Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (4) : 418-423    https://doi.org/10.1107/s11467-011-0230-z
RESEARCH ARTICLE
Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites
D. V. B. Murthy(), Gopalan Srinivasan()
Physics Department, Oakland University, Rochester, MI 48309, USA
 Download: PDF(353 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A systematic study has been carried out on the effects of interface bonding on the strain mediated magnetoelectric (ME) coupling in ferromagnetic–ferroelectric bilayers. The technique used involves the static electric field E tuning of the ferromagnetic resonance (FMR) in yttrium iron garnet (YIG) and lead zirconate titanate (PZT) or lead magnesium niobate-lead titanate (PMN-PT). A broad band detection technique has been developed for studies over 1-40 GHz in three types of bilayers: epoxy bonded, eutectic bonded and YIG films directly grown onto piezoelectric substrate by electrophoretic deposition. The strength A of the converse ME effect (CME) defined as the ratio of the frequency shift δf in FMR in E, A = δf/E, varies over the range 0.8 to 4.3 MHz·cm/kV, and is the highest for eutectic bonded samples and is the weakest for epoxy bonded bilayers. The results presented here as of importance for dual electric and magnetic field tunable ferrite–ferroelectric microwave resonators and filters.

Keywords ferrite      ferroelectric      magnetoelectric      ferromagnetic resonance     
Corresponding Author(s): Murthy D. V. B.,Email:murthydvb@ieee.org; Srinivasan Gopalan,Email:srinivas@oakland.edu   
Issue Date: 01 August 2012
 Cite this article:   
D. V. B. Murthy,Gopalan Srinivasan. Broadband ferromagnetic resonance studies on influence of interface bonding on magnetoeletric effects in ferrite–ferroelectric composites[J]. Front. Phys. , 2012, 7(4): 418-423.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1107/s11467-011-0230-z
https://academic.hep.com.cn/fop/EN/Y2012/V7/I4/418
1 M. Fiebig and N. A. Spaldin, Eur. Phys. J. B , 2009, 71: 293
doi: 10.1140/epjb/e2009-00266-4
2 K. F. Wang, J. M. Liu, and Z. F. Ren, Adv. Phys. , 2009, 58: 321
doi: 10.1080/00018730902920554
3 C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. , 2008, 103: 031101
doi: 10.1063/1.2836410
4 R. Ramesh and N. A. Spaldin, Nat. Mater. , 2007, 6: 21
doi: 10.1038/nmat1805
5 M. Vopsaroiu, J. Blackburn, and M. G. Cain, J. Phys. D , 2007, 40: 5027
doi: 10.1088/0022-3727/40/17/003
6 G. Srinivasan, Ann. Rev. Mater. Res. , 2010, 40: 153
doi: 10.1146/annurev-matsci-070909-104459
7 G. Lawes and G. Srinivasan, J. Phys. D , 2011, 44: 243001
doi: 10.1088/0022-3727/44/24/243001
8 M. I. Bichurin, R. V. Petrov, and Yu. V. Kiliba, Ferroelectrics , 1997, 204: 311
doi: 10.1080/00150199708222211
9 W. J. Kim, W. Chang, S. B. Qadri, H. D. Wu, J. M. Pond, S. W. Kirchoefer, H. S. Newman, D. B. Chrisey, and J. S. Horwitz, Appl. Phys. A , 2000, 71: 7
10 A. A. Semenov, S. F. Karmanenko, B. A. Kalinikos, G. Srinivasan, A. N. Slavin, and J. V. Mantese, Elec. Lett. , 2006, 42: 641
doi: 10.1049/el:20060164
11 G. Srinivasan and K.Y. Fetisov, Ferroelectrics , 2006, 342: 65
doi: 10.1080/00150190600946195
12 K. R. Smith, M. J. Kabatek, P. Krivosik, and M. Wu, J. Appl. Phys. , 2008, 104: 043911
doi: 10.1063/1.2963688
13 D. Rugar, R. Budakian, H. J. Mamin, and B. W Chui, Nature , 2004, 430: 329
doi: 10.1038/nature02658
14 R. Meckenstock, Rev. Sci. Instrum. , 2008, 79: 041101
doi: 10.1063/1.2908445
15 Y. Obukhov, D. V. Pelekhov, J. Kim, P. Banerjee, I. Martin, E.Nazaretski, R. Movshovich, S.An, T. J. Gramila, S. Batra, and P. C. Hammel, Phys. Rev. Lett. , 2008, 100: 197601
doi: 10.1103/PhysRevLett.100.197601
16 T. An, N. Ohnishi, T. Eguchi, Y. Hasegawa, and P. Kabos, IEEE Magn. Lett. , 2010, 1: 3500104
doi: 10.1109/LMAG.2010.2040247
17 S. C. Lee, C. P. Vlahacos, B. J. Feenstra, A. S. Schwartz, D. E. Steinhauer, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett. , 2000, 77: 4404
doi: 10.1063/1.1332978
18 D. I. Mircea and T. W. Clinton, Appl. Phys. Lett. , 2007, 90: 142504
doi: 10.1063/1.2719241
19 Y. K. Fetisov and G. Srinivasan, Appl. Phys. Lett. , 2006, 88, 143: 503
20 A. B. Ustinov, Yu. K. Fetisov, and G. Srinivasan, Tech. Phys. Lett. , 2008, 34: 593
doi: 10.1134/S1063785008070183
21 N. Benatmane, S. P. Crane, F. Zavaliche, R. Ramesh, and T. W. Clinton, Appl. Phys. Lett. , 2010, 96: 082503
doi: 10.1063/1.3319507
22 L. E. Cross, in: Ferroelectric Ceramics: Tailoring Properties for Specific Applications, Ferroelectric Ceramics, edited by N. Setter, Basel: Birkh?user, 1993
23 Y. G. Li, J. Sun, C. S. Yang, J. Q. Liu, S. Susumu, and T. Katsuhiko, Chin. Phys. Lett. , 2011, 28(6): 068103
doi: 10.1088/0256-307X/28/6/068103
24 O.O. Van der Biest, L. J. Vandeperre, Annu. Rev. Mater. Sci. , 1999, 29: 327
doi: 10.1146/annurev.matsci.29.1.327
25 I. Zhitomirsky, Advances in Colloid and Interface Science, 2002, 97: 279
doi: 10.1016/S0001-8686(01)00068-9
26 S. K. Kurinec, N. Okeke, S. K. Gupta, H. Zhang, and T. D. Xiao, J. Mater. Sci. , 2006, 41: 8181
doi: 10.1007/s10853-006-0393-0
27 S. Hashi, S. Yabukami, A. Maeda, N. Takada, S. Yanase, and Y. Okazaki, J. Mag. Magn. Mater. , 2007, 316: 465
doi: 10.1016/j.jmmm.2007.03.172
28 K. Takenaka, H. Nakayama, Y. Setsuhara, H. Abe, and K. Nogi, Surface and Coatings Tech. , 2008, 202: 5336
doi: 10.1016/j.surfcoat.2008.06.010
29 C. Washburn, D. Brown, J. Cabacungan, J. Venkataraman, and S. K. Kurinec, Materials Research Society Symposium Proceedings: Materials, Integration and Technology for Monolithic Instruments , 2005, 869: 157
30 S. Shastry, G. Srinivasan, M. I. Bichurin, V. M. Petrov, and A. S. Tatarenko, Phys. Rev. B , 2004, 70: 064416
doi: 10.1103/PhysRevB.70.064416
[1] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[2] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[3] Zbigniew Tylczyński. A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers[J]. Front. Phys. , 2019, 14(6): 63301-.
[4] Zhen Li, Yi-Ming Cao, Yin Wang, Ya Yang, Mao-Lin Xiang, You-Shuang Yu, Bao-Juan Kang, Jin-Cang Zhang, Shi-Xun Cao. Enhancing the magnetoelectric coupling of Co4Nb2O9[100] by substituting Mg for Co[J]. Front. Phys. , 2018, 13(5): 137503-.
[5] Pei Li, Zhao-Meng Gao, Xiu-Shi Huang, Long-Fei Wang, Wei-Feng Zhang, Hai-Zhong Guo. Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction[J]. Front. Phys. , 2018, 13(5): 136803-.
[6] Xiang Liu, Wen-Bo Mi. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study[J]. Front. Phys. , 2018, 13(2): 134204-.
[7] Ming An,Hui-Min Zhang,Ya-Kui Weng,Yang Zhang,Shuai Dong. Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3[J]. Front. Phys. , 2016, 11(2): 117501-.
[8] Zai-Chun Xu, Mei-Feng Liu, Lin Lin, Huimei Liu, Zhi-Bo Yan, Jun-Ming Liu. Experimental observations of ferroelectricity in double pyrochlore Dy2Ru2O7[J]. Front. Phys. , 2014, 9(1): 82-89.
[9] Qiang Wu, Qing-Quan Chen, Bin Zhang, Jing-Jun Xu. Terahertz phonon polariton imaging[J]. Front. Phys. , 2013, 8(2): 217-227.
[10] Masashi Tokunaga. Studies on multiferroic materials in high magnetic fields[J]. Front. Phys. , 2012, 7(4): 386-398.
[11] Cheng-Liang Lu(陆成亮), Jun-Ming Liu(刘俊明), Tao Wu(吴韬). Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films[J]. Front. Phys. , 2012, 7(4): 424-428.
[12] Shu-Hong Xie (谢淑红), Yun-Ya Liu(刘运牙), Jiang-Yu Li(李江宇). Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers[J]. Front. Phys. , 2012, 7(4): 399-407.
[13] Yue-Wei Yin, Muralikrishna Raju, Wei-Jin Hu, Xiao-Jun Weng, Ke Zou, Jun Zhu, Xiao-Guang Li, Zhi-Dong Zhang, Qi Li. Multiferroic tunnel junctions[J]. Front. Phys. , 2012, 7(4): 380-385.
[14] Chun-Gang Duan (段纯刚). Interface/surface magnetoelectric effects: New routes to the electric field control of magnetism[J]. Front. Phys. , 2012, 7(4): 375-379.
[15] LANG Xing-you, JIANG Qing. Size dependence of phase transition temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals[J]. Front. Phys. , 2007, 2(3): 289-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed