|
|
|
Technique for studying the coalescence of eigenstates and eigenvalues in non-Hermitian systems |
Seyed Mohammad Hosseiny1, Hossein Rangani Jahromi2( ), Babak Farajollahi1, Mahdi Amniat-Talab1 |
1. Physics Department, Faculty of Sciences, Urmia University, P.B. 165, Urmia, Iran 2. Physics Department, Faculty of Sciences, Jahrom University, P.B. 74135111, Jahrom, Iran |
|
|
|
|
Abstract In our study, we explore high-order exceptional points (EPs), which are crucial for enhancing the sensitivity of open physical systems to external changes. We utilize the Hilbert−Schmidt speed (HSS), a measure of quantum statistical speed, to accurately identify EPs in non-Hermitian systems. These points are characterized by the simultaneous coalescence of eigenvalues and their associated eigenstates. One of the main benefits of using HSS is that it eliminates the need to diagonalize the evolved density matrix, simplifying the identification process. Our method is shown to be effective even in complex, multi-dimensional and interacting Hamiltonian systems. In certain cases, a generalized evolved state may be employed over the conventional normalized state. This necessitates the use of a metric operator to define the inner product between states, thereby introducing additional complexity. Our research confirms that HSS is a reliable and practical tool for detecting EPs, even in these demanding situations.
|
| Keywords
non-Hermitian physics
exceptional points
Hilbert−Schmidt speed
quantum statistical speed
|
|
Corresponding Author(s):
Hossein Rangani Jahromi
|
|
Just Accepted Date: 02 August 2024
Issue Date: 10 September 2024
|
|
| 1 |
Y. Ju C., Miranowicz A., Y. Chen G., and Nori F., Non−Hermitian Hamiltonians and no−go theorems in quantum information, Phys. Rev. A 100, 062118 (2019)
https://doi.org/10.1103/PhysRevA.100.062118
|
| 2 |
A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge University Press, 2010
|
| 3 |
M. Bender C., Boettcher S., and N. Meisinger P., PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
https://doi.org/10.1063/1.532860
|
| 4 |
M. Bender C. and V. Dunne G., Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian, J. Math. Phys. 40(10), 4616 (1999)
https://doi.org/10.1063/1.532991
|
| 5 |
M. Bender C., Berry M., and Mandilara A., Generalized PT-symmetry and real spectra, J. Phys. Math. Gen. 35(31), L467 (2002)
https://doi.org/10.1088/0305-4470/35/31/101
|
| 6 |
M. Bender C., C. Brody D., and F. Jones H., Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction, Phys. Rev. D 70(2), 025001 (2004)
https://doi.org/10.1103/PhysRevD.70.025001
|
| 7 |
M. Bender C., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)
https://doi.org/10.1088/0034-4885/70/6/R03
|
| 8 |
M. Bender C.symmetry PT, in: Time and Science, Vol. 3, Physical Sciences and Cosmology, World Scientific, 2023, pp 285
|
| 9 |
Peng B., K. Özdemir Ş., Lei F., Monifi F., Gianfreda M., L. Long G., Fan S., Nori F., M. Bender C., and Yang L., Parity‒time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
https://doi.org/10.1038/nphys2927
|
| 10 |
Peng B., K. Özdemir Ş., Chen W., Nori F., and Yang L., What is and what is not electromagnetically induced transparency in whispering-gallery microcavities, Nat. Commun. 5(1), 5082 (2014)
https://doi.org/10.1038/ncomms6082
|
| 11 |
Jing H., Özdemir S., Y. Lü X., Zhang J., Yang L., and Nori F., PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)
https://doi.org/10.1103/PhysRevLett.113.053604
|
| 12 |
Jing H., K. Özdemir Ş., Geng Z., Zhang J., Y. Lü X., Peng B., Yang L., and Nori F., Optomechanically-induced transparency in parity‒time-symmetric microresonators, Sci. Rep. 5(1), 9663 (2015)
https://doi.org/10.1038/srep09663
|
| 13 |
Zhang J., Peng B., K. Özdemir Ş., Liu Y., Jing H., Lü X., Liu Y., Yang L., and Nori F., Giant nonlinearity via breaking parity‒time symmetry: A route to low-threshold phonon diodes, Phys. Rev. B 92(11), 115407 (2015)
https://doi.org/10.1103/PhysRevB.92.115407
|
| 14 |
Gao T., Estrecho E., Bliokh K., Liew T., Fraser M., Brodbeck S., Kamp M., Schneider C., Höfling S., Yamamoto Y., Nori F., S. Kivshar Y., G. Truscott A., G. Dall R., and A. Ostrovskaya E., Observation of non-Hermitian degeneracies in a chaotic exciton−polariton billiard, Nature 526(7574), 554 (2015)
https://doi.org/10.1038/nature15522
|
| 15 |
P. Liu Z., Zhang J., K. Özdemir Ş., Peng B., Jing H., Y. Lü X., W. Li C., Yang L., Nori F., and Liu Y., Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)
https://doi.org/10.1103/PhysRevLett.117.110802
|
| 16 |
Leykam D., Y. Bliokh K., Huang C., D. Chong Y., Nori F., and modes Edge, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)
https://doi.org/10.1103/PhysRevLett.118.040401
|
| 17 |
Jing H., K. Özdemir Ş., Lü H., and Nori F., High-order exceptional points in optomechanics, Sci. Rep. 7(1), 1 (2017)
https://doi.org/10.1038/s41598-017-03546-7
|
| 18 |
Lü H., Özdemir S., M. Kuang L., Nori F., and Jing H., Exceptional points in random-defect phonon lasers, Phys. Rev. Appl. 8(4), 044020 (2017)
https://doi.org/10.1103/PhysRevApplied.8.044020
|
| 19 |
Quijandría F., Naether U., K. Özdemir S., Nori F., and Zueco D., PT-symmetric circuit QED, Phys. Rev. A 97(5), 053846 (2018)
https://doi.org/10.1103/PhysRevA.97.053846
|
| 20 |
Zhang J., Peng B., K. Özdemir Ş., Pichler K., O. Krimer D., Zhao G., Nori F., Liu Y., Rotter S., and Yang L., A phonon laser operating at an exceptional point, Nat. Photonics 12(8), 479 (2018)
https://doi.org/10.1038/s41566-018-0213-5
|
| 21 |
Y. Bliokh K., Leykam D., Lein M., and Nori F., Topological non-Hermitian origin of surface Maxwell waves, Nat. Commun. 10(1), 580 (2019)
https://doi.org/10.1038/s41467-019-08397-6
|
| 22 |
Liu T., R. Zhang Y., Ai Q., Gong Z., Kawabata K., Ueda M., and Nori F., Second-order topological phases in non-Hermitian systems, Phys. Rev. Lett. 122(7), 076801 (2019)
https://doi.org/10.1103/PhysRevLett.122.076801
|
| 23 |
K. Özdemir Ş., Rotter S., Nori F., and Yang L., Parity‒time symmetry and exceptional points in photonics, Nat. Mater. 18(8), 783 (2019)
https://doi.org/10.1038/s41563-019-0304-9
|
| 24 |
Y. Ge Z., R. Zhang Y., Liu T., W. Li S., Fan H., and Nori F., Topological band theory for non-Hermitian systems from the Dirac equation, Phys. Rev. B 100(5), 054105 (2019)
https://doi.org/10.1103/PhysRevB.100.054105
|
| 25 |
Minganti F., Miranowicz A., W. Chhajlany R., and Nori F., Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps, Phys. Rev. A 100(6), 062131 (2019)
https://doi.org/10.1103/PhysRevA.100.062131
|
| 26 |
Minganti F., Miranowicz A., W. Chhajlany R., I. Arkhipov I., and Nori F., Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories, Phys. Rev. A 101(6), 062112 (2020)
https://doi.org/10.1103/PhysRevA.101.062112
|
| 27 |
Liu T., J. He J., Yoshida T., L. Xiang Z., and Nori F., Non-Hermitian topological Mott insulators in one-dimensional fermionic super-lattices, Phys. Rev. B 102(23), 235151 (2020)
https://doi.org/10.1103/PhysRevB.102.235151
|
| 28 |
Bao L., Qi B., Dong D., and Nori F., Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing, Phys. Rev. A 103(4), 042418 (2021)
https://doi.org/10.1103/PhysRevA.103.042418
|
| 29 |
Y. Zhou Z., L. Xiang Z., You J., and Nori F., Work statistics in non-Hermitian evolutions with Hermitian endpoints, Phys. Rev. E 104(3), 034107 (2021)
https://doi.org/10.1103/PhysRevE.104.034107
|
| 30 |
L. Fang Y., L. Zhao J., Zhang Y., X. Chen D., C. Wu Q., H. Zhou Y., P. Yang C., and Nori F., Experimental demonstration of coherence flow in PT- and anti-PT-symmetric systems, Commun. Phys. 4(1), 223 (2021)
https://doi.org/10.1038/s42005-021-00728-8
|
| 31 |
Liu T., J. He J., Yang Z., and Nori F., Higher-order Weyl-exceptional-ring semimetals, Phys. Rev. Lett. 127(19), 196801 (2021)
https://doi.org/10.1103/PhysRevLett.127.196801
|
| 32 |
Xu H., G. Lai D., B. Qian Y., P. Hou B., Miranowicz A., and Nori F., Optomechanical dynamics in the PT- and broken-PT-symmetric regimes, Phys. Rev. A 104(5), 053518 (2021)
https://doi.org/10.1103/PhysRevA.104.053518
|
| 33 |
Y. Ju C., Miranowicz A., Minganti F., T. Chan C., Y. Chen G., and Nori F., Einstein’s quantum elevator: Hermitization of non-Hermitian Hamiltonians via a generalized Vielbein formalism, Phys. Rev. Res. 4(2), 023070 (2022)
https://doi.org/10.1103/PhysRevResearch.4.023070
|
| 34 |
Minganti F., Huybrechts D., Elouard C., Nori F., and I. Arkhipov I., Creating and controlling exceptional points of non-Hermitian Hamiltonians via homodyne Lindbladian invariance, Phys. Rev. A 106(4), 042210 (2022)
https://doi.org/10.1103/PhysRevA.106.042210
|
| 35 |
Nie W., Shi T., Liu Y., and Nori F., Non-Hermitian waveguide cavity QED with tunable atomic mirrors, Phys. Rev. Lett. 131(10), 103602 (2023)
https://doi.org/10.1103/PhysRevLett.131.103602
|
| 36 |
Y. Ju C., Miranowicz A., N. Chen Y., Y. Chen G., and Nori F., Emergent parallel transport and curvature in Hermitian and non-Hermitian quantum mechanics, Quantum 8, 1277 (2024)
https://doi.org/10.22331/q-2024-03-13-1277
|
| 37 |
Eleuch H. and Rotter I., Open quantum systems and Dicke superradiance, Eur. Phys. J. D 68(3), 74 (2014)
https://doi.org/10.1140/epjd/e2014-40780-8
|
| 38 |
Rangani Jahromi H. and Lo Franco R., Searching for exceptional points and inspecting non-contractivity of trace distance in (anti-)PT-symmetric systems, Quantum Inform. Process. 21(4), 155 (2022)
https://doi.org/10.1007/s11128-022-03475-z
|
| 39 |
P. Breuer H.Petruccione F., The Theory of Open Quantum Systems, Oxford University Press, USA, 2002
|
| 40 |
T. Barreiro J., Müller M., Schindler P., Nigg D., Monz T., Chwalla M., Hennrich M., F. Roos C., Zoller P., and Blatt R., An open-system quantum simulator with trapped ions, Nature 470(7335), 486 (2011)
https://doi.org/10.1038/nature09801
|
| 41 |
Hu Z., Xia R., and Kais S., A quantum algorithm for evolving open quantum dynamics on quantum computing devices, Sci. Rep. 10(1), 3301 (2020)
https://doi.org/10.1038/s41598-020-60321-x
|
| 42 |
Del Re L., Rost B., Kemper A., and Freericks J., Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer, Phys. Rev. B 102(12), 125112 (2020)
https://doi.org/10.1103/PhysRevB.102.125112
|
| 43 |
Viyuela O., Rivas A., Gasparinetti S., Wallraff A., Filipp S., and A. Martín-Delgado M., Observation of topological Uhlmann phases with superconducting qubits, npj Quantum Inf. 4, 10 (2018)
https://doi.org/10.1038/s41534-017-0056-9
|
| 44 |
Mostafazadeh A., Pseudo-Hermiticity versus PT-symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43(1), 205 (2002)
https://doi.org/10.1063/1.1418246
|
| 45 |
Solombrino L., Weak pseudo-Hermiticity and antilinear commutant, J. Math. Phys. 43(11), 5439 (2002)
https://doi.org/10.1063/1.1504485
|
| 46 |
Nixon S. and Yang J., All-real spectra in optical systems with arbitrary gain-and-loss distributions, Phys. Rev. A 93(3), 031802 (2016)
https://doi.org/10.1103/PhysRevA.93.031802
|
| 47 |
Mostafazadeh A., Time-dependent pseudo-Hermitian Hamiltonians and a hidden geometric aspect of quantum mechanics, Entropy (Basel) 22(4), 471 (2020)
https://doi.org/10.3390/e22040471
|
| 48 |
Chu Y., Liu Y., Liu H., and Cai J., Quantum sensing with a single-qubit pseudo-Hermitian system, Phys. Rev. Lett. 124(2), 020501 (2020)
https://doi.org/10.1103/PhysRevLett.124.020501
|
| 49 |
Jin L., Unitary scattering protected by pseudo-Hermiticity, Chin. Phys. Lett. 39(3), 037302 (2022)
https://doi.org/10.1088/0256-307X/39/3/037302
|
| 50 |
M. Bender C. and D. Mannheim P., No-ghost theorem for the fourth-order derivative Pais‒Uhlenbeck oscillator model, Phys. Rev. Lett. 100(11), 110402 (2008)
https://doi.org/10.1103/PhysRevLett.100.110402
|
| 51 |
M. Bender C., W. Hook D., N. Meisinger P., and Wang Q., Complex correspondence principle, Phys. Rev. Lett. 104(6), 061601 (2010)
https://doi.org/10.1103/PhysRevLett.104.061601
|
| 52 |
Bittner S., Dietz B., Günther U., Harney H., Miski-Oglu M., Richter A., and Schäfer F., PT-symmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett. 108(2), 024101 (2012)
https://doi.org/10.1103/PhysRevLett.108.024101
|
| 53 |
X. Cao H., H. Guo Z., and L. Chen Z., CPT-frames for non-Hermitian Hamiltonians, Commum. Theor. Phys. 60(3), 328 (2013)
https://doi.org/10.1088/0253-6102/60/3/12
|
| 54 |
M. Bender C., Nonlinear eigenvalue problems and PT-symmetric quantum mechanics, J. Phys.: Conf. Ser. 873, 012002 (2017)
https://doi.org/10.1088/1742-6596/873/1/012002
|
| 55 |
Feng L., El-Ganainy R., and Ge L., Non-Hermitian photonics based on parity‒time symmetry, Nat. Photonics 11(12), 752 (2017)
https://doi.org/10.1038/s41566-017-0031-1
|
| 56 |
Silva E., Barbosa A., and Ramos J., Parity and time-reversal symmetry in the Hanbury Brown‒Twiss effect, Europhys. Lett. 117(1), 14001 (2017)
https://doi.org/10.1209/0295-5075/117/14001
|
| 57 |
Longhi S., Parity‒time symmetry meets photonics: A new twist in non-Hermitian optics, Europhys. Lett. 120(6), 64001 (2017)
https://doi.org/10.1209/0295-5075/120/64001
|
| 58 |
El-Ganainy R., G. Makris K., Khajavikhan M., H. Musslimani Z., Rotter S., and N. Christodoulides D., Non-Hermitian physics and PT-symmetry, Nat. Phys. 14(1), 11 (2018)
https://doi.org/10.1038/nphys4323
|
| 59 |
Jin L. and Song Z., Incident direction independent wave propagation and unidirectional lasing, Phys. Rev. Lett. 121(7), 073901 (2018)
https://doi.org/10.1103/PhysRevLett.121.073901
|
| 60 |
Klauck F., Teuber L., Ornigotti M., Heinrich M., Scheel S., and Szameit A., Observation of PT-symmetric quantum interference, Nat. Photonics 13(12), 883 (2019)
https://doi.org/10.1038/s41566-019-0517-0
|
| 61 |
Li J., K. Harter A., Liu J., de Melo L., N. Joglekar Y., and Luo L., Observation of parity‒time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms, Nat. Commun. 10(1), 855 (2019)
https://doi.org/10.1038/s41467-019-08596-1
|
| 62 |
Jin L., Wu H., B. Wei B., and Song Z., Hybrid exceptional point created from type-III Dirac point, Phys. Rev. B 101(4), 045130 (2020)
https://doi.org/10.1103/PhysRevB.101.045130
|
| 63 |
Bian Z., Xiao L., Wang K., Zhan X., A. Onanga F., Ruzicka F., Yi W., N. Joglekar Y., and Xue P., Conserved quantities in parity−time symmetric systems, Phys. Rev. Res. 2(2), 022039 (2020)
https://doi.org/10.1103/PhysRevResearch.2.022039
|
| 64 |
I. Arkhipov I., Miranowicz A., Di Stefano O., Stassi R., Savasta S., Nori F., and K. Özdemir Ş., Scully‒Lamb quantum laser model for parity‒time-symmetric whispering-gallery microcavities: Gain saturation effects and nonreciprocity, Phys. Rev. A 99(5), 053806 (2019)
https://doi.org/10.1103/PhysRevA.99.053806
|
| 65 |
Huybrechts D., Minganti F., Nori F., Wouters M., and Shammah N., Validity of mean-field theory in a dissipative critical system: Liouvillian gap, PT-symmetric antigap, and permutational symmetry in the XYZ model, Phys. Rev. B 101(21), 214302 (2020)
https://doi.org/10.1103/PhysRevB.101.214302
|
| 66 |
I. Arkhipov I., Miranowicz A., Minganti F., and Nori F., Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between PT- and anti-PT symmetries, Phys. Rev. A 102(3), 033715 (2020)
https://doi.org/10.1103/PhysRevA.102.033715
|
| 67 |
Zhang H., Huang R., D. Zhang S., Li Y., W. Qiu C., Nori F., and Jing H., Breaking anti-PT symmetry by spinning a resonator, Nano Lett. 20(10), 7594 (2020)
https://doi.org/10.1021/acs.nanolett.0c03119
|
| 68 |
Q. Zhang G., Chen Z., Xu D., Shammah N., Liao M., F. Li T., Tong L., Y. Zhu S., Nori F., and You J., Exceptional point and cross-relaxation effect in a hybrid quantum system, PRX Quantum 2(2), 020307 (2021)
https://doi.org/10.1103/PRXQuantum.2.020307
|
| 69 |
I. Arkhipov I., Minganti F., Miranowicz A., and Nori F., Generating high-order quantum exceptional points in synthetic dimensions, Phys. Rev. A 104(1), 012205 (2021)
https://doi.org/10.1103/PhysRevA.104.012205
|
| 70 |
Huang R., K. Özdemir Ş., Q. Liao J., Minganti F., M. Kuang L., Nori F., and Jing H., Exceptional photon blockade: Engineering photon blockade with chiral exceptional points, Laser Photonics Rev. 16(7), 2100430 (2022)
https://doi.org/10.1002/lpor.202100430
|
| 71 |
X. Chen D., Zhang Y., L. Zhao J., C. Wu Q., L. Fang Y., P. Yang C., and Nori F., Quantum state discrimination in a PT-symmetric system, Phys. Rev. A 106(2), 022438 (2022)
https://doi.org/10.1103/PhysRevA.106.022438
|
| 72 |
C. Wu Q., L. Zhao J., L. Fang Y., Zhang Y., X. Chen D., P. Yang C., and Nori F., Extension of Noether’s theorem in PT-symmetry systems and its experimental demonstration in an optical setup, Sci. China Phys. Mech. Astron. 66(4), 240312 (2023)
https://doi.org/10.1007/s11433-022-2067-x
|
| 73 |
Ge L. and E. Türeci H., Antisymmetric PT-photonic structures with balanced positive- and negative-index materials, Phys. Rev. A 88(5), 053810 (2013)
https://doi.org/10.1103/PhysRevA.88.053810
|
| 74 |
Wen J., Qin G., Zheng C., Wei S., Kong X., Xin T., and Long G., Observation of information flow in the anti-PT-symmetric system with nuclear spins, npj Quantum Inf. 6, 28 (2020)
https://doi.org/10.1038/s41534-020-0258-4
|
| 75 |
Zheng C., Tian J., Li D., Wen J., Wei S., and Li Y., Efficient quantum simulation of an anti-P-pseudo-Hermitian two-level system, Entropy (Basel) 22(8), 812 (2020)
https://doi.org/10.3390/e22080812
|
| 76 |
Hang C., Huang G., and V. Konotop V., PT-symmetry with a system of three-level atoms, Phys. Rev. Lett. 110, 083604 (2013)
https://doi.org/10.1103/PhysRevLett.110.083604
|
| 77 |
A. Antonosyan D., S. Solntsev A., and A. Sukhorukov A., Parity‒time anti-symmetric parametric amplifier, Opt. Lett. 40, 4575 (2015)
https://doi.org/10.1364/OL.40.004575
|
| 78 |
H. Wu J., Artoni M., and C. La Rocca G., Parity‒time-antisymmetric atomic lattices without gain, Phys. Rev. A 91(3), 033811 (2015)
https://doi.org/10.1103/PhysRevA.91.033811
|
| 79 |
Peng P., Cao W., Shen C., Qu W., Wen J., Jiang L., and Xiao Y., Anti-parity‒time symmetry with flying atoms, Nat. Phys. 12(12), 1139 (2016)
https://doi.org/10.1038/nphys3842
|
| 80 |
Yang F., C. Liu Y., and You L., Anti-PT-symmetry in dissipatively coupled optical systems, Phys. Rev. A 96(5), 053845 (2017)
https://doi.org/10.1103/PhysRevA.96.053845
|
| 81 |
Choi Y., Hahn C., W. Yoon J., and H. Song S., Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun. 9(1), 2182 (2018)
https://doi.org/10.1038/s41467-018-04690-y
|
| 82 |
V. Konotop V. and A. Zezyulin D., Odd-time reversal PT-symmetry induced by an anti-PT-symmetric medium, Phys. Rev. Lett. 120(12), 123902 (2018)
https://doi.org/10.1103/PhysRevLett.120.123902
|
| 83 |
L. Chuang Y. and K. Lee Ziauddin, Realization of simultaneously parity‒time-symmetric and parity‒time-antisymmetric susceptibilities along the longitudinal direction in atomic systems with all optical controls, Opt. Express 26(17), 21969 (2018)
https://doi.org/10.1364/OE.26.021969
|
| 84 |
Li Y., G. Peng Y., Han L., A. Miri M., Li W., Xiao M., F. Zhu X., Zhao J., Alù A., Fan S., and W. Qiu C., Anti-parity‒time symmetry in diffusive systems, Science 364(6436), 170 (2019)
https://doi.org/10.1126/science.aaw6259
|
| 85 |
L. Fang Y., L. Zhao J., X. Chen D., H. Zhou Y., Zhang Y., C. Wu Q., P. Yang C., and Nori F., Entanglement dynamics in anti-PT-symmetric systems, Phys. Rev. Res. 4(3), 033022 (2022)
https://doi.org/10.1103/PhysRevResearch.4.033022
|
| 86 |
T. Wu T., Ground state of a Bose system of hard spheres, Phys. Rev. 115(6), 1390 (1959)
https://doi.org/10.1103/PhysRev.115.1390
|
| 87 |
Hollowood T., Solitons in affine Toda field theories, Nucl. Phys. B 384(3), 523 (1992)
https://doi.org/10.1016/0550-3213(92)90579-Z
|
| 88 |
Mostafazadeh A., Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7(7), 1191 (2010)
https://doi.org/10.1142/S0219887810004816
|
| 89 |
Pauli W., On Dirac’s new method of field quantization, Rev. Mod. Phys. 15(3), 175 (1943)
https://doi.org/10.1103/RevModPhys.15.175
|
| 90 |
E. Fisher M., Yang‒Lee edge singularity and ϕ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
https://doi.org/10.1103/PhysRevLett.40.1610
|
| 91 |
L. Cardy J., Conformal invariance and the Yang‒Lee edge singularity in two dimensions, Phys. Rev. Lett. 54(13), 1354 (1985)
https://doi.org/10.1103/PhysRevLett.54.1354
|
| 92 |
Dorey P., Dunning C., and Tateo R., The ODE/IM correspondence, J. Phys. A Math. Theor. 40(32), R205 (2007)
https://doi.org/10.1088/1751-8113/40/32/R01
|
| 93 |
M. Bender C. and Boettcher S., Real spectra in non-Hermitian Hamiltonians having PT-symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
https://doi.org/10.1103/PhysRevLett.80.5243
|
| 94 |
M. Bender C., C. Brody D., and F. Jones H., Complex extension of quantum mechanics, Phys. Rev. Lett. 89(27), 270401 (2002)
https://doi.org/10.1103/PhysRevLett.89.270401
|
| 95 |
M. Bender C., N. Meisinger P., and Wang Q., Finite-dimensional PT-symmetric Hamiltonians, J. Phys. Math. Gen. 36(24), 6791 (2003)
https://doi.org/10.1088/0305-4470/36/24/314
|
| 96 |
M. Bender C., Introduction to PT-symmetric quantum theory, Contemp. Phys. 46(4), 277 (2005)
https://doi.org/10.1080/00107500072632
|
| 97 |
Mostafazadeh A., Pseudo-Hermiticity versus PT-symmetry (ii): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002)
https://doi.org/10.1063/1.1461427
|
| 98 |
Mostafazadeh A., Pseudo-Hermiticity versus PT-symmetry (iii): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002)
https://doi.org/10.1063/1.1489072
|
| 99 |
Mostafazadeh A. and Batal A., Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics, J. Phys. Math. Gen. 37(48), 11645 (2004)
https://doi.org/10.1088/0305-4470/37/48/009
|
| 100 |
E. Rüter C., G. Makris K., El-Ganainy R., N. Christodoulides D., Segev M., and Kip D., Observation of parity‒time symmetry in optics, Nat. Phys. 6(3), 192 (2010)
https://doi.org/10.1038/nphys1515
|
| 101 |
M. Bender C., K. Berntson B., Parker D., and Samuel E., Observation of PT phase transition in a simple mechanical system, Am. J. Phys. 81(3), 173 (2013)
https://doi.org/10.1119/1.4789549
|
| 102 |
Fleury R., Sounas D., and Alù A., An invisible acoustic sensor based on parity‒time symmetry, Nat. Commun. 6(1), 5905 (2015)
https://doi.org/10.1038/ncomms6905
|
| 103 |
Schindler J., Li A., C. Zheng M., M. Ellis F., and Kottos T., Experimental study of active LRC circuits with PT-symmetries, Phys. Rev. A 84(4), 040101 (2011)
https://doi.org/10.1103/PhysRevA.84.040101
|
| 104 |
C. Baker H., Non-Hermitian dynamics of multiphoton ionization, Phys. Rev. Lett. 50(20), 1579 (1983)
https://doi.org/10.1103/PhysRevLett.50.1579
|
| 105 |
Zhang Z., Zhang Y., Sheng J., Yang L., A. Miri M., N. Christodoulides D., He B., Zhang Y., and Xiao M., Observation of parity−time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)
https://doi.org/10.1103/PhysRevLett.117.123601
|
| 106 |
Wu Y., Liu W., Geng J., Song X., Ye X., K. Duan C., Rong X., and Du J., Observation of parity‒time symmetry breaking in a single-spin system, Science 364(6443), 878 (2019)
https://doi.org/10.1126/science.aaw8205
|
| 107 |
Rubinstein J., Sternberg P., and Ma Q., Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents, Phys. Rev. Lett. 99(16), 167003 (2007)
https://doi.org/10.1103/PhysRevLett.99.167003
|
| 108 |
Chong Y., Ge L., Cao H., and D. Stone A., Coherent perfect absorbers: Time-reversed lasers, Phys. Rev. Lett. 105(5), 053901 (2010)
https://doi.org/10.1103/PhysRevLett.105.053901
|
| 109 |
Szameit A., C. Rechtsman M., Bahat-Treidel O., and Segev M., PT-symmetry in honeycomb photonic lattices, Phys. Rev. A 84(2), 021806 (2011)
https://doi.org/10.1103/PhysRevA.84.021806
|
| 110 |
Zheng C., Hao L., and L. Long G., Observation of a fast evolution in a parity‒time-symmetric system, Philos. Trans. Royal Soc. A 371(1989), 20120053 (2013)
https://doi.org/10.1098/rsta.2012.0053
|
| 111 |
Wang X. and H. Wu J., Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices, Opt. Express 24(4), 4289 (2016)
https://doi.org/10.1364/OE.24.004289
|
| 112 |
Jiang Y., Mei Y., Zuo Y., Zhai Y., Li J., Wen J., and Du S., Anti-parity‒time symmetric optical four-wave mixing in cold atoms, Phys. Rev. Lett. 123(19), 193604 (2019)
https://doi.org/10.1103/PhysRevLett.123.193604
|
| 113 |
Moiseyev N., Non-Hermitian Quantum Mechanics, Cambridge University Press, 2011
|
| 114 |
Ashida Y., Gong Z., and Ueda M., Non-Hermitian physics, Adv. Phys. 69(3), 249 (2020)
https://doi.org/10.1080/00018732.2021.1876991
|
| 115 |
J. Bergholtz E., C. Budich J., and K. Kunst F., Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
https://doi.org/10.1103/RevModPhys.93.015005
|
| 116 |
Kawabata K., Shiozaki K., Ueda M., and Sato M., Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9(4), 041015 (2019)
https://doi.org/10.1103/PhysRevX.9.041015
|
| 117 |
Banerjee A., Sarkar R., Dey S., and Narayan A., Non-Hermitian topological phases: Principles and prospects, J. Phys.: Condens. Matter 35(33), 333001 (2023)
https://doi.org/10.1088/1361-648X/acd1cb
|
| 118 |
Heiss W., Exceptional points of non-Hermitian operators, J. Phys. Math. Gen. 37(6), 2455 (2004)
https://doi.org/10.1088/0305-4470/37/6/034
|
| 119 |
Pan L., Chen S., and Cui X., Interacting non-Hermitian ultracold atoms in a harmonic trap: Two-body exact solution and a high-order exceptional point, Phys. Rev. A 99(6), 063616 (2019)
https://doi.org/10.1103/PhysRevA.99.063616
|
| 120 |
Kato T., Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, 2013
|
| 121 |
Heiss W., The physics of exceptional points, J. Phys. A Math. Theor. 45(44), 444016 (2012)
https://doi.org/10.1088/1751-8113/45/44/444016
|
| 122 |
D. Huerta-Morales J., A. Quiroz-Juárez M., N. Joglekar Y., and J. León-Montiel R., Generating high-order exceptional points in coupled electronic oscillators using complex synthetic gauge fields, Phys. Rev. A 107(4), 042219 (2023)
https://doi.org/10.1103/PhysRevA.107.042219
|
| 123 |
Reja A. and Narayan A., Characterizing exceptional points using neural networks, Europhys. Lett. 144(3), 36002 (2023)
https://doi.org/10.1209/0295-5075/ad0c6f
|
| 124 |
Zhang S., Zhang X., Jin L., and Song Z., High-order exceptional points in supersymmetric arrays, Phys. Rev. A 101(3), 033820 (2020)
https://doi.org/10.1103/PhysRevA.101.033820
|
| 125 |
B. Lee S., Yang J., Moon S., Y. Lee S., B. Shim J., W. Kim S., H. Lee J., and An K., Observation of an exceptional point in a chaotic optical microcavity, Phys. Rev. Lett. 103(13), 134101 (2009)
https://doi.org/10.1103/PhysRevLett.103.134101
|
| 126 |
Zhen B., W. Hsu C., Igarashi Y., Lu L., Kaminer I., Pick A., L. Chua S., D. Joannopoulos J., and Soljačić M., Spawning rings of exceptional points out of Dirac cones, Nature 525(7569), 354 (2015)
https://doi.org/10.1038/nature14889
|
| 127 |
G. Makris K., El-Ganainy R., Christodoulides D., and H. Musslimani Z., Beam dynamics in PT-symmetric optical lattices, Phys. Rev. Lett. 100(10), 103904 (2008)
https://doi.org/10.1103/PhysRevLett.100.103904
|
| 128 |
Wiersig J., Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112(20), 203901 (2014)
https://doi.org/10.1103/PhysRevLett.112.203901
|
| 129 |
Liertzer M., Ge L., Cerjan A., D. Stone A., E. Türeci H., and Rotter S., Pump-induced exceptional points in lasers, Phys. Rev. Lett. 108(17), 173901 (2012)
https://doi.org/10.1103/PhysRevLett.108.173901
|
| 130 |
Doppler J., A. Mailybaev A., Böhm J., Kuhl U., Girschik A., Libisch F., J. Milburn T., Rabl P., Moiseyev N., and Rotter S., Dynamically encircling an exceptional point for asymmetric mode switching, Nature 537(7618), 76 (2016)
https://doi.org/10.1038/nature18605
|
| 131 |
Xu H., Mason D., Jiang L., and Harris J., Topological energy transfer in an optomechanical system with exceptional points, Nature 537(7618), 80 (2016)
https://doi.org/10.1038/nature18604
|
| 132 |
Choi Y., Kang S., Lim S., Kim W., R. Kim J., H. Lee J., and An K., Quasieigenstate coalescence in an atom-cavity quantum composite, Phys. Rev. Lett. 104(15), 153601 (2010)
https://doi.org/10.1103/PhysRevLett.104.153601
|
| 133 |
Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., and N. Christodoulides D., Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106(21), 213901 (2011)
https://doi.org/10.1103/PhysRevLett.106.213901
|
| 134 |
Guo A., Salamo G., Duchesne D., Morandotti R., Volatier-Ravat M., Aimez V., Siviloglou G., and Christodoulides D., Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009)
https://doi.org/10.1103/PhysRevLett.103.093902
|
| 135 |
Gessner M. and Smerzi A., Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed, Phys. Rev. A 97(2), 022109 (2018)
https://doi.org/10.1103/PhysRevA.97.022109
|
| 136 |
Liu J., Yuan H., M. Lu X., and Wang X., Quantum Fisher information matrix and multiparameter estimation, J. Phys. A Math. Theor. 53(2), 023001 (2020)
https://doi.org/10.1088/1751-8121/ab5d4d
|
| 137 |
Demkowicz-Dobrzański R., Górecki W., and Guţă M., Multi-parameter estimation beyond quantum Fisher information, J. Phys. A Math. Theor. 53(36), 363001 (2020)
https://doi.org/10.1088/1751-8121/ab8ef3
|
| 138 |
Petz D.Ghinea C., Introduction to quantum Fisher information, in: Quantum Probability and Related Topics, World Scientific, 2011, pp 261–281
|
| 139 |
Yamaguchi K. and Tajima H., Beyond i.i.d. in the resource theory of asymmetry: An information-spectrum approach for quantum Fisher information, Phys. Rev. Lett. 131(20), 200203 (2023)
https://doi.org/10.1103/PhysRevLett.131.200203
|
| 140 |
Rangani Jahromi H. and Haseli S., Quantum memory and quantum correlations of Majorana qubits used for magnetometry, Quantum Inf. Comput. 20, 0935 (2020)
https://doi.org/10.26421/QIC20.11-12-2
|
| 141 |
Rangani Jahromi H., Weak measurement effect on optimal estimation with lower and upper bound on relativistic metrology, Int. J. Mod. Phys. D 28(12), 1950162 (2019)
https://doi.org/10.1142/S0218271819501621
|
| 142 |
X. Peng J., Zhu B., Zhang W., and Zhang K., Dissipative quantum Fisher information for a general Liouvillian parametrized process, Phys. Rev. A 109(1), 012432 (2024)
https://doi.org/10.1103/PhysRevA.109.012432
|
| 143 |
L. Zhao J., Zhou Y., X. Chen D., Su Q., L. Zong X., C. Wu Q., Yang M., and Yang C., Quantum Fisher information power of quantum evolutions, J. Phys. A Math. Theor. 57(27), 275304 (2024)
https://doi.org/10.1088/1751-8121/ad5524
|
| 144 |
Cieśliński P., Kurzynski P., Sowinski T., Kłobus W., and Laskowski W., Exploring many-body interactions through quantum Fisher information, Phys. Rev. A 110(1), 012407 (2024)
https://doi.org/10.1103/PhysRevA.110.012407
|
| 145 |
R. Jahromi H., Mahdavipour K., Khazaei Shadfar M., and Lo Franco R., Witnessing non-Markovian effects of quantum processes through Hilbert‒Schmidt speed, Phys. Rev. A 102(2), 022221 (2020)
https://doi.org/10.1103/PhysRevA.102.022221
|
| 146 |
R. Jahromi H. and L. Franco R., Hilbert−Schmidt speed as an efficient figure of merit for quantum estimation of phase encoded into the initial state of open n-qubit systems, Sci. Rep. 11, 7128 (2021)
https://doi.org/10.1038/s41598-021-86461-2
|
| 147 |
M. Hosseiny S., Rangani Jahromi H., and Amniat-Talab M., Monitoring variations of refractive index via Hilbert‒Schmidt speed and applying this phenomenon to improve quantum metrology, J. Phys. At. Mol. Opt. Phys. 56(17), 175402 (2023)
https://doi.org/10.1088/1361-6455/acf017
|
| 148 |
Mahdavipour K., Khazaei Shadfar M., Rangani Jahromi H., Morandotti R., and Lo Franco R., Memory effects in high-dimensional systems faithfully identified by Hilbert‒Schmidt speed-based witness, Entropy (Basel) 24(3), 395 (2022)
https://doi.org/10.3390/e24030395
|
| 149 |
E. Abouelkhir N., Slaoui A., El Hadfi H., and Ahl Laamara R., Estimating phase parameters of a three-level system interacting with two classical monochromatic fields in simultaneous and individual metrological strategies, J. Opt. Soc. Am. B 40(6), 1599 (2023)
https://doi.org/10.1364/JOSAB.487744
|
| 150 |
Nikdel Yousefi N., Mortezapour A., Naeimi G., Nosrati F., Pariz A., and Lo Franco R., Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal, Phys. Rev. A 105(4), 042212 (2022)
https://doi.org/10.1103/PhysRevA.105.042212
|
| 151 |
R. Jahromi H., Remote sensing and faithful quantum teleportation through non-localized qubits, Phys. Lett. A 424, 127850 (2022)
https://doi.org/10.1016/j.physleta.2021.127850
|
| 152 |
S. Ma X., H. Quan J., N. Lu Y., and T. Cheng M., Quantum enhancement of qutrit dynamics of a three-level giant atom coupling to a one-dimensional waveguide, Results Phys. 56, 107252 (2024)
https://doi.org/10.1016/j.rinp.2023.107252
|
| 153 |
M. Hosseiny S., Seyed-Yazdi J., and Norouzi M., Faithful quantum teleportation through common and independent qubit-noise configurations and multi-parameter estimation in the output of teleported state, AVS Quantum Sci. 6(1), 014405 (2024)
https://doi.org/10.1116/5.0189752
|
| 154 |
Ikken N., Slaoui A., Ahl Laamara R., and B. Drissi L., Bidirectional quantum teleportation of even and odd coherent states through the multipartite Glauber coherent state: Theory and implementation, Quantum Inform. Process 22(10), 391 (2023)
https://doi.org/10.1007/s11128-023-04132-9
|
| 155 |
M. Hosseiny S., Rangani Jahromi H., Radgohar R., and Amniat-Talab M., Estimating energy levels of a three-level atom in single and multi-parameter metrological schemes, Phys. Scr. 97(12), 125402 (2022)
https://doi.org/10.1088/1402-4896/ac9dc7
|
| 156 |
C. Brody D., Biorthogonal quantum mechanics, J. Phys. A 47(3), 035305 (2014)
https://doi.org/10.1088/1751-8113/47/3/035305
|
| 157 |
Edvardsson E. and Ardonne E., Sensitivity of non-Hermitian systems, Phys. Rev. B 106(11), 115107 (2022)
https://doi.org/10.1103/PhysRevB.106.115107
|
| 158 |
Kawabata K., Ashida Y., and Ueda M., Information retrieval and criticality in parity‒time-symmetric systems, Phys. Rev. Lett. 119(19), 190401 (2017)
https://doi.org/10.1103/PhysRevLett.119.190401
|
| 159 |
C. Brody D. and M. Graefe E., Mixed-state evolution in the presence of gain and loss, Phys. Rev. Lett. 109(23), 230405 (2012)
https://doi.org/10.1103/PhysRevLett.109.230405
|
| 160 |
Ohlsson T. and Zhou S., Density-matrix formalism for PT-symmetric non-Hermitian Hamiltonians with the Lindblad equation, Phys. Rev. A 103(2), 022218 (2021)
https://doi.org/10.1103/PhysRevA.103.022218
|
| 161 |
Moiseyev N., Certain P., and Weinhold F., Resonance properties of complex-rotated Hamiltonians, Mol. Phys. 36(6), 1613 (1978)
https://doi.org/10.1080/00268977800102631
|
| 162 |
Moiseyev N. and Lein M., Non-Hermitian quantum mechanics for high-order harmonic generation spectra, J. Phys. Chem. A 107(37), 7181 (2003)
https://doi.org/10.1021/jp034390y
|
| 163 |
Das A. and Greenwood L., An alternative construction of the positive inner product in non-Hermitian quantum mechanics, Phys. Lett. B 678(5), 504 (2009)
https://doi.org/10.1016/j.physletb.2009.06.060
|
| 164 |
Mostafazadeh A., Pseudo-Hermiticity and generalized PT- and CPT-symmetries, J. Math. Phys. 44(3), 974 (2003)
https://doi.org/10.1063/1.1539304
|
| 165 |
M. Bender C., Brod J., Refig A., and E. Reuter M., The C coperator in PT-symmetric quantum theories, J. Phys. Math. Gen. 37(43), 10139 (2004)
https://doi.org/10.1088/0305-4470/37/43/009
|
| 166 |
Q. Li J., G. Miao Y., and Xue Z., A possible method for non-Hermitian and non-PT-symmetric Hamiltonian systems, PLoS One 9(6), e97107 (2014)
https://doi.org/10.1371/journal.pone.0097107
|
| 167 |
Badhani H.Banerjee S.Chandrashekar C., Non-Hermitian quantum walks and non-Markovianity: The coin-position interaction, arXiv: (2021)
|
| 168 |
Ohlsson T. and Zhou S., Transition probabilities in the two-level quantum system with PT-symmetric non-Hermitian Hamiltonians, J. Math. Phys. 61(5), 052104 (2020)
https://doi.org/10.1063/5.0002958
|
| 169 |
Shi T.Sun C., Recovering unitarity of Lee model in bi-orthogonal basis, arXiv: (2009)
|
| 170 |
Kleefeld F., The construction of a general inner product in non-Hermitian quantum theory and some explanation for the nonuniqueness of the C operator in PT quantum mechanics, arXiv: (2009)
|
| 171 |
Weigert S., Completeness and orthonormality in PT-symmetric quantum systems, Phys. Rev. A 68(6), 062111 (2003)
https://doi.org/10.1103/PhysRevA.68.062111
|
| 172 |
A. M. Dirac P., The Principles of Quantum Mechanics, Oxford University Press, 1981
|
| 173 |
Xiao Z. and Alù A., Tailoring exceptional points in a hybrid PT-symmetric and anti-PT-symmetric scattering system, Nanophotonics 10(14), 3723 (2021)
https://doi.org/10.1515/nanoph-2021-0245
|
| 174 |
Ding K., Ma G., Xiao M., Zhang Z., and T. Chan C., and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
https://doi.org/10.1103/PhysRevX.6.021007
|
| 175 |
Hatano N. and R. Nelson D., Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77(3), 570 (1996)
https://doi.org/10.1103/PhysRevLett.77.570
|
| 176 |
R. Leefmans C., Parto M., Williams J., H. Li G., Dutt A., Nori F., and Marandi A., Topological temporally mode-locked laser, Nat. Phys. 20, 852 (2024)
https://doi.org/10.1038/s41567-024-02420-4
|
| 177 |
Jaiswal R., Banerjee A., and Narayan A., Characterizing and tuning exceptional points using Newton polygons, New J. Phys. 25(3), 033014 (2023)
https://doi.org/10.1088/1367-2630/acc1fe
|
| 178 |
Sachdev S., Quantum phase transitions, Phys. World 12(4), 33 (1999)
https://doi.org/10.1088/2058-7058/12/4/23
|
| 179 |
Hayata T. and Yamamoto A., Non-Hermitian Hubbard model without the sign problem, Phys. Rev. B 104(12), 125102 (2021)
https://doi.org/10.1103/PhysRevB.104.125102
|
| 180 |
J. Yu X., Pan Z., Xu L., and X. Li Z., Non-Hermitian strongly interacting Dirac fermions, Phys. Rev. Lett. 132(11), 116503 (2024)
https://doi.org/10.1103/PhysRevLett.132.116503
|
| 181 |
Bian Z., Xiao L., Wang K., A. Onanga F., Ruzicka F., Yi W., N. Joglekar Y., and Xue P., Quantum information dynamics in a high-dimensional parity‒time-symmetric system, Phys. Rev. A 102(3), 030201 (2020)
https://doi.org/10.1103/PhysRevA.102.030201
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|