 795 (2023)
https://doi.org/10.3390/ma16020795
53 Bai F., Li H., Huang Y., Fan W., Pan H., Wang Z., Wang C., Qian J., Li Y., and Zhao Q., Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon, Chem. Phys. Lett. 662, 102 (2016)
https://doi.org/10.1016/j.cplett.2016.08.080
54 K. Krasin G., S. Kovalev M., I. Kudryashov S., A. Danilov P., P. Martovitskii V., V. Gritsenko I., M. Podlesnykh I., A. Khmelnitskii R., V. Kuzmin E., S. Gulina Y., and O. Levchenko A., Polarization-dependent near-IR ultrashort-pulse laser ablation of natural diamond surfaces, Appl. Surf. Sci. 595, 153549 (2022)
https://doi.org/10.1016/j.apsusc.2022.153549
55 Wanie V., Shao T., Lassonde P., Calegari F., Vidal F., Ibrahim H., Bian X., and Légaré F., Laser polarization dependence of strong-field ionization in lithium niobate, Phys. Rev. B 101(21), 214311 (2020)
https://doi.org/10.1103/PhysRevB.101.214311
56 Liu X., Cheng W., Petrarca M., and Polynkin P., Universal threshold for femtosecond laser ablation with oblique illumination, Appl. Phys. Lett. 109(16), 161604 (2016)
https://doi.org/10.1063/1.4965850
57 M. Guay J., Villafranca A., Baset F., Popov K., Ramunno L., and R. Bhardwaj V., Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate, New J. Phys. 14(8), 085010 (2012)
https://doi.org/10.1088/1367-2630/14/8/085010
58 A. Tomko J., Jimenez R., J. Naddeo J., M. Bubb D., and M. O’Malley S., Effects of laser polarization and linear surface features on nanoparticle synthesis during laser ablation in liquids, Laser Phys. 28(3), 035602 (2018)
https://doi.org/10.1088/1555-6611/aa9cc8
59 Liu Y., Gruner A., G. K. Aboud D., Bonse J., Schille J., Loeschner U., and M. Kietzig A., Polarization effects on laser-inscribed angled micro-structures, Appl. Surf. Sci. 649, 159191 (2024)
https://doi.org/10.1016/j.apsusc.2023.159191
60 Shin S., Hur J., K. Park J., and Kim D., Polarization effects on ablation efficiency and microstructure symmetricity in femtosecond laser processing of materials — developing a pattern generation model for laser scanning, Opt. Express 30(11), 18018 (2022)
https://doi.org/10.1364/OE.459377
61 Cheng H., Li P., Liu S., Lu H., Han L., and Zhao J., Polarization-switchable nanoripples fabricated on a silicon surface by femtosecond-laser-assisted nanopatterning, Appl. Opt. 59(24), 7211 (2020)
https://doi.org/10.1364/AO.397888
62 Lazzini G., Romoli L., Tantussi F., and Fuso F., Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization, Opt. Laser Technol. 107, 435 (2018)
https://doi.org/10.1016/j.optlastec.2018.06.023
63 Guo Y., Qiu P., and Xu S., Combined effects of polarization and secondary ablation on precision machining of microgrooves by laser-induced microjet-assisted ablation, Opt. Express 30(25), 44665 (2022)
https://doi.org/10.1364/OE.471491
64 Torres R., Kaempfe T., Delaigue M., Parriaux O., Hoenninger C., Lopez J., Kling R., and Mottay E., Influence of laser beam polarization on laser micro-machining of molybdenum, J. Laser Micro Nanoeng. 8(3), 188 (2013)
https://doi.org/10.2961/jlmn.2013.03.0001
65 N. Lednev V., M. Pershin S., A. Ionin A., I. Kudryashov S., V. Makarov S., E. Ligachev A., A. Rudenko A., A. Chmelnitsky R., and F. Bunkin A., Laser ablation of polished and nanostructured titanium surfaces by nanosecond laser pulses, Spectrochim. Acta B 88, 15 (2013)
https://doi.org/10.1016/j.sab.2013.07.010
66 Al-Khazraji H. and R. Bhardwaj V., Polarization dependent micro-structuring of silicon with a femtosecond laser, Appl. Surf. Sci. 353, 600 (2015)
https://doi.org/10.1016/j.apsusc.2015.06.081
67 Guo H., Zhu Z., Wang T., Chen N., Liu Y., Zhang J., Sun H., Liu J., and Li R., Polarization-gated filament-induced remote breakdown spectroscopy, Chin. Opt. Lett. 16(3), 033201 (2018)
https://doi.org/10.3788/COL201816.033201
68 Hou J., Zhang L., Yin W., Zhao Y., Ma W., Dong L., Yang G., Xiao L., and Ji S., Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics, J. Anal. At. Spectrom. 32(8), 1519 (2017)
https://doi.org/10.1039/C7JA00175D
69 Wang Q., Chen A., Wang Y., Sui L., Li S., and Jin M., Spectral intensity clamping in linearly and circularly polarized femtosecond filament-induced Cu plasmas, J. Anal. At. Spectrom. 33(7), 1154 (2018)
https://doi.org/10.1039/C8JA00072G
70 Wang Q., Chen A., Wang X., Li S., Jiang J., and Jin M., Signal improvement using circular polarization for focused femtosecond laser-induced breakdown spectroscopy, J. Anal. At. Spectrom. 34(6), 1242 (2019)
https://doi.org/10.1039/C9JA00033J
71 Li S., Jiang Y., Chen A., He L., Liu D., and Jin M., Revisiting the mechanism of nitrogen fluorescence emission induced by femtosecond filament in air, Phys. Plasmas 24(3), 033111 (2017)
https://doi.org/10.1063/1.4978480
72 Chen Y., Liu Y., Wang Q., Li S., Jiang Y., Chen A., and Jin M., Effect of laser polarization on molecular emission from femtosecond LIBS, J. Anal. At. Spectrom. 37(1), 82 (2022)
https://doi.org/10.1039/D1JA00308A
73 A. Wubetu G., T. Costello J., J. Kelly T., Wachulak P., Bartnik A., Skrzeczanowski W., and Fiedorowicz H., Comparison of LIBS and polarization resolved LIBS emission for aluminium alloy, J. Appl. Spectrosc. 90(1), 116 (2023)
https://doi.org/10.1007/s10812-023-01512-y
74 Shi Y., Chen A., Jiang Y., Li S., and Jin M., Influence of laser polarization on plasma fluorescence emission during the femtosecond filamentation in air, Opt. Commun. 367, 174 (2016)
https://doi.org/10.1016/j.optcom.2016.01.051
75 Zhao D., Farid N., Hai R., Wu D., and Ding H., Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy, Plasma Sci. Technol. 16(2), 149 (2014)
https://doi.org/10.1088/1009-0630/16/2/11
76 Xu J., Wang X., and Yao M., Optimization of copper detection based on polarization-resolved laser-induced breakdown spectroscopy, Appl. Opt. 60(17), 5266 (2021)
https://doi.org/10.1364/AO.424283
77 Wang X., Yao M., Zeng M., and Xu J., Detection model of copper based on polarization degree induced by low-energy density laser, Appl. Opt. 60(35), 10780 (2021)
https://doi.org/10.1364/AO.443563
78 S. Penczak J., Liu Y., and J. Gordon R., Polarization and fluence dependence of the polarized emission in nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 66(2), 186 (2011)
https://doi.org/10.1016/j.sab.2010.12.009
79 Xu J., Wang X., Yao M., and Liu M., Detection model of the plasma spectrum based on the polarization recognition rate induced by a low energy density laser, Appl. Opt. 61(16), 4768 (2022)
https://doi.org/10.1364/AO.460092
80 Eslami Majd A., S. Arabanian A., and Massudi R., Polarization resolved laser induced breakdown spectroscopy by single shot nanosecond pulsed Nd: YAG laser, Opt. Lasers Eng. 48(7-8), 750 (2010)
https://doi.org/10.1016/j.optlaseng.2010.03.010
81 Agnes N.Y. Tao H.Q. Hao Z.K. Sun C.Gao X. Q. Lin J., A comparison of single shot nanosecond and femtosecond polarization-resolved laser-induced breakdown spectroscopy of Al, Chin. Phys. B 22(1), 014209 (2013)
82 Aghababaei Nejad M., Soltanolkotabi M., Eslami Majd A., and investigation of laser-induced breakdown plasma emission from Al Polarization, Mo, W, and Pb elements using nongated detector, J. Laser Appl. 30(2), 022005 (2018)
https://doi.org/10.2351/1.5012507
83 S. Penczak J., Liu Y., and J. Gordon R., Polarization resolved laser-induced breakdown spectroscopy of Al, J. Phys. Chem. A 113(47), 13310 (2009)
https://doi.org/10.1021/jp904728n
84 E. Asgill M., Y. Moon H., Omenetto N., and W. Hahn D., Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta B 65(12), 1033 (2010)
https://doi.org/10.1016/j.sab.2010.11.010
85 Yurdanur-Tasel E.Berberoglu H.Bilikmen S., Investigation of materials of different crystal structure under various time delays using double pulse laser induced breakdown spectroscopy, Spectrochim. Acta B 74–75, 74 (2012)
86 Jr Penczak Y.D. Liu R.H. Schaller D.J. Gordon RichR., The mechanism for continuum polarization in laser induced breakdown spectroscopy of Si (111), Spectrochim. Acta B 74–75, 3 (2012)
87 Aghababaei Nejad M. and Eslami Majd A., Temporal evolution of polarization resolved laser‑induced breakdown spectroscopy of Cu, Plasma Chem. Plasma Process. 40(1), 325 (2020)
https://doi.org/10.1007/s11090-019-10042-5
88 P. Williamson A. and Kiefer J., Strategies for suppressing elastically scattered laser light in ungated laser-induced breakdown spectroscopy, Spectrochim. Acta B 149, 267 (2018)
https://doi.org/10.1016/j.sab.2018.09.005
89 Aghababaei Nejad M., Soltanolkotabi M., and Eslami Majd A., Polarization mechanism in a ns laser-induced plasma spectroscopy of Al alloy, Appl. Phys. B 124(1), 6 (2018)
https://doi.org/10.1007/s00340-017-6880-y
90 Zhao H., Cai L., and Wu G., On polarization resolved laser induced breakdown spectroscopy combined with support-vector regression to improve the accuracy of soil heavy-metal (Cd) detection, Chin. J. Anal. Chem. 51(2), 100176 (2023)
https://doi.org/10.1016/j.cjac.2022.100176
91 Xu J., Wang X., Yao M., and Liu M., Improving the stability of LIBS for chromium in soil based on the model of micro-linear spectrum, J. Anal. At. Spectrom. 38(11), 2441 (2023)
https://doi.org/10.1039/D3JA00279A
92 Teng G., Wang Q., Hao Q., Fan A., Yang H., Xu X., Chen G., Wei K., Zhao Z., N. Khan M., S. Idrees B., Bao M., Luo T., Zheng Y., and Lu B., Full-Stokes polarization laser-induced breakdown spectroscopy detection of infiltrative glioma boundary tissue, Biomed. Opt. Express 14(7), 3469 (2023)
https://doi.org/10.1364/BOE.492983
93 Li J., Tang Y., Kuang Z., Schille J., Loeschner U., Perrie W., Liu D., Dearden G., and Edwardson S., Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators, Opt. Lasers Eng. 112, 59 (2019)
https://doi.org/10.1016/j.optlaseng.2018.09.002
94 Rung S., Barth J., and Hellmann R., Characterization of laser beam shaping optics based on their ablation geometry of thin films, Micromachines (Basel) 5(4), 943 (2014)
https://doi.org/10.3390/mi5040943
95 K. Anoop K., Rubano A., Fittipaldi R., Wang X., Paparo D., Vecchione A., Marrucci L., Bruzzese R., and Amoruso S., Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate, Appl. Phys. Lett. 104(24), 241604 (2014)
https://doi.org/10.1063/1.4884116
96 Kong D., Sun X., Hu Y., and Duan J., Theoretical and experimental research on a spatially modulated femtosecond bessel-like laser for microdrilling in silica glass, Opt. Commun. 542, 129594 (2023)
https://doi.org/10.1016/j.optcom.2023.129594
97 Ackermann L., Gehring M., Roider C., Cvecek K., and Schmidt M., Spot arrays for uniform material ablation with ultrashort pulsed lasers, Opt. Laser Technol. 163, 109358 (2023)
https://doi.org/10.1016/j.optlastec.2023.109358
98 Doan D., Iida R., Kim B., Satoh I., and Fushinobu K., Bessel beam laser-scribing of thin film silicon solar cells by ns pulsed laser, J. Therm. Sci. Tech. 11(1), JTST0011 (2016)
https://doi.org/10.1299/jtst.2016jtst0011
99 Sahin R. and Kabacelik I., Nanostructuring of ITO thin films through femtosecond laser ablation, Appl. Phys. A 122(4), 314 (2016)
https://doi.org/10.1007/s00339-016-9847-7
100 Yin P., Xu B., Liu Y., Wang Y., Zhao W., and Tang J., Simulation of evaporation ablation dynamics of materials by nanosecond pulse laser of Gaussian beam and flat-top beam, Acta Phys. Sin. 73(9), 095202 (2024)
https://doi.org/10.7498/aps.73.20231625
101 Choi J., Choi W., Shin Y., Han S., Kim K., and Cho S., Enhancement periodic regularity of surface nano ripple structures on Si wafer using a square shaped flat‑top beam femtosecond NIR laser, Appl. Phys. A 128(1), 46 (2022)
https://doi.org/10.1007/s00339-021-05144-x
102 Burger M., Polynkin P., and Jovanovic I., Filament-induced breakdown spectroscopy with structured beams, Opt. Express 28(24), 36812 (2020)
https://doi.org/10.1364/OE.412480
103 Figueiras E., Olivieri D., Paredes A., and Michinel H., An open source virtual laboratory for the Schrödinger equation, Eur. J. Phys. 39(5), 055802 (2018)
https://doi.org/10.1088/1361-6404/aac999
104 Ackermann L., Roider C., Cvecek K., and Schmidt M., Methods for uniform beam shaping and their effect on material ablation, Appl. Phys. A 128(10), 877 (2022)
https://doi.org/10.1007/s00339-022-06004-y
105 Pallarés-Aldeiturriaga D., Abou Khalil A., P. Colombier J., Stoian R., and Sedao X., Ultrafast Cylindrical Vector Beams for Improved Energy Feedthrough and Low Roughness Surface Ablation of Metals, Materials (Basel) 16(1), 176 (2022)
https://doi.org/10.3390/ma16010176
106 Kim H., Yoon J., Choi W., Kim K., and Cho S., Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser, Opt. Lasers Eng. 84, 44 (2016)
https://doi.org/10.1016/j.optlaseng.2016.03.025
107 Kuang Z., Li J., Edwardson S., Perrie W., Liu D., and Dearden G., Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator, Opt. Lasers Eng. 70, 1 (2015)
https://doi.org/10.1016/j.optlaseng.2015.02.004
108 Shin Y., Choi J., and Cho S., Fine ablation with depth control of 25‑nm resolution and morphologies irradiated by femtosecond laser pulses via beam shaping, Appl. Phys. A 129(8), 534 (2023)
https://doi.org/10.1007/s00339-023-06799-4
109 Liu D., Wang Y., Zhai Z., Fang Z., Tao Q., Perrie W., P. Edwarson S., and Dearden G., Dynamic laser beam shaping for material processing using hybrid holograms, Opt. Laser Technol. 102, 68 (2018)
https://doi.org/10.1016/j.optlastec.2017.12.022
110 Sahin R., Ersoy T., and Akturk S., Ablation of metal thin films using femtosecond laser Bessel vortex beams, Appl. Phys. A 118(1), 125 (2015)
https://doi.org/10.1007/s00339-014-8808-2
111 Häfner T., Strauß J., Roider C., Heberle J., and Schmidt M., Tailored laser beam shaping for efficient and accurate microstructuring, Appl. Phys. A 124(2), 111 (2018)
https://doi.org/10.1007/s00339-017-1530-0
112 Zhang D., Li X., Fu Y., Yao Q., Li Z., and Sugioka K., Liquid vortexes and flows induced by femtosecond laser ablation in liquid governing formation of circular and crisscross LIPSS, Opto-Electron. Adv. 5(2), 210066 (2022)
https://doi.org/10.29026/oea.2021.210066
113 Yan W., Lv J., Zhu C., Li Q., Chen J., Kang L., Lu B., and Li X., Classification of uneven steel samples by laser induced breakdown spectroscopy based on a Bessel beam, J. Anal. At. Spectrom. 38(6), 1232 (2023)
https://doi.org/10.1039/D3JA00064H
114 Hou Z., S. Afgan M., Sheta S., Liu J., and Wang Z., Plasma modulation using beam shaping to improve signal quality for laser induced breakdown spectroscopy, J. Anal. At. Spectrom. 35(8), 1671 (2020)
https://doi.org/10.1039/D0JA00195C
115 Jia J., Fu H., Hou Z., Wang H., Wang Z., Dong F., Ni Z., and Zhang Z., Effect of laser beam shaping on the determination of manganese and chromium elements in steel samples using laser-induced breakdown spectroscopy, Spectrochim. Acta B 163, 105747 (2020)
https://doi.org/10.1016/j.sab.2019.105747
116 Jia J., Fu H., Hou Z., Wang H., Ni Z., Wang Z., Dong F., and Zhang Z., Analysis of element content in cement by Gaussian and flattop laser-induced breakdown spectroscopy, J. Phys. D 52(40), 405102 (2019)
https://doi.org/10.1088/1361-6463/ab3128
117 Gao J., Yang J., Wang Z., Sun S., Hu B., and Liu Z., The study of femtosecond LIBS in Vortex–Gaussian and double Gaussian configurations, Appl. Phys. B 129(8), 119 (2023)
https://doi.org/10.1007/s00340-023-08064-1
118 Ciucci A., Corsi M., Palleschi V., Rastelli S., Salvetti A., and Tognoni E., New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53(8), 960 (1999)
https://doi.org/10.1366/0003702991947612
119 Gu W., Nishi N., Hou Z., Wang Z., and Sakka T., Investigation of the signal uncertainty in laser-induced breakdown spectroscopy based on error propagation considering self-absorption, Spectrochim. Acta B 206, 106732 (2023)
https://doi.org/10.1016/j.sab.2023.106732
120 P. Joglekar A.Liu H.J. Spooner G.Meyhöfer E.Mourou G.J. Hunt A., A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining, Appl. Phys. B 77(1), 25 (2003)
121 V. Temnov V., Sokolowski-Tinten K., Zhou P., El-Khamhawy A., and von der Linde D., Multiphoton ionization in dielectrics: Comparison of circular and linear polarization, Phys. Rev. Lett. 97(23), 237403 (2006)
https://doi.org/10.1103/PhysRevLett.97.237403
122 Zhang K., Song W., Hou Z., and Wang Z., Effect of ambient pressures on laser-induced breakdown spectroscopy signals, Front. Phys. 19(4), 42203 (2024)
https://doi.org/10.1007/s11467-023-1380-5
123 Guo L., Zhang D., Sun L., Yao S., Zhang L., Wang Z., Wang Q., Ding H., Lu Y., Hou Z., and Wang Z., Development in the application of laser-induced breakdown spectroscopy in recent years: A review, Front. Phys. 16(2), 22500 (2021)
https://doi.org/10.1007/s11467-020-1007-z
124 Wang Z., Deguchi Y., Zhang Z., Wang Z., Zeng X., and Yan J., Laser-induced breakdown spectroscopy in Asia, Front. Phys. 11(6), 114213 (2016)
https://doi.org/10.1007/s11467-016-0607-0
125 Hou Z.Gu W.Li T.Wang Z.Li L. Yu X.Zhang Y. Liu Z., A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors, Front. Phys. 17(6), 62503 (2022)
[1] Zhongqi Hao, Ke Liu, Qianlin Lian, Weiran Song, Zongyu Hou, Rui Zhang, Qianqian Wang, Chen Sun, Xiangyou Li, Zhe Wang. Machine learning in laser-induced breakdown spectroscopy: A review[J]. Front. Phys. , 2024, 19(6): 62501-.
[2] Kaifan Zhang, Weiran Song, Zongyu Hou, Zhe Wang. Effect of ambient pressures on laser-induced breakdown spectroscopy signals[J]. Front. Phys. , 2024, 19(4): 42203-.
[3] Jinyu Wan, Yi Jiao. Machine learning-based direct solver for one-to-many problems on temporal shaping of relativistic electron beams[J]. Front. Phys. , 2022, 17(6): 64601-.
[4] Zongyu Hou, Weilun Gu, Tianqi Li, Zhe Wang, Liang Li, Xiang Yu, Yecai Zhang, Zijun Liu. A calibration-free model for laser-induced breakdown spectroscopy using non-gated detectors[J]. Front. Phys. , 2022, 17(6): 62503-.
[5] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[6] Lian-Bo Guo (郭连波), Deng Zhang (张登), Lan-Xiang Sun (孙兰香), Shun-Chun Yao (姚顺春), Lei Zhang (张雷), Zhen-Zhen Wang (王珍珍), Qian-Qian Wang (王茜蒨), Hong-Bin Ding (丁洪斌), Yuan Lu (卢渊), Zong-Yu Hou (侯宗余), Zhe Wang (王哲). Development in the application of laser-induced breakdown spectroscopy in recent years: A review[J]. Front. Phys. , 2021, 16(2): 22500-.
[7] Shuai Zhang, Sahar Sheta, Zong-Yu Hou, Zhe Wang. On the improvement of signal repeatability in laser-induced air plasmas[J]. Front. Phys. , 2018, 13(2): 135201-.
[8] Yang Zhao (赵洋),Lei Zhang (张雷),Shu-Xia Zhao (赵书霞),Yu-Fang Li (李郁芳),Yao Gong (弓瑶),Lei Dong (董磊),Wei-Guang Ma (马维光),Wang-Bao Yin (尹王保),Shun-Chun Yao (姚顺春),Ji-Dong Lu (陆继东),Lian-Tuan Xiao (肖连团),Suo-Tang Jia (贾锁堂). Review of methodological and experimental LIBS techniques for coal analysis and their application in power plants in China[J]. Front. Phys. , 2016, 11(6): 114211-.
[9] Yong Zhang,Yun-Hai Jia,Chun Yang,Dong-Ling Li,Jia Liu,Yong-Yan Chen,Ying Liu,Yi-Xiang Duan. Characterization of the globular oxide inclusion ratings in steel using laser-induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(6): 115205-.
[10] Zhen-Zhen Wang (王珍珍),Yoshihiro Deguchi (出口祥啓),Zhen-Zhen Zhang (张臻臻),Zhe Wang (王哲),Xiao-Yan Zeng (曾晓雁),Jun-Jie Yan (严俊杰). Laser-induced breakdown spectroscopy in Asia[J]. Front. Phys. , 2016, 11(6): 114213-.
[11] Yong Xin (辛勇),Lan-Xiang Sun (孙兰香),Zhi-Jia Yang (杨志家),Peng Zeng (曾鹏),Zhi-Bo Cong (丛智博),Li-Feng Qi (齐立峰). In situ analysis of magnesium alloy using a standoff and double-pulse laser-induced breakdown spectroscopy system[J]. Front. Phys. , 2016, 11(5): 115207-.
[12] Yang-Min Guo,Lian-Bo Guo,Jia-Ming Li,Hong-Di Liu,Zhi-Hao Zhu,Xiang-You Li,Yong-Feng Lu,Xiao-Yan Zeng. Research progress in Asia on methods of processing laser-induced breakdown spectroscopy data[J]. Front. Phys. , 2016, 11(5): 114212-.
[13] Shi-Lei Zhong (钟石磊),Yuan Lu (卢渊),Wei-Jin Kong (孔伟金),Kai Cheng (程凯),Ronger Zheng (郑荣儿). Quantitative analysis of lead in aqueous solutions by ultrasonic nebulizer assisted laser induced breakdown spectroscopy[J]. Front. Phys. , 2016, 11(4): 114202-.
[14] Ali Khumaeni,Katsuaki Akaoka,Masabumi Miyabe,Ikuo Wakaida. The role of microwaves in the enhancement of laser-induced plasma emission[J]. Front. Phys. , 2016, 11(4): 114209-.
[15] Fang-Fang Chen,Xue-Jiao Su,Wei-Dong Zhou. Effect of parameters on Si plasma emission in collinear double-pulse laser-induced breakdown spectroscopy[J]. Front. Phys. , 2015, 10(5): 104207-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed