|
|
Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes |
Hui Ding1, Xiao-Hong Li1,2,3( ), Rui-Zhou Zhang1, Hong-Ling Cui1 |
1. College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China 2. Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China 3. Longmen Laboratory, Luoyang 471023, China |
|
|
Abstract MXenes have wide applications in energy storage devices because of their compositional diversity. Electronic and optical properties, Bader charge and quantum capacitance of Janus ScHfCO2 MXene under biaxial strain are studied by density functional theory (DFT). The substitution of Hf atoms induces the decrease of the band gap of ScHfCO2, which changes from direct semiconductor into indirect semiconductor. Band gap generally increases with the increase of the tensile strain because of the blueshift of Sc-d and Hf-d orbits, and ScHfCO2 changes to M→K indirect semiconductor at 5% strain. ScHfCO2 under strains from −5% to 4% maintains the indirect bandgap characteristics. The appearance of built-in electric field in ScHfCO2 under strain improves the charge redistribution across Janus layer. ScHfCO2 under compressive strain has better conductivity than ScHfCO2 under tensile strain. ScHfCO2 under strains are all promising cathode materials. Larger voltage improves the character of cathode materials because of their much larger |Qc| when compared with those at aqueous system.
|
Keywords
Janus MXene
electronic properties
quantum capacitance
density functional theory
charge transfer
|
Corresponding Author(s):
Xiao-Hong Li
|
Just Accepted Date: 11 September 2024
Issue Date: 14 October 2024
|
|
1 |
Guan C., L. Liu J., D. Wang Y., Mao L., X. Fan Z., X. Shen Z., Zhang H., and Wang J., Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability, ACS Nano 9(5), 5198 (2015)
https://doi.org/10.1021/acsnano.5b00582
|
2 |
Poonam K., Sharma K., Arora A., and K. Tripathi S., Review of supercapacitors: Materials and devices, J. Energy Storage 21, 801 (2019)
https://doi.org/10.1016/j.est.2019.01.010
|
3 |
Şahin M.Blaabjerg F.Sangwongwanich A., A comprehensive review on supercapacitor applications and developments, Energies 15(3), 674 (2022)
|
4 |
J. Caparrós Mancera J., L. Saenz J., López E., M. Andújar J., Segura Manzano F., J. Vivas F., and Isorna F., Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid, Appl. Energy 308, 118355 (2022)
https://doi.org/10.1016/j.apenergy.2021.118355
|
5 |
Muzaffar A.B. Ahamed M.Deshmukh K.Thirumalai J., A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sustain. Energy Rev. 101, 123 (2019)
|
6 |
Y. Bhat M., A. Hashmi S., Khan M., Choi D., and Qurashi A., Frontiers and recent developments on supercapacitor’s materials, design, and applications: Transport and power system applications, J. Energy Storage 58, 106104 (2023)
https://doi.org/10.1016/j.est.2022.106104
|
7 |
Keum K., W. Kim J., Y. Hong S., G. Son J., S. Lee S., and S. Ha J., Flexible/Stretchable supercapacitors with novel functionality for wearable electronics, Adv. Mater. 32(51), 2002180 (2020)
https://doi.org/10.1002/adma.202002180
|
8 |
R. Miller J. and Simon P., Electrochemical capacitors for energy management, Science 321(5889), 651 (2008)
https://doi.org/10.1126/science.1158736
|
9 |
Simon P. and Gogotsi Y., Materials for electrochemical capacitors, Nat. Mater. 7(11), 845 (2008)
https://doi.org/10.1038/nmat2297
|
10 |
Zhou Q., Wang L., Ju W., Su D., Zhu J., Yong Y., and Wu S., Quantum capacitance of graphene-like/graphene heterostructures for supercapacitor electrodes, Electrochim. Acta 461, 142655 (2023)
https://doi.org/10.1016/j.electacta.2023.142655
|
11 |
Xia J., Chen F., Li J., and Tao N., Measurement of the quantum capacitance of graphene, Nat. Nanotechnol. 4(8), 505 (2009)
https://doi.org/10.1038/nnano.2009.177
|
12 |
Wang Y., Wu Y., Huang Y., Zhang F., Yang X., Ma Y., and Chen Y., Preventing graphene sheets from restacking for high-capacitance performance, J. Phys. Chem. C 115(46), 23192 (2011)
https://doi.org/10.1021/jp206444e
|
13 |
F. El-Kady M., Strong V., Dubin S., and B. Kaner R., Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science 335(6074), 1326 (2012)
https://doi.org/10.1126/science.1216744
|
14 |
Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M., and Chen Y., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113(30), 13103 (2009)
https://doi.org/10.1021/jp902214f
|
15 |
Chen J., Li C., and Shi G., Graphene materials for electrochemical capacitors, J. Phys. Chem. Lett. 4(8), 1244 (2013)
https://doi.org/10.1021/jz400160k
|
16 |
Jana S., Bandyopadhyay A., Datta S., Bhattacharya D., and Jana D., Emerging properties of carbon based 2D material beyond graphene, J. Phys.: Condens. Matter 34(5), 053001 (2021)
https://doi.org/10.1088/1361-648X/ac3075
|
17 |
Naguib M., N. Mochalin V., W. Barsoum M., and Gogotsi Y., MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
https://doi.org/10.1002/adma.201304138
|
18 |
Zhou J.Zha X.Y. Chen F.Ye Q.Eklund P. Du S.Huang Q., A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5, Angew. Chem. Int. Ed. 55(16), 5008 (2016)
|
19 |
Anasori B.R. Lukatskaya M.Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
|
20 |
Naguib M., W. Barsoum M., and Gogotsi Y., Ten years of progress in the synthesis and development of MXenes, Adv. Mater. 33(39), 2103393 (2021)
https://doi.org/10.1002/adma.202103393
|
21 |
P. Nguyen T., M. Tuan Nguyen D., L. Tran D., K. Le H., V. N. Vo D., S. Lam S., S. Varma R., Shokouhimehr M., C. Nguyen C., and V. Le Q., MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction, Mol. Catal. 486, 110850 (2020)
https://doi.org/10.1016/j.mcat.2020.110850
|
22 |
Zhang K., Q. Li D., Y. Cao H., H. Zhu Q., Trapalis C., F. Zhu P., H. Gao X., and Y. Wang C., Insights into different dimensional MXenes for photocatalysis, Chem. Eng. J. 424, 130340 (2021)
https://doi.org/10.1016/j.cej.2021.130340
|
23 |
Shan G., Ding Z., and Gogotsi Y., Two-dimensional MXenes and their applications, Front. Phys. 18, 13604 (2023)
https://doi.org/10.1007/s11467-022-1254-2
|
24 |
Zhu X.Zhang Y.Liu M.Liu Y.Liu Y., 2D titanium carbide MXenes as emerging optical biosensing platforms, Biosens. Bioelectron. 171, 112730 (2021)
|
25 |
Huang H., Dong C., Feng W., Wang Y., Huang B., and Chen Y., Biomedical engineering of two-dimensional MXenes, Adv. Drug Deliv. Rev. 184, 114178 (2022)
https://doi.org/10.1016/j.addr.2022.114178
|
26 |
Alwarappan S.Nesakumar N.L. Sun D. Y. Hu T.Z. Li C., 2D metal carbides and nitrides (MXenes) for sensors and biosensors, Biosens. Bioelectron. 205, 113943 (2022)
|
27 |
Zhang C., L. Ma Y., T. Zhang X., Abdolhosseinzadeh S., W. Sheng H., Lan W., Pakdel A., Heier J., and Nüesch F., Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications, Energy Environ. Mater. 3(1), 29 (2020)
https://doi.org/10.1002/eem2.12058
|
28 |
Nahirniak S., Ray A., and Saruhan B., Challenges and future prospects of the MXene-based materials for energy storage applications, Batteries (Basel) 9(2), 126 (2023)
https://doi.org/10.3390/batteries9020126
|
29 |
Zhang J., Cui Z., Liu J., Li C., Tan H., Shan G., and Ma R., Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond, Front. Phys. 18, 13603 (2023)
https://doi.org/10.1007/s11467-022-1208-8
|
30 |
Ma R., Chen Z., Zhao D., Zhang X., Zhuo J., Yin Y., Wang X., Yang G., and Yi F., Ti3C2Tx MXene for electrode materials of supercapacitors, J. Mater. Chem. A 9(19), 11501 (2021)
https://doi.org/10.1039/D1TA00681A
|
31 |
Z. Zhu Q., P. Li J., Simon P., and Xu B., Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives, Energy Storage Mater. 35, 630 (2021)
https://doi.org/10.1016/j.ensm.2020.11.035
|
32 |
Peng Z., Huang J., and Guo Z., Anisotropic Janus materials: From micro-/nanostructures to applications, Nanoscale 13(45), 18839 (2021)
https://doi.org/10.1039/D1NR05499F
|
33 |
Pang X., Wan C., Wang M., and Lin Z., Strictly biphasic soft and hard Janus structures: Synthesis, properties, and applications, Angew. Chem. Int. Ed. 53(22), 5524 (2014)
https://doi.org/10.1002/anie.201309352
|
34 |
Zhang J., Jia S., Kholmanov I., Dong L., Er D., Chen W., Guo H., Jin Z., B. Shenoy V., Shi L., and Lou J., Janus monolayer transition-metal dichalcogenides, ACS Nano 11(8), 8192 (2017)
https://doi.org/10.1021/acsnano.7b03186
|
35 |
Y. Lu A., Zhu H., Xiao J., P. Chuu C., Han Y., H. Chiu M., C. Cheng C., W. Yang C., H. Wei K., Yang Y., Wang Y., Sokaras D., Nordlund D., Yang P., A. Muller D., Y. Chou M., Zhang X., and J. Li L., Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
https://doi.org/10.1038/nnano.2017.100
|
36 |
C. Riis-Jensen A., Deilmann T., Olsen T., and S. Thygesen K., Classifying the electronic and optical properties of Janus monolayers, ACS Nano 13(11), 13354 (2019)
https://doi.org/10.1021/acsnano.9b06698
|
37 |
Yagmurcukardes M., Qin Y., Ozen S., Sayyad M., M. Peeters F., Tongay S., and Sahin H., Quantum properties and applications of 2D Janus crystals and their superlattices, Appl. Phys. Rev. 7(1), 011311 (2020)
https://doi.org/10.1063/1.5135306
|
38 |
Zhang L., J. F. Yang Z., Gong T., K. Pan R., D. Wang H., A. Guo Z., Zhang H., and Fu X., Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications, J. Mater. Chem. A 8(18), 8813 (2020)
https://doi.org/10.1039/D0TA01999B
|
39 |
W. Ng S., Noor N., and Zheng Z., Graphene-based two-dimensional Janus materials, NPG Asia Mater. 10(4), 217 (2018)
https://doi.org/10.1038/s41427-018-0023-8
|
40 |
Li R., Cheng Y., and Huang W., Recent progress of Janus 2D transition metal chalcogenides: From theory to experiments, Small 14(45), 1802091 (2018)
https://doi.org/10.1002/smll.201802091
|
41 |
Tang X.Kou L., 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 2100562 (2022)
|
42 |
Jin W., Wu S., and Wang Z., Structural, electronic and mechanical properties of two-dimensional Janus transition metal carbides and nitrides, Physica E 103, 307 (2018)
https://doi.org/10.1016/j.physe.2018.06.024
|
43 |
Akgenc B., Intriguing of two-dimensional Janus surface-functionalized MXenes: An ab initio calculation, Comput. Mater. Sci. 171, 109231 (2020)
https://doi.org/10.1016/j.commatsci.2019.109231
|
44 |
Tang R., Zhou S., Li C., Chen R., Zhang L., Zhang Z., and Yin L., Janus-structured Co-Ti3C2 MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation, Adv. Funct. Mater. 30(19), 2000637 (2020)
https://doi.org/10.1002/adfm.202000637
|
45 |
Gao P., Song M., Wang X., Liu Q., He S., Su Y., and Qian P., Theoretical study on the electronic structure and magnetic properties regulation of Janus structure of M’MCO2 2D MXenes, Nanomaterials (Basel) 12(3), 556 (2022)
https://doi.org/10.3390/nano12030556
|
46 |
Das M. and Ghosh S., Improved charge storage capacity of supercapacitor electrodes by engineering surfaces: The case of Janus MXenes, J. Phys. Chem. C 128(3), 1014 (2024)
https://doi.org/10.1021/acs.jpcc.3c07443
|
47 |
Xiong K., Cheng Z., Liu J., F. Liu P., Zi Z., Computational studies on functionalized Janus MXenes MM′CT2, and (M = Zr, Hf, M ≠ M′; T = –O, –F, –OH): Photoelectronic properties and potential photocatalytic activities, RSC Advances 13(12), 7972 (2023)
https://doi.org/10.1039/D3RA00303E
|
48 |
Guan Z., Ni S., and Hu S., Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: A first-principles study, J. Phys. Chem. C 122(11), 6209 (2018)
https://doi.org/10.1021/acs.jpcc.8b00257
|
49 |
Peng Z., Chen X., Fan Y., J. Srolovitz D., and Lei D., Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications, Light Sci. Appl. 9(1), 190 (2020)
https://doi.org/10.1038/s41377-020-00421-5
|
50 |
L. Hou L., H. Li J., C. Cui C., H. Li X., Z. Zhang R., and L. Cui H., Biaxial strain tunable electronic properties, photocatalytic properties and quantum capacitance of Sc2CO2 MXenes, Vacuum 212, 112016 (2023)
https://doi.org/10.1016/j.vacuum.2023.112016
|
51 |
P. Reji R., K. C. Balaji S., Sivalingam Y., Kawazoe Y., and Velappa Jayaraman S., First-principles density functional theory calculations on the potential of Sc2CO2 MXene nanosheets as a dual-mode sensor for detection of volatile organic compounds in exhaled human breath, ACS Appl. Nano Mater. 6(7), 5345 (2023)
https://doi.org/10.1021/acsanm.2c05474
|
52 |
H. Zha X., Huang Q., He J., He H., Zhai J., S. Francisco J., and Du S., The thermal and electrical properties of the promising semiconductor MXene Hf2CO2, Sci. Rep. 6, 27971 (2016)
https://doi.org/10.1038/srep27971
|
53 |
Li X., Dai Y., Ma Y., Liu Q., Huang B., and Intriguing electronic properties of two dimensional MoS2/TM2CO2 (TM= Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps, Nanotechnology 26(13), 135703 (2015)
https://doi.org/10.1088/0957-4484/26/13/135703
|
54 |
Jain A., Shin Y., and A. Persson K., Computational predictions of energy materials using density functional theory, Nat. Rev. Mater. 1(1), 15004 (2016)
https://doi.org/10.1038/natrevmats.2015.4
|
55 |
Levämäki H., Kuisma M., and Kokko K., Space partitioning of exchange-correlation functionals with the projector augmented-wave method, J. Chem. Phys. 150(5), 054101 (2019)
https://doi.org/10.1063/1.5078432
|
56 |
W. Peng H. and P. Perdew J., Rehabilitation of the Perdew–Burke–Ernzerhof generalized gradient approximation for layered materials, Phys. Rev. B 95(8), 081105 (2017)
https://doi.org/10.1103/PhysRevB.95.081105
|
57 |
Bandyopadhyay P., Priya, and M. Sadhukhan, A simple fragment-based method for van der waals corrections over density functional theory, Phys. Chem. Chem. Phys. 24(14), 8508 (2022)
https://doi.org/10.1039/D2CP00744D
|
58 |
L. John D., C. Castro L., and L. Pulfrey D., Quantum capacitance in nanoscale device modeling, J. Appl. Phys. 96(9), 5180 (2004)
https://doi.org/10.1063/1.1803614
|
59 |
Paek E.J. Pak A.S. Hwang G., A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid, J. Electrochem. Soc. 160(1), A1 (2013)
|
60 |
Hirunsit P., Liangruksa M., and Khanchaitit P., Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by Al, B, N and P doping, and monovacancy: Theoretical study, Carbon 108, 7 (2016)
https://doi.org/10.1016/j.carbon.2016.07.005
|
61 |
Zhang Z., H. Li X., Z. Zhang R., L. Cui H., and T. Yan H., First-principles calculations of the electronic, optical properties and quantum capacitance of Mn doped Sc2CO2 monolayer under biaxial strain, J. Energy Storage 71, 108222 (2023)
https://doi.org/10.1016/j.est.2023.108222
|
62 |
Zhang Y., Sa B., Zhou J., and Sun Z., Two-dimensional (Zr0.5Hf0.5)2CO2: A promising visible light water-splitting photocatalyst with efficiently carrier separation, Comput. Mater. Sci. 186, 110013 (2021)
https://doi.org/10.1016/j.commatsci.2020.110013
|
63 |
H. Li X., H. Cui X., Z. Zhang R., and L. Cui H., The effect of biaxial strain on the electronic properties, quantum capacitance and diffusion of Li adsorption on Sc2CO2 MXene, J. Energy Storage 74, 109159 (2023)
https://doi.org/10.1016/j.est.2023.109159
|
64 |
M. Hu H. and Ouyang G., Interface-induced transition from Schottky-to-Ohmic contact in Sc2CO2-based multiferroic heterojunctions, Phys. Chem. Chem. Phys. 23(2), 827 (2021)
https://doi.org/10.1039/D0CP05684G
|
65 |
Zhang H., H. Li X., Z. Zhang R., L. Cui H., Electronic structures, optical properties, and quantum capacitance of 2D Janus ZrMCO2 (M = Sc, Ta, W) MXenes for supercapacitor electrodes, Ceram. Int. 50(11), 18932 (2024)
https://doi.org/10.1016/j.ceramint.2024.02.381
|
66 |
C. Ma X., Dai Y., Yu L., and B. Huang B., Energy transfer in plasmonic photocatalytic composites, Light Sci. Appl. 5(2), e16017 (2016)
https://doi.org/10.1038/lsa.2016.17
|
[1] |
fop-25013-of-lixiaohong_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|