Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2025, Vol. 20 Issue (1) : 14201    https://doi.org/10.15302/frontphys.2025.014201
Technique for studying the coalescence of eigenstates and eigenvalues in non-Hermitian systems
Seyed Mohammad Hosseiny1, Hossein Rangani Jahromi2(), Babak Farajollahi1, Mahdi Amniat-Talab1
1. Physics Department, Faculty of Sciences, Urmia University, P.B. 165, Urmia, Iran
2. Physics Department, Faculty of Sciences, Jahrom University, P.B. 74135111, Jahrom, Iran
 Download: PDF(4467 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In our study, we explore high-order exceptional points (EPs), which are crucial for enhancing the sensitivity of open physical systems to external changes. We utilize the Hilbert−Schmidt speed (HSS), a measure of quantum statistical speed, to accurately identify EPs in non-Hermitian systems. These points are characterized by the simultaneous coalescence of eigenvalues and their associated eigenstates. One of the main benefits of using HSS is that it eliminates the need to diagonalize the evolved density matrix, simplifying the identification process. Our method is shown to be effective even in complex, multi-dimensional and interacting Hamiltonian systems. In certain cases, a generalized evolved state may be employed over the conventional normalized state. This necessitates the use of a metric operator to define the inner product between states, thereby introducing additional complexity. Our research confirms that HSS is a reliable and practical tool for detecting EPs, even in these demanding situations.

Keywords non-Hermitian physics      exceptional points      Hilbert−Schmidt speed      quantum statistical speed     
Corresponding Author(s): Hossein Rangani Jahromi   
Just Accepted Date: 02 August 2024   Issue Date: 10 September 2024
 Cite this article:   
Seyed Mohammad Hosseiny,Hossein Rangani Jahromi,Babak Farajollahi, et al. Technique for studying the coalescence of eigenstates and eigenvalues in non-Hermitian systems[J]. Front. Phys. , 2025, 20(1): 14201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.15302/frontphys.2025.014201
https://academic.hep.com.cn/fop/EN/Y2025/V20/I1/14201
Fig.1  Hybrid PTAPT-symmetric system: the qualitative dynamics of HSS in order to check the EP(1) for (a) unbroken phase κEP(1)<ω 0γ0/ ω 02+ γ02 and (b) broken phase κEP(1)>ω 0γ0/ ω 02+ γ02 when ω 0=0.8, γ0=0.5, ϕ= π and κ=0.2.
Fig.2  Hybrid PTAPT-symmetric system: the qualitative dynamics of HSS in order to check the EP(2) for (a) unbroken phase κEP(2)<ω02+γ02/2 and (b) broken phase κEP(2)>ω02+γ02/2 when ω0=0.8,γ0= 0.5,ϕ=π and κ =0.6.
Fig.3  Two-level NH system without PTAPT-symmetries: the qualitative dynamics of HSS in order to check the EP for (a) ΔΓ <2|κ| when ω2= 3450, Γ0= 10,ΔΓ =2.9,ϕ=π /2 and κ= 1.5 and (b) ΔΓ >2|κ| when ω2= 3450, Γ0= 10,ΔΓ =3.1,ϕ= π/ 2 and κ= 1.5.
Fig.4  Four-level NH system without PTAPT-symmetries: the qualitative dynamics of HSS in order to check the EP for (a) Δ 1>4 Δ2 when ω1= 3451, ω2=3450, Γ0=10,ΔΓ=1.5,ϕ=π/2, τ=2.2 and κ= 0.5, (b) Δ 1<4 Δ2 when ω1=3450.5,ω2= 3450, Γ0= 10,ΔΓ =4,ϕ=π /2 ,τ=2.2 and κ =0.5, (c) Δ 1>4Δ2 when ω1= 3451, ω2=3450, Γ0=10,ΔΓ=1.5, ϕ= π/ 2,τ=2.2 and κ=0.5, and (d) Δ1<4 Δ2 when ω1= 3450.2, ω2=3450, Γ0=10,ΔΓ=4,ϕ=π/2, τ=2.2 and κ= 0.5.
Fig.5  Four-level NH system without PTAPT-symmetries: the qualitative dynamics of HSS in order to check the EP for (a) Δ 2<0 when ω1= 3455, ω2=3450, Γ0=10,ΔΓ=1.5,ϕ=π/2, τ=2.2 and κ= 0.5 and (b) Δ 2>0 when ω1= ω2=3450, Γ0=10,ΔΓ=5.1,ϕ=π/2, τ=2.2 and κ= 0.5.
Fig.6  Four-level NH system without PTAPT-symmetries: the qualitative dynamics of HSS in order to check the EP for (a) Δ 1>0,Δ 2<0 when ω1= 3455, ω2=3450, Γ0=10,ΔΓ=5.1,ϕ=π/2, τ=2.2 and κ= 0.5 and (b) Δ 1<0,Δ2> 0 when ω1= ω2=3450, Γ0=10,ΔΓ=5.1,ϕ=π/2, τ=2.2 and κ= 0.5.
Fig.7  The qualitative behavior of HSS in order to identify the EP in the P-pseudo Hermitian two-level system as a function of time for (a) r< uv/ sin?θ when u=0.5, v=1,r=0.7 ,ϕ =π and θ =π/4 and (b) r>u v/sin?θ when u=2,v= 1,r=3,ϕ= π/ 2 and θ=π /4.
Fig.8  The qualitative dynamics of HSS in order to check the EP in the anti-P-pseudo Hermitian two-level system for (a) r<u v/sin?θ when u=1,v= 1,r=0.5,ϕ=π and θ=π /2 and (b) r> uv/ sin?θ when u=1, v=1,r=1.1 ,ϕ =π/2 and θ =π/2.
Fig.9  The time evolution of HSS to check the EP in the three-site paradigmatic Hatano−Nelson model for (a) τ>γ /2 when τ=0.6,γ=1, ϕ=π and (b) τ<γ /2 when τ=0.4,γ=1, ϕ=π.
Fig.10  The qualitative dynamics of HSS to identify the EP in the three-site paradigmatic Hatano−Nelson model for (a) τ> γ/2 when τ= 1,γ=1,ϕ=π/2 and (b) τ< γ/2 when τ= 0,γ=2,ϕ=π/2.
Fig.11  The time variations of HSS in order to investigate the EP in the four-site paradigmatic Hatano−Nelson model for (a) τ>γ /2 when τ=2,γ=1, ϕ=π/2 and (b) τ< γ/2 when τ= 0.73,γ=2,ϕ=π /2.
Fig.12  The time evolution of HSS in order to determine the EP in the four-site paradigmatic Hatano−Nelson model for (a) τ> γ/2 when τ= 0.5,γ=0.5,ϕ=π/2 and (b) τ< γ/2 when τ= 0,γ=2,ϕ=π/2.
Fig.13  The qualitative behavior of HSS dynamics to find the EP in the the four-site paradigmatic Hatano−Nelson model for (a) q>(p4+ δ2+2δ p2)/δ2 when δ=0.9 ,p=0.4, γ=1,q=2,ϕ=π/2 and (b) q<(p4+ δ2+2δ p2)/δ2 when δ=1,p=1.3,γ=1, q=2.4,ϕ=π /2.
Fig.14  The dynamics of HSS in order to analyze the EP in the five-site paradigmatic Hatano−Nelson model for (a) τ>γ /2 when τ=4,γ=2, ϕ=π/2 and (b) τ< γ/2 when τ= 1,γ=3,ϕ=π /2.
Fig.15  The time variations of HSS in order to obtain the EP in the five-site paradigmatic Hatano−Nelson model for (a) τ> γ/2 when τ= 1,γ=1,ϕ=π/2 and (b) τ< γ/2 when τ= 0,γ=2,ϕ=π/2.
Fig.16  The time variations of HSS in order to check the EP in the six-site paradigmatic Hatano−Nelson modelfor (a) τ>γ /2 when τ=0.6,γ=1, ϕ=π/2 and (b) τ< γ/2 when τ= 0.4,γ=1,ϕ=π /2.
Fig.17  The qualitative dynamics of HSS in order to check the EP in the six-site paradigmatic Hatano−Nelson model for (a) τ> γ/2 when τ= 1,γ=1,ϕ=π/2 and (b) τ< γ/2 when τ= 1,γ=3,ϕ=π/2.
Fig.18  The qualitative dynamics of HSS in order to probe the EP in the non-Hermitian model on the honeycomb lattice (describing strongly interacting Dirac fermions) for (a) δ>1 when qx=0, qy=1 ,δ =1.3,τ=1 ,ϕ =π/2 and (b) δ<1 when qx=0, qy=1 ,δ =0.9,τ=1 ,ϕ =π/2.
Fig.19  The qualitative behaviors of HSS in order to detect the EP in the interacting non-Hermitian ultracold atoms in a harmonic trap for (a) Γ <Ω when Γ= 0.01,Ω=3,δ=1, ϕ=π/2 and (b) Γ >Ω when Γ= 2,Ω=0.3,δ=1, ϕ=π/2.
Fig.20  The dynamics of HSS in order to detect the EP in the high-dimension interacting non-Hermitian ultracold atoms in a harmonic trap for (a) Γ< Ω when Γ=0.01,Ω=3,δ=1 ,ϕ =π/2 and (b) Γ> Ω when Γ=2,Ω=0.3,δ=1 ,ϕ =π/2.
Fig.21  The HSS dynamics of generalized evolved state HSS ϕ (ηρ G(t) ) and normalized evolved state HSSϕ(ρN(t) ) in order to obtain the EPs in the PT-symmetric system for (a) PT-unbroken phase region s2>r2sin2?θ and (b) PT-broken phase region s2<r2sin2?θ when r=0.1, s=1,θ=π /6 ,ϕ =π.
Fig.22  The time evolution of the HSS respect to generalized evolved state HSSϕ(ηρ G(t) ) and normalized evolved state HSSϕ(ρN(t) ) in order to determine the EPs in the high dimensional PT-symmetric system for (a) PT-unbroken phase region γ<J when γ =0.65,J=1,ϕ=π/6 and (b) PT-broken phase region γ>J when γ =0.2,J=0.01 ,ϕ =π.
Fig.23  The time variations of the HSS respect to generalized evolved state HSSϕ(ηρ G(t) ) and normalized evolved state HSSϕ(ρN(t) ) in order to monitor the EPs in the high dimensional APT-symmetric system for (a) APT-unbroken phase region λ<1 when λ =0.1,n=0.9 ,θ =π/2,ϕ=π and (b) APT-broken phase region λ> 1 when λ=1.1 ,n=0.01, θ=π/6,ϕ=π.
Fig.24  The dynamics of the HSS respect to generalized evolved state HSSϕ(η ρG(t)) and normalized evolved state HSSϕ(ρN(t) ) in order to search the EPs in the interacting non-Hermitian ultracold atoms in a harmonic trap for (a) Γ <Ω when Γ= 0.01,Ω=3,δ=1, ϕ=π/2 and (b) Γ >Ω when Γ= 2,Ω=0.3,δ=1, ϕ=π/2.
Fig.25  The dynamics of the HSS respect to generalized evolved state HSSϕ(η ρG(t)) and normalized evolved state HSSϕ(ρN(t) ) in order to search the EPs in the high-dimension interacting non-Hermitian ultracold atoms in a harmonic trap for (a) Γ<Ω when Γ=0.01,Ω=3,δ=1 ,ϕ =π/2 and (b) Γ> Ω when Γ=2,Ω=0.3,δ=1 ,ϕ =π/2.
1 Y. Ju C., Miranowicz A., Y. Chen G., and Nori F., Non−Hermitian Hamiltonians and no−go theorems in quantum information, Phys. Rev. A 100, 062118 (2019)
https://doi.org/10.1103/PhysRevA.100.062118
2 A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge University Press, 2010
3 M. Bender C., Boettcher S., and N. Meisinger P., PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
https://doi.org/10.1063/1.532860
4 M. Bender C. and V. Dunne G., Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian, J. Math. Phys. 40(10), 4616 (1999)
https://doi.org/10.1063/1.532991
5 M. Bender C., Berry M., and Mandilara A., Generalized PT-symmetry and real spectra, J. Phys. Math. Gen. 35(31), L467 (2002)
https://doi.org/10.1088/0305-4470/35/31/101
6 M. Bender C., C. Brody D., and F. Jones H., Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction, Phys. Rev. D 70(2), 025001 (2004)
https://doi.org/10.1103/PhysRevD.70.025001
7 M. Bender C., Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)
https://doi.org/10.1088/0034-4885/70/6/R03
8 M. Bender C.symmetry PT, in: Time and Science, Vol. 3, Physical Sciences and Cosmology, World Scientific, 2023, pp 285
9 Peng B., K. Özdemir Ş., Lei F., Monifi F., Gianfreda M., L. Long G., Fan S., Nori F., M. Bender C., and Yang L., Parity‒time-symmetric whispering-gallery microcavities, Nat. Phys. 10(5), 394 (2014)
https://doi.org/10.1038/nphys2927
10 Peng B., K. Özdemir Ş., Chen W., Nori F., and Yang L., What is and what is not electromagnetically induced transparency in whispering-gallery microcavities, Nat. Commun. 5(1), 5082 (2014)
https://doi.org/10.1038/ncomms6082
11 Jing H., Özdemir S., Y. Lü X., Zhang J., Yang L., and Nori F., PT-symmetric phonon laser, Phys. Rev. Lett. 113(5), 053604 (2014)
https://doi.org/10.1103/PhysRevLett.113.053604
12 Jing H., K. Özdemir Ş., Geng Z., Zhang J., Y. Lü X., Peng B., Yang L., and Nori F., Optomechanically-induced transparency in parity‒time-symmetric microresonators, Sci. Rep. 5(1), 9663 (2015)
https://doi.org/10.1038/srep09663
13 Zhang J., Peng B., K. Özdemir Ş., Liu Y., Jing H., Lü X., Liu Y., Yang L., and Nori F., Giant nonlinearity via breaking parity‒time symmetry: A route to low-threshold phonon diodes, Phys. Rev. B 92(11), 115407 (2015)
https://doi.org/10.1103/PhysRevB.92.115407
14 Gao T., Estrecho E., Bliokh K., Liew T., Fraser M., Brodbeck S., Kamp M., Schneider C., Höfling S., Yamamoto Y., Nori F., S. Kivshar Y., G. Truscott A., G. Dall R., and A. Ostrovskaya E., Observation of non-Hermitian degeneracies in a chaotic exciton−polariton billiard, Nature 526(7574), 554 (2015)
https://doi.org/10.1038/nature15522
15 P. Liu Z., Zhang J., K. Özdemir Ş., Peng B., Jing H., Y. Lü X., W. Li C., Yang L., Nori F., and Liu Y., Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett. 117(11), 110802 (2016)
https://doi.org/10.1103/PhysRevLett.117.110802
16 Leykam D., Y. Bliokh K., Huang C., D. Chong Y., Nori F., and modes Edge, and topological numbers in non-Hermitian systems, Phys. Rev. Lett. 118(4), 040401 (2017)
https://doi.org/10.1103/PhysRevLett.118.040401
17 Jing H., K. Özdemir Ş., Lü H., and Nori F., High-order exceptional points in optomechanics, Sci. Rep. 7(1), 1 (2017)
https://doi.org/10.1038/s41598-017-03546-7
18 Lü H., Özdemir S., M. Kuang L., Nori F., and Jing H., Exceptional points in random-defect phonon lasers, Phys. Rev. Appl. 8(4), 044020 (2017)
https://doi.org/10.1103/PhysRevApplied.8.044020
19 Quijandría F., Naether U., K. Özdemir S., Nori F., and Zueco D., PT-symmetric circuit QED, Phys. Rev. A 97(5), 053846 (2018)
https://doi.org/10.1103/PhysRevA.97.053846
20 Zhang J., Peng B., K. Özdemir Ş., Pichler K., O. Krimer D., Zhao G., Nori F., Liu Y., Rotter S., and Yang L., A phonon laser operating at an exceptional point, Nat. Photonics 12(8), 479 (2018)
https://doi.org/10.1038/s41566-018-0213-5
21 Y. Bliokh K., Leykam D., Lein M., and Nori F., Topological non-Hermitian origin of surface Maxwell waves, Nat. Commun. 10(1), 580 (2019)
https://doi.org/10.1038/s41467-019-08397-6
22 Liu T., R. Zhang Y., Ai Q., Gong Z., Kawabata K., Ueda M., and Nori F., Second-order topological phases in non-Hermitian systems, Phys. Rev. Lett. 122(7), 076801 (2019)
https://doi.org/10.1103/PhysRevLett.122.076801
23 K. Özdemir Ş., Rotter S., Nori F., and Yang L., Parity‒time symmetry and exceptional points in photonics, Nat. Mater. 18(8), 783 (2019)
https://doi.org/10.1038/s41563-019-0304-9
24 Y. Ge Z., R. Zhang Y., Liu T., W. Li S., Fan H., and Nori F., Topological band theory for non-Hermitian systems from the Dirac equation, Phys. Rev. B 100(5), 054105 (2019)
https://doi.org/10.1103/PhysRevB.100.054105
25 Minganti F., Miranowicz A., W. Chhajlany R., and Nori F., Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps, Phys. Rev. A 100(6), 062131 (2019)
https://doi.org/10.1103/PhysRevA.100.062131
26 Minganti F., Miranowicz A., W. Chhajlany R., I. Arkhipov I., and Nori F., Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories, Phys. Rev. A 101(6), 062112 (2020)
https://doi.org/10.1103/PhysRevA.101.062112
27 Liu T., J. He J., Yoshida T., L. Xiang Z., and Nori F., Non-Hermitian topological Mott insulators in one-dimensional fermionic super-lattices, Phys. Rev. B 102(23), 235151 (2020)
https://doi.org/10.1103/PhysRevB.102.235151
28 Bao L., Qi B., Dong D., and Nori F., Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing, Phys. Rev. A 103(4), 042418 (2021)
https://doi.org/10.1103/PhysRevA.103.042418
29 Y. Zhou Z., L. Xiang Z., You J., and Nori F., Work statistics in non-Hermitian evolutions with Hermitian endpoints, Phys. Rev. E 104(3), 034107 (2021)
https://doi.org/10.1103/PhysRevE.104.034107
30 L. Fang Y., L. Zhao J., Zhang Y., X. Chen D., C. Wu Q., H. Zhou Y., P. Yang C., and Nori F., Experimental demonstration of coherence flow in PT- and anti-PT-symmetric systems, Commun. Phys. 4(1), 223 (2021)
https://doi.org/10.1038/s42005-021-00728-8
31 Liu T., J. He J., Yang Z., and Nori F., Higher-order Weyl-exceptional-ring semimetals, Phys. Rev. Lett. 127(19), 196801 (2021)
https://doi.org/10.1103/PhysRevLett.127.196801
32 Xu H., G. Lai D., B. Qian Y., P. Hou B., Miranowicz A., and Nori F., Optomechanical dynamics in the PT- and broken-PT-symmetric regimes, Phys. Rev. A 104(5), 053518 (2021)
https://doi.org/10.1103/PhysRevA.104.053518
33 Y. Ju C., Miranowicz A., Minganti F., T. Chan C., Y. Chen G., and Nori F., Einstein’s quantum elevator: Hermitization of non-Hermitian Hamiltonians via a generalized Vielbein formalism, Phys. Rev. Res. 4(2), 023070 (2022)
https://doi.org/10.1103/PhysRevResearch.4.023070
34 Minganti F., Huybrechts D., Elouard C., Nori F., and I. Arkhipov I., Creating and controlling exceptional points of non-Hermitian Hamiltonians via homodyne Lindbladian invariance, Phys. Rev. A 106(4), 042210 (2022)
https://doi.org/10.1103/PhysRevA.106.042210
35 Nie W., Shi T., Liu Y., and Nori F., Non-Hermitian waveguide cavity QED with tunable atomic mirrors, Phys. Rev. Lett. 131(10), 103602 (2023)
https://doi.org/10.1103/PhysRevLett.131.103602
36 Y. Ju C., Miranowicz A., N. Chen Y., Y. Chen G., and Nori F., Emergent parallel transport and curvature in Hermitian and non-Hermitian quantum mechanics, Quantum 8, 1277 (2024)
https://doi.org/10.22331/q-2024-03-13-1277
37 Eleuch H. and Rotter I., Open quantum systems and Dicke superradiance, Eur. Phys. J. D 68(3), 74 (2014)
https://doi.org/10.1140/epjd/e2014-40780-8
38 Rangani Jahromi H. and Lo Franco R., Searching for exceptional points and inspecting non-contractivity of trace distance in (anti-)PT-symmetric systems, Quantum Inform. Process. 21(4), 155 (2022)
https://doi.org/10.1007/s11128-022-03475-z
39 P. Breuer H.Petruccione F., The Theory of Open Quantum Systems, Oxford University Press, USA, 2002
40 T. Barreiro J., Müller M., Schindler P., Nigg D., Monz T., Chwalla M., Hennrich M., F. Roos C., Zoller P., and Blatt R., An open-system quantum simulator with trapped ions, Nature 470(7335), 486 (2011)
https://doi.org/10.1038/nature09801
41 Hu Z., Xia R., and Kais S., A quantum algorithm for evolving open quantum dynamics on quantum computing devices, Sci. Rep. 10(1), 3301 (2020)
https://doi.org/10.1038/s41598-020-60321-x
42 Del Re L., Rost B., Kemper A., and Freericks J., Driven-dissipative quantum mechanics on a lattice: Simulating a fermionic reservoir on a quantum computer, Phys. Rev. B 102(12), 125112 (2020)
https://doi.org/10.1103/PhysRevB.102.125112
43 Viyuela O., Rivas A., Gasparinetti S., Wallraff A., Filipp S., and A. Martín-Delgado M., Observation of topological Uhlmann phases with superconducting qubits, npj Quantum Inf. 4, 10 (2018)
https://doi.org/10.1038/s41534-017-0056-9
44 Mostafazadeh A., Pseudo-Hermiticity versus PT-symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43(1), 205 (2002)
https://doi.org/10.1063/1.1418246
45 Solombrino L., Weak pseudo-Hermiticity and antilinear commutant, J. Math. Phys. 43(11), 5439 (2002)
https://doi.org/10.1063/1.1504485
46 Nixon S. and Yang J., All-real spectra in optical systems with arbitrary gain-and-loss distributions, Phys. Rev. A 93(3), 031802 (2016)
https://doi.org/10.1103/PhysRevA.93.031802
47 Mostafazadeh A., Time-dependent pseudo-Hermitian Hamiltonians and a hidden geometric aspect of quantum mechanics, Entropy (Basel) 22(4), 471 (2020)
https://doi.org/10.3390/e22040471
48 Chu Y., Liu Y., Liu H., and Cai J., Quantum sensing with a single-qubit pseudo-Hermitian system, Phys. Rev. Lett. 124(2), 020501 (2020)
https://doi.org/10.1103/PhysRevLett.124.020501
49 Jin L., Unitary scattering protected by pseudo-Hermiticity, Chin. Phys. Lett. 39(3), 037302 (2022)
https://doi.org/10.1088/0256-307X/39/3/037302
50 M. Bender C. and D. Mannheim P., No-ghost theorem for the fourth-order derivative Pais‒Uhlenbeck oscillator model, Phys. Rev. Lett. 100(11), 110402 (2008)
https://doi.org/10.1103/PhysRevLett.100.110402
51 M. Bender C., W. Hook D., N. Meisinger P., and Wang Q., Complex correspondence principle, Phys. Rev. Lett. 104(6), 061601 (2010)
https://doi.org/10.1103/PhysRevLett.104.061601
52 Bittner S., Dietz B., Günther U., Harney H., Miski-Oglu M., Richter A., and Schäfer F., PT-symmetry and spontaneous symmetry breaking in a microwave billiard, Phys. Rev. Lett. 108(2), 024101 (2012)
https://doi.org/10.1103/PhysRevLett.108.024101
53 X. Cao H., H. Guo Z., and L. Chen Z., CPT-frames for non-Hermitian Hamiltonians, Commum. Theor. Phys. 60(3), 328 (2013)
https://doi.org/10.1088/0253-6102/60/3/12
54 M. Bender C., Nonlinear eigenvalue problems and PT-symmetric quantum mechanics, J. Phys.: Conf. Ser. 873, 012002 (2017)
https://doi.org/10.1088/1742-6596/873/1/012002
55 Feng L., El-Ganainy R., and Ge L., Non-Hermitian photonics based on parity‒time symmetry, Nat. Photonics 11(12), 752 (2017)
https://doi.org/10.1038/s41566-017-0031-1
56 Silva E., Barbosa A., and Ramos J., Parity and time-reversal symmetry in the Hanbury Brown‒Twiss effect, Europhys. Lett. 117(1), 14001 (2017)
https://doi.org/10.1209/0295-5075/117/14001
57 Longhi S., Parity‒time symmetry meets photonics: A new twist in non-Hermitian optics, Europhys. Lett. 120(6), 64001 (2017)
https://doi.org/10.1209/0295-5075/120/64001
58 El-Ganainy R., G. Makris K., Khajavikhan M., H. Musslimani Z., Rotter S., and N. Christodoulides D., Non-Hermitian physics and PT-symmetry, Nat. Phys. 14(1), 11 (2018)
https://doi.org/10.1038/nphys4323
59 Jin L. and Song Z., Incident direction independent wave propagation and unidirectional lasing, Phys. Rev. Lett. 121(7), 073901 (2018)
https://doi.org/10.1103/PhysRevLett.121.073901
60 Klauck F., Teuber L., Ornigotti M., Heinrich M., Scheel S., and Szameit A., Observation of PT-symmetric quantum interference, Nat. Photonics 13(12), 883 (2019)
https://doi.org/10.1038/s41566-019-0517-0
61 Li J., K. Harter A., Liu J., de Melo L., N. Joglekar Y., and Luo L., Observation of parity‒time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms, Nat. Commun. 10(1), 855 (2019)
https://doi.org/10.1038/s41467-019-08596-1
62 Jin L., Wu H., B. Wei B., and Song Z., Hybrid exceptional point created from type-III Dirac point, Phys. Rev. B 101(4), 045130 (2020)
https://doi.org/10.1103/PhysRevB.101.045130
63 Bian Z., Xiao L., Wang K., Zhan X., A. Onanga F., Ruzicka F., Yi W., N. Joglekar Y., and Xue P., Conserved quantities in parity−time symmetric systems, Phys. Rev. Res. 2(2), 022039 (2020)
https://doi.org/10.1103/PhysRevResearch.2.022039
64 I. Arkhipov I., Miranowicz A., Di Stefano O., Stassi R., Savasta S., Nori F., and K. Özdemir Ş., Scully‒Lamb quantum laser model for parity‒time-symmetric whispering-gallery microcavities: Gain saturation effects and nonreciprocity, Phys. Rev. A 99(5), 053806 (2019)
https://doi.org/10.1103/PhysRevA.99.053806
65 Huybrechts D., Minganti F., Nori F., Wouters M., and Shammah N., Validity of mean-field theory in a dissipative critical system: Liouvillian gap, PT-symmetric antigap, and permutational symmetry in the XYZ model, Phys. Rev. B 101(21), 214302 (2020)
https://doi.org/10.1103/PhysRevB.101.214302
66 I. Arkhipov I., Miranowicz A., Minganti F., and Nori F., Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between PT- and anti-PT symmetries, Phys. Rev. A 102(3), 033715 (2020)
https://doi.org/10.1103/PhysRevA.102.033715
67 Zhang H., Huang R., D. Zhang S., Li Y., W. Qiu C., Nori F., and Jing H., Breaking anti-PT symmetry by spinning a resonator, Nano Lett. 20(10), 7594 (2020)
https://doi.org/10.1021/acs.nanolett.0c03119
68 Q. Zhang G., Chen Z., Xu D., Shammah N., Liao M., F. Li T., Tong L., Y. Zhu S., Nori F., and You J., Exceptional point and cross-relaxation effect in a hybrid quantum system, PRX Quantum 2(2), 020307 (2021)
https://doi.org/10.1103/PRXQuantum.2.020307
69 I. Arkhipov I., Minganti F., Miranowicz A., and Nori F., Generating high-order quantum exceptional points in synthetic dimensions, Phys. Rev. A 104(1), 012205 (2021)
https://doi.org/10.1103/PhysRevA.104.012205
70 Huang R., K. Özdemir Ş., Q. Liao J., Minganti F., M. Kuang L., Nori F., and Jing H., Exceptional photon blockade: Engineering photon blockade with chiral exceptional points, Laser Photonics Rev. 16(7), 2100430 (2022)
https://doi.org/10.1002/lpor.202100430
71 X. Chen D., Zhang Y., L. Zhao J., C. Wu Q., L. Fang Y., P. Yang C., and Nori F., Quantum state discrimination in a PT-symmetric system, Phys. Rev. A 106(2), 022438 (2022)
https://doi.org/10.1103/PhysRevA.106.022438
72 C. Wu Q., L. Zhao J., L. Fang Y., Zhang Y., X. Chen D., P. Yang C., and Nori F., Extension of Noether’s theorem in PT-symmetry systems and its experimental demonstration in an optical setup, Sci. China Phys. Mech. Astron. 66(4), 240312 (2023)
https://doi.org/10.1007/s11433-022-2067-x
73 Ge L. and E. Türeci H., Antisymmetric PT-photonic structures with balanced positive- and negative-index materials, Phys. Rev. A 88(5), 053810 (2013)
https://doi.org/10.1103/PhysRevA.88.053810
74 Wen J., Qin G., Zheng C., Wei S., Kong X., Xin T., and Long G., Observation of information flow in the anti-PT-symmetric system with nuclear spins, npj Quantum Inf. 6, 28 (2020)
https://doi.org/10.1038/s41534-020-0258-4
75 Zheng C., Tian J., Li D., Wen J., Wei S., and Li Y., Efficient quantum simulation of an anti-P-pseudo-Hermitian two-level system, Entropy (Basel) 22(8), 812 (2020)
https://doi.org/10.3390/e22080812
76 Hang C., Huang G., and V. Konotop V., PT-symmetry with a system of three-level atoms, Phys. Rev. Lett. 110, 083604 (2013)
https://doi.org/10.1103/PhysRevLett.110.083604
77 A. Antonosyan D., S. Solntsev A., and A. Sukhorukov A., Parity‒time anti-symmetric parametric amplifier, Opt. Lett. 40, 4575 (2015)
https://doi.org/10.1364/OL.40.004575
78 H. Wu J., Artoni M., and C. La Rocca G., Parity‒time-antisymmetric atomic lattices without gain, Phys. Rev. A 91(3), 033811 (2015)
https://doi.org/10.1103/PhysRevA.91.033811
79 Peng P., Cao W., Shen C., Qu W., Wen J., Jiang L., and Xiao Y., Anti-parity‒time symmetry with flying atoms, Nat. Phys. 12(12), 1139 (2016)
https://doi.org/10.1038/nphys3842
80 Yang F., C. Liu Y., and You L., Anti-PT-symmetry in dissipatively coupled optical systems, Phys. Rev. A 96(5), 053845 (2017)
https://doi.org/10.1103/PhysRevA.96.053845
81 Choi Y., Hahn C., W. Yoon J., and H. Song S., Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun. 9(1), 2182 (2018)
https://doi.org/10.1038/s41467-018-04690-y
82 V. Konotop V. and A. Zezyulin D., Odd-time reversal PT-symmetry induced by an anti-PT-symmetric medium, Phys. Rev. Lett. 120(12), 123902 (2018)
https://doi.org/10.1103/PhysRevLett.120.123902
83 L. Chuang Y. and K. Lee Ziauddin, Realization of simultaneously parity‒time-symmetric and parity‒time-antisymmetric susceptibilities along the longitudinal direction in atomic systems with all optical controls, Opt. Express 26(17), 21969 (2018)
https://doi.org/10.1364/OE.26.021969
84 Li Y., G. Peng Y., Han L., A. Miri M., Li W., Xiao M., F. Zhu X., Zhao J., Alù A., Fan S., and W. Qiu C., Anti-parity‒time symmetry in diffusive systems, Science 364(6436), 170 (2019)
https://doi.org/10.1126/science.aaw6259
85 L. Fang Y., L. Zhao J., X. Chen D., H. Zhou Y., Zhang Y., C. Wu Q., P. Yang C., and Nori F., Entanglement dynamics in anti-PT-symmetric systems, Phys. Rev. Res. 4(3), 033022 (2022)
https://doi.org/10.1103/PhysRevResearch.4.033022
86 T. Wu T., Ground state of a Bose system of hard spheres, Phys. Rev. 115(6), 1390 (1959)
https://doi.org/10.1103/PhysRev.115.1390
87 Hollowood T., Solitons in affine Toda field theories, Nucl. Phys. B 384(3), 523 (1992)
https://doi.org/10.1016/0550-3213(92)90579-Z
88 Mostafazadeh A., Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7(7), 1191 (2010)
https://doi.org/10.1142/S0219887810004816
89 Pauli W., On Dirac’s new method of field quantization, Rev. Mod. Phys. 15(3), 175 (1943)
https://doi.org/10.1103/RevModPhys.15.175
90 E. Fisher M., Yang‒Lee edge singularity and ϕ3 field theory, Phys. Rev. Lett. 40(25), 1610 (1978)
https://doi.org/10.1103/PhysRevLett.40.1610
91 L. Cardy J., Conformal invariance and the Yang‒Lee edge singularity in two dimensions, Phys. Rev. Lett. 54(13), 1354 (1985)
https://doi.org/10.1103/PhysRevLett.54.1354
92 Dorey P., Dunning C., and Tateo R., The ODE/IM correspondence, J. Phys. A Math. Theor. 40(32), R205 (2007)
https://doi.org/10.1088/1751-8113/40/32/R01
93 M. Bender C. and Boettcher S., Real spectra in non-Hermitian Hamiltonians having PT-symmetry, Phys. Rev. Lett. 80(24), 5243 (1998)
https://doi.org/10.1103/PhysRevLett.80.5243
94 M. Bender C., C. Brody D., and F. Jones H., Complex extension of quantum mechanics, Phys. Rev. Lett. 89(27), 270401 (2002)
https://doi.org/10.1103/PhysRevLett.89.270401
95 M. Bender C., N. Meisinger P., and Wang Q., Finite-dimensional PT-symmetric Hamiltonians, J. Phys. Math. Gen. 36(24), 6791 (2003)
https://doi.org/10.1088/0305-4470/36/24/314
96 M. Bender C., Introduction to PT-symmetric quantum theory, Contemp. Phys. 46(4), 277 (2005)
https://doi.org/10.1080/00107500072632
97 Mostafazadeh A., Pseudo-Hermiticity versus PT-symmetry (ii): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43(5), 2814 (2002)
https://doi.org/10.1063/1.1461427
98 Mostafazadeh A., Pseudo-Hermiticity versus PT-symmetry (iii): Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43(8), 3944 (2002)
https://doi.org/10.1063/1.1489072
99 Mostafazadeh A. and Batal A., Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics, J. Phys. Math. Gen. 37(48), 11645 (2004)
https://doi.org/10.1088/0305-4470/37/48/009
100 E. Rüter C., G. Makris K., El-Ganainy R., N. Christodoulides D., Segev M., and Kip D., Observation of parity‒time symmetry in optics, Nat. Phys. 6(3), 192 (2010)
https://doi.org/10.1038/nphys1515
101 M. Bender C., K. Berntson B., Parker D., and Samuel E., Observation of PT phase transition in a simple mechanical system, Am. J. Phys. 81(3), 173 (2013)
https://doi.org/10.1119/1.4789549
102 Fleury R., Sounas D., and Alù A., An invisible acoustic sensor based on parity‒time symmetry, Nat. Commun. 6(1), 5905 (2015)
https://doi.org/10.1038/ncomms6905
103 Schindler J., Li A., C. Zheng M., M. Ellis F., and Kottos T., Experimental study of active LRC circuits with PT-symmetries, Phys. Rev. A 84(4), 040101 (2011)
https://doi.org/10.1103/PhysRevA.84.040101
104 C. Baker H., Non-Hermitian dynamics of multiphoton ionization, Phys. Rev. Lett. 50(20), 1579 (1983)
https://doi.org/10.1103/PhysRevLett.50.1579
105 Zhang Z., Zhang Y., Sheng J., Yang L., A. Miri M., N. Christodoulides D., He B., Zhang Y., and Xiao M., Observation of parity−time symmetry in optically induced atomic lattices, Phys. Rev. Lett. 117(12), 123601 (2016)
https://doi.org/10.1103/PhysRevLett.117.123601
106 Wu Y., Liu W., Geng J., Song X., Ye X., K. Duan C., Rong X., and Du J., Observation of parity‒time symmetry breaking in a single-spin system, Science 364(6443), 878 (2019)
https://doi.org/10.1126/science.aaw8205
107 Rubinstein J., Sternberg P., and Ma Q., Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents, Phys. Rev. Lett. 99(16), 167003 (2007)
https://doi.org/10.1103/PhysRevLett.99.167003
108 Chong Y., Ge L., Cao H., and D. Stone A., Coherent perfect absorbers: Time-reversed lasers, Phys. Rev. Lett. 105(5), 053901 (2010)
https://doi.org/10.1103/PhysRevLett.105.053901
109 Szameit A., C. Rechtsman M., Bahat-Treidel O., and Segev M., PT-symmetry in honeycomb photonic lattices, Phys. Rev. A 84(2), 021806 (2011)
https://doi.org/10.1103/PhysRevA.84.021806
110 Zheng C., Hao L., and L. Long G., Observation of a fast evolution in a parity‒time-symmetric system, Philos. Trans. Royal Soc. A 371(1989), 20120053 (2013)
https://doi.org/10.1098/rsta.2012.0053
111 Wang X. and H. Wu J., Optical PT-symmetry and PT-antisymmetry in coherently driven atomic lattices, Opt. Express 24(4), 4289 (2016)
https://doi.org/10.1364/OE.24.004289
112 Jiang Y., Mei Y., Zuo Y., Zhai Y., Li J., Wen J., and Du S., Anti-parity‒time symmetric optical four-wave mixing in cold atoms, Phys. Rev. Lett. 123(19), 193604 (2019)
https://doi.org/10.1103/PhysRevLett.123.193604
113 Moiseyev N., Non-Hermitian Quantum Mechanics, Cambridge University Press, 2011
114 Ashida Y., Gong Z., and Ueda M., Non-Hermitian physics, Adv. Phys. 69(3), 249 (2020)
https://doi.org/10.1080/00018732.2021.1876991
115 J. Bergholtz E., C. Budich J., and K. Kunst F., Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93(1), 015005 (2021)
https://doi.org/10.1103/RevModPhys.93.015005
116 Kawabata K., Shiozaki K., Ueda M., and Sato M., Symmetry and topology in non-Hermitian physics, Phys. Rev. X 9(4), 041015 (2019)
https://doi.org/10.1103/PhysRevX.9.041015
117 Banerjee A., Sarkar R., Dey S., and Narayan A., Non-Hermitian topological phases: Principles and prospects, J. Phys.: Condens. Matter 35(33), 333001 (2023)
https://doi.org/10.1088/1361-648X/acd1cb
118 Heiss W., Exceptional points of non-Hermitian operators, J. Phys. Math. Gen. 37(6), 2455 (2004)
https://doi.org/10.1088/0305-4470/37/6/034
119 Pan L., Chen S., and Cui X., Interacting non-Hermitian ultracold atoms in a harmonic trap: Two-body exact solution and a high-order exceptional point, Phys. Rev. A 99(6), 063616 (2019)
https://doi.org/10.1103/PhysRevA.99.063616
120 Kato T., Perturbation Theory for Linear Operators, Vol. 132, Springer Science & Business Media, 2013
121 Heiss W., The physics of exceptional points, J. Phys. A Math. Theor. 45(44), 444016 (2012)
https://doi.org/10.1088/1751-8113/45/44/444016
122 D. Huerta-Morales J., A. Quiroz-Juárez M., N. Joglekar Y., and J. León-Montiel R., Generating high-order exceptional points in coupled electronic oscillators using complex synthetic gauge fields, Phys. Rev. A 107(4), 042219 (2023)
https://doi.org/10.1103/PhysRevA.107.042219
123 Reja A. and Narayan A., Characterizing exceptional points using neural networks, Europhys. Lett. 144(3), 36002 (2023)
https://doi.org/10.1209/0295-5075/ad0c6f
124 Zhang S., Zhang X., Jin L., and Song Z., High-order exceptional points in supersymmetric arrays, Phys. Rev. A 101(3), 033820 (2020)
https://doi.org/10.1103/PhysRevA.101.033820
125 B. Lee S., Yang J., Moon S., Y. Lee S., B. Shim J., W. Kim S., H. Lee J., and An K., Observation of an exceptional point in a chaotic optical microcavity, Phys. Rev. Lett. 103(13), 134101 (2009)
https://doi.org/10.1103/PhysRevLett.103.134101
126 Zhen B., W. Hsu C., Igarashi Y., Lu L., Kaminer I., Pick A., L. Chua S., D. Joannopoulos J., and Soljačić M., Spawning rings of exceptional points out of Dirac cones, Nature 525(7569), 354 (2015)
https://doi.org/10.1038/nature14889
127 G. Makris K., El-Ganainy R., Christodoulides D., and H. Musslimani Z., Beam dynamics in PT-symmetric optical lattices, Phys. Rev. Lett. 100(10), 103904 (2008)
https://doi.org/10.1103/PhysRevLett.100.103904
128 Wiersig J., Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection, Phys. Rev. Lett. 112(20), 203901 (2014)
https://doi.org/10.1103/PhysRevLett.112.203901
129 Liertzer M., Ge L., Cerjan A., D. Stone A., E. Türeci H., and Rotter S., Pump-induced exceptional points in lasers, Phys. Rev. Lett. 108(17), 173901 (2012)
https://doi.org/10.1103/PhysRevLett.108.173901
130 Doppler J., A. Mailybaev A., Böhm J., Kuhl U., Girschik A., Libisch F., J. Milburn T., Rabl P., Moiseyev N., and Rotter S., Dynamically encircling an exceptional point for asymmetric mode switching, Nature 537(7618), 76 (2016)
https://doi.org/10.1038/nature18605
131 Xu H., Mason D., Jiang L., and Harris J., Topological energy transfer in an optomechanical system with exceptional points, Nature 537(7618), 80 (2016)
https://doi.org/10.1038/nature18604
132 Choi Y., Kang S., Lim S., Kim W., R. Kim J., H. Lee J., and An K., Quasieigenstate coalescence in an atom-cavity quantum composite, Phys. Rev. Lett. 104(15), 153601 (2010)
https://doi.org/10.1103/PhysRevLett.104.153601
133 Lin Z., Ramezani H., Eichelkraut T., Kottos T., Cao H., and N. Christodoulides D., Unidirectional invisibility induced by PT-symmetric periodic structures, Phys. Rev. Lett. 106(21), 213901 (2011)
https://doi.org/10.1103/PhysRevLett.106.213901
134 Guo A., Salamo G., Duchesne D., Morandotti R., Volatier-Ravat M., Aimez V., Siviloglou G., and Christodoulides D., Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009)
https://doi.org/10.1103/PhysRevLett.103.093902
135 Gessner M. and Smerzi A., Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed, Phys. Rev. A 97(2), 022109 (2018)
https://doi.org/10.1103/PhysRevA.97.022109
136 Liu J., Yuan H., M. Lu X., and Wang X., Quantum Fisher information matrix and multiparameter estimation, J. Phys. A Math. Theor. 53(2), 023001 (2020)
https://doi.org/10.1088/1751-8121/ab5d4d
137 Demkowicz-Dobrzański R., Górecki W., and Guţă M., Multi-parameter estimation beyond quantum Fisher information, J. Phys. A Math. Theor. 53(36), 363001 (2020)
https://doi.org/10.1088/1751-8121/ab8ef3
138 Petz D.Ghinea C., Introduction to quantum Fisher information, in: Quantum Probability and Related Topics, World Scientific, 2011, pp 261–281
139 Yamaguchi K. and Tajima H., Beyond i.i.d. in the resource theory of asymmetry: An information-spectrum approach for quantum Fisher information, Phys. Rev. Lett. 131(20), 200203 (2023)
https://doi.org/10.1103/PhysRevLett.131.200203
140 Rangani Jahromi H. and Haseli S., Quantum memory and quantum correlations of Majorana qubits used for magnetometry, Quantum Inf. Comput. 20, 0935 (2020)
https://doi.org/10.26421/QIC20.11-12-2
141 Rangani Jahromi H., Weak measurement effect on optimal estimation with lower and upper bound on relativistic metrology, Int. J. Mod. Phys. D 28(12), 1950162 (2019)
https://doi.org/10.1142/S0218271819501621
142 X. Peng J., Zhu B., Zhang W., and Zhang K., Dissipative quantum Fisher information for a general Liouvillian parametrized process, Phys. Rev. A 109(1), 012432 (2024)
https://doi.org/10.1103/PhysRevA.109.012432
143 L. Zhao J., Zhou Y., X. Chen D., Su Q., L. Zong X., C. Wu Q., Yang M., and Yang C., Quantum Fisher information power of quantum evolutions, J. Phys. A Math. Theor. 57(27), 275304 (2024)
https://doi.org/10.1088/1751-8121/ad5524
144 Cieśliński P., Kurzynski P., Sowinski T., Kłobus W., and Laskowski W., Exploring many-body interactions through quantum Fisher information, Phys. Rev. A 110(1), 012407 (2024)
https://doi.org/10.1103/PhysRevA.110.012407
145 R. Jahromi H., Mahdavipour K., Khazaei Shadfar M., and Lo Franco R., Witnessing non-Markovian effects of quantum processes through Hilbert‒Schmidt speed, Phys. Rev. A 102(2), 022221 (2020)
https://doi.org/10.1103/PhysRevA.102.022221
146 R. Jahromi H. and L. Franco R., Hilbert−Schmidt speed as an efficient figure of merit for quantum estimation of phase encoded into the initial state of open n-qubit systems, Sci. Rep. 11, 7128 (2021)
https://doi.org/10.1038/s41598-021-86461-2
147 M. Hosseiny S., Rangani Jahromi H., and Amniat-Talab M., Monitoring variations of refractive index via Hilbert‒Schmidt speed and applying this phenomenon to improve quantum metrology, J. Phys. At. Mol. Opt. Phys. 56(17), 175402 (2023)
https://doi.org/10.1088/1361-6455/acf017
148 Mahdavipour K., Khazaei Shadfar M., Rangani Jahromi H., Morandotti R., and Lo Franco R., Memory effects in high-dimensional systems faithfully identified by Hilbert‒Schmidt speed-based witness, Entropy (Basel) 24(3), 395 (2022)
https://doi.org/10.3390/e24030395
149 E. Abouelkhir N., Slaoui A., El Hadfi H., and Ahl Laamara R., Estimating phase parameters of a three-level system interacting with two classical monochromatic fields in simultaneous and individual metrological strategies, J. Opt. Soc. Am. B 40(6), 1599 (2023)
https://doi.org/10.1364/JOSAB.487744
150 Nikdel Yousefi N., Mortezapour A., Naeimi G., Nosrati F., Pariz A., and Lo Franco R., Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal, Phys. Rev. A 105(4), 042212 (2022)
https://doi.org/10.1103/PhysRevA.105.042212
151 R. Jahromi H., Remote sensing and faithful quantum teleportation through non-localized qubits, Phys. Lett. A 424, 127850 (2022)
https://doi.org/10.1016/j.physleta.2021.127850
152 S. Ma X., H. Quan J., N. Lu Y., and T. Cheng M., Quantum enhancement of qutrit dynamics of a three-level giant atom coupling to a one-dimensional waveguide, Results Phys. 56, 107252 (2024)
https://doi.org/10.1016/j.rinp.2023.107252
153 M. Hosseiny S., Seyed-Yazdi J., and Norouzi M., Faithful quantum teleportation through common and independent qubit-noise configurations and multi-parameter estimation in the output of teleported state, AVS Quantum Sci. 6(1), 014405 (2024)
https://doi.org/10.1116/5.0189752
154 Ikken N., Slaoui A., Ahl Laamara R., and B. Drissi L., Bidirectional quantum teleportation of even and odd coherent states through the multipartite Glauber coherent state: Theory and implementation, Quantum Inform. Process 22(10), 391 (2023)
https://doi.org/10.1007/s11128-023-04132-9
155 M. Hosseiny S., Rangani Jahromi H., Radgohar R., and Amniat-Talab M., Estimating energy levels of a three-level atom in single and multi-parameter metrological schemes, Phys. Scr. 97(12), 125402 (2022)
https://doi.org/10.1088/1402-4896/ac9dc7
156 C. Brody D., Biorthogonal quantum mechanics, J. Phys. A 47(3), 035305 (2014)
https://doi.org/10.1088/1751-8113/47/3/035305
157 Edvardsson E. and Ardonne E., Sensitivity of non-Hermitian systems, Phys. Rev. B 106(11), 115107 (2022)
https://doi.org/10.1103/PhysRevB.106.115107
158 Kawabata K., Ashida Y., and Ueda M., Information retrieval and criticality in parity‒time-symmetric systems, Phys. Rev. Lett. 119(19), 190401 (2017)
https://doi.org/10.1103/PhysRevLett.119.190401
159 C. Brody D. and M. Graefe E., Mixed-state evolution in the presence of gain and loss, Phys. Rev. Lett. 109(23), 230405 (2012)
https://doi.org/10.1103/PhysRevLett.109.230405
160 Ohlsson T. and Zhou S., Density-matrix formalism for PT-symmetric non-Hermitian Hamiltonians with the Lindblad equation, Phys. Rev. A 103(2), 022218 (2021)
https://doi.org/10.1103/PhysRevA.103.022218
161 Moiseyev N., Certain P., and Weinhold F., Resonance properties of complex-rotated Hamiltonians, Mol. Phys. 36(6), 1613 (1978)
https://doi.org/10.1080/00268977800102631
162 Moiseyev N. and Lein M., Non-Hermitian quantum mechanics for high-order harmonic generation spectra, J. Phys. Chem. A 107(37), 7181 (2003)
https://doi.org/10.1021/jp034390y
163 Das A. and Greenwood L., An alternative construction of the positive inner product in non-Hermitian quantum mechanics, Phys. Lett. B 678(5), 504 (2009)
https://doi.org/10.1016/j.physletb.2009.06.060
164 Mostafazadeh A., Pseudo-Hermiticity and generalized PT- and CPT-symmetries, J. Math. Phys. 44(3), 974 (2003)
https://doi.org/10.1063/1.1539304
165 M. Bender C., Brod J., Refig A., and E. Reuter M., The C coperator in PT-symmetric quantum theories, J. Phys. Math. Gen. 37(43), 10139 (2004)
https://doi.org/10.1088/0305-4470/37/43/009
166 Q. Li J., G. Miao Y., and Xue Z., A possible method for non-Hermitian and non-PT-symmetric Hamiltonian systems, PLoS One 9(6), e97107 (2014)
https://doi.org/10.1371/journal.pone.0097107
167 Badhani H.Banerjee S.Chandrashekar C., Non-Hermitian quantum walks and non-Markovianity: The coin-position interaction, arXiv: (2021)
168 Ohlsson T. and Zhou S., Transition probabilities in the two-level quantum system with PT-symmetric non-Hermitian Hamiltonians, J. Math. Phys. 61(5), 052104 (2020)
https://doi.org/10.1063/5.0002958
169 Shi T.Sun C., Recovering unitarity of Lee model in bi-orthogonal basis, arXiv: (2009)
170 Kleefeld F., The construction of a general inner product in non-Hermitian quantum theory and some explanation for the nonuniqueness of the C operator in PT quantum mechanics, arXiv: (2009)
171 Weigert S., Completeness and orthonormality in PT-symmetric quantum systems, Phys. Rev. A 68(6), 062111 (2003)
https://doi.org/10.1103/PhysRevA.68.062111
172 A. M. Dirac P., The Principles of Quantum Mechanics, Oxford University Press, 1981
173 Xiao Z. and Alù A., Tailoring exceptional points in a hybrid PT-symmetric and anti-PT-symmetric scattering system, Nanophotonics 10(14), 3723 (2021)
https://doi.org/10.1515/nanoph-2021-0245
174 Ding K., Ma G., Xiao M., Zhang Z., and T. Chan C., and topological properties of multiple exceptional points and their experimental realization, Phys. Rev. X 6(2), 021007 (2016)
https://doi.org/10.1103/PhysRevX.6.021007
175 Hatano N. and R. Nelson D., Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77(3), 570 (1996)
https://doi.org/10.1103/PhysRevLett.77.570
176 R. Leefmans C., Parto M., Williams J., H. Li G., Dutt A., Nori F., and Marandi A., Topological temporally mode-locked laser, Nat. Phys. 20, 852 (2024)
https://doi.org/10.1038/s41567-024-02420-4
177 Jaiswal R., Banerjee A., and Narayan A., Characterizing and tuning exceptional points using Newton polygons, New J. Phys. 25(3), 033014 (2023)
https://doi.org/10.1088/1367-2630/acc1fe
178 Sachdev S., Quantum phase transitions, Phys. World 12(4), 33 (1999)
https://doi.org/10.1088/2058-7058/12/4/23
179 Hayata T. and Yamamoto A., Non-Hermitian Hubbard model without the sign problem, Phys. Rev. B 104(12), 125102 (2021)
https://doi.org/10.1103/PhysRevB.104.125102
180 J. Yu X., Pan Z., Xu L., and X. Li Z., Non-Hermitian strongly interacting Dirac fermions, Phys. Rev. Lett. 132(11), 116503 (2024)
https://doi.org/10.1103/PhysRevLett.132.116503
181 Bian Z., Xiao L., Wang K., A. Onanga F., Ruzicka F., Yi W., N. Joglekar Y., and Xue P., Quantum information dynamics in a high-dimensional parity‒time-symmetric system, Phys. Rev. A 102(3), 030201 (2020)
https://doi.org/10.1103/PhysRevA.102.030201
[1] Haiyan Zhang, Zhiwei Guo, Yunhui Li, Yaping Yang, Yuguang Chen, Hong Chen. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer[J]. Front. Phys. , 2024, 19(4): 43209-.
[2] Xu-Dan Xie, Zheng-Yuan Xue, Dan-Bo Zhang. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems[J]. Front. Phys. , 2024, 19(4): 41202-.
[3] Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential[J]. Front. Phys. , 2022, 17(4): 42503-.
[4] Yang-Yang Fu, Yue Fei, Da-Xing Dong, You-Wen Liu. Photonic spin Hall effect in PT symmetric metamaterials[J]. Front. Phys. , 2019, 14(6): 62601-.
[5] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed