Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2025, Vol. 20 Issue (1) : 14211    https://doi.org/10.15302/frontphys.2025.014211
Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes
Hui Ding1, Xiao-Hong Li1,2,3(), Rui-Zhou Zhang1, Hong-Ling Cui1
1. College of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2. Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, China
3. Longmen Laboratory, Luoyang 471023, China
 Download: PDF(2802 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MXenes have wide applications in energy storage devices because of their compositional diversity. Electronic and optical properties, Bader charge and quantum capacitance of Janus ScHfCO2 MXene under biaxial strain are studied by density functional theory (DFT). The substitution of Hf atoms induces the decrease of the band gap of ScHfCO2, which changes from direct semiconductor into indirect semiconductor. Band gap generally increases with the increase of the tensile strain because of the blueshift of Sc-d and Hf-d orbits, and ScHfCO2 changes to M→K indirect semiconductor at +5% strain. ScHfCO2 under strains from −5% to +4% maintains the indirect bandgap characteristics. The appearance of built-in electric field in ScHfCO2 under strain improves the charge redistribution across Janus layer. ScHfCO2 under compressive strain has better conductivity than ScHfCO2 under tensile strain. ScHfCO2 under strains are all promising cathode materials. Larger voltage improves the character of cathode materials because of their much larger |Qc| when compared with those at aqueous system.

Keywords Janus MXene      electronic properties      quantum capacitance      density functional theory      charge transfer     
Corresponding Author(s): Xiao-Hong Li   
Just Accepted Date: 11 September 2024   Issue Date: 14 October 2024
 Cite this article:   
Hui Ding,Xiao-Hong Li,Rui-Zhou Zhang, et al. Strain-tunable electronic properties and quantum capacitance of ScHfCO2 MXene as supercapacitor electrodes[J]. Front. Phys. , 2025, 20(1): 14211.
 URL:  
https://academic.hep.com.cn/fop/EN/10.15302/frontphys.2025.014211
https://academic.hep.com.cn/fop/EN/Y2025/V20/I1/14211
Fig.1  Four possible configurations of ScHfCO2: model I (a), model II (b), model III (c) and model IV (d). Purple, green, brown, and red represent scandium, hafnium, carbon, and oxygen atoms, respectively.
System a (Å) d S c4 C4 (Å) d H f4 C4 (Å) d S c4 O8 (Å) d H f4 O8 (Å)
Sc2CO2 6.850 2.200 2.094
Hf2CO2 6.442 2.363 2.133
ScHfCO2 6.653 2.250 2.293 2.075 2.106
Tab.1  Calculated lattice constants (Å), related bond lengths (Å) for Sc2CO2, Hf2CO2, and ScHfCO2.
Fig.2  Atomic label (a), bond lengths (b) and binding energy (c) of ScHfCO2 under strain.
Fig.3  Band structures of Sc2CO2 (a) and ScHfCO2 (b) monolayers.
Fig.4  Band structures of ScHfCO2 monolayer under biaxial strain.
Fig.5  Band gap (a) and variation of VBM and CBM (b) of ScHfCO2 under strain.
Fig.6  PDOS diagram of ScHfCO2 under 0%, ?3%, ?5%, +3%, and +5% strains.
Fig.7  Differential charge density (a?d) and Bader charge (e) of ScHfCO2 under strains. Yellow denotes charge accumulation, cyan denotes charge depletion.
Fig.8  Work function of ScHfCO2 MXene under strain.
Fig.9  The electrostatic potential energy Φ (a) and its difference ΔΦ (b) of ScHfCO2 under strain.
Fig.10  The dielectric constant (a?d) and absorption coefficient (e, f) of ScHfCO2 under strain.
Fig.11  The Cdiff (a, b) and Q (c, d) of ScHfCO2 monolayer under biaxial strains.
System Aqueous electrolytes Ionic/organic electrolytes
|Qa| |Qc| |Qa|/|Qc| |Qa| |Qc| |Qa|/|Qc|
−5% 0.41 94.77 0.0043 61.22 415.61 0.15
−4% 0.76 65.89 0.0116 67.00 367.57 0.18
−3% 0.03 47.42 0.0006 73.20 351.53 0.21
−2% 1.37 121.99 0.0113 53.71 363.93 0.15
−1% 0.03 111.81 0.0002 63.66 380.79 0.17
0% 0.52 203.86 0.0026 43.86 430.61 0.10
+1% 0.02 128.51 0.0002 58.31 327.06 0.18
+2% 0.48 204.22 0.0024 42.79 387.60 0.11
+3% 0.03 151.67 0.0002 60.96 401.31 0.15
+4% 0.04 210.33 0.0002 63.86 404.06 0.16
+5% 0.03 262.87 0.0001 27.48 494.40 0.06
Tab.2  Qa, Qc, and |Qa|/|Qc| of ScHfCO2 under strains. All systems are cathode materials.
1 Guan C., L. Liu J., D. Wang Y., Mao L., X. Fan Z., X. Shen Z., Zhang H., and Wang J., Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability, ACS Nano 9(5), 5198 (2015)
https://doi.org/10.1021/acsnano.5b00582
2 Poonam K., Sharma K., Arora A., and K. Tripathi S., Review of supercapacitors: Materials and devices, J. Energy Storage 21, 801 (2019)
https://doi.org/10.1016/j.est.2019.01.010
3 Şahin M.Blaabjerg F.Sangwongwanich A., A comprehensive review on supercapacitor applications and developments, Energies 15(3), 674 (2022)
4 J. Caparrós Mancera J., L. Saenz J., López E., M. Andújar J., Segura Manzano F., J. Vivas F., and Isorna F., Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid, Appl. Energy 308, 118355 (2022)
https://doi.org/10.1016/j.apenergy.2021.118355
5 Muzaffar A.B. Ahamed M.Deshmukh K.Thirumalai J., A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sustain. Energy Rev. 101, 123 (2019)
6 Y. Bhat M., A. Hashmi S., Khan M., Choi D., and Qurashi A., Frontiers and recent developments on supercapacitor’s materials, design, and applications: Transport and power system applications, J. Energy Storage 58, 106104 (2023)
https://doi.org/10.1016/j.est.2022.106104
7 Keum K., W. Kim J., Y. Hong S., G. Son J., S. Lee S., and S. Ha J., Flexible/Stretchable supercapacitors with novel functionality for wearable electronics, Adv. Mater. 32(51), 2002180 (2020)
https://doi.org/10.1002/adma.202002180
8 R. Miller J. and Simon P., Electrochemical capacitors for energy management, Science 321(5889), 651 (2008)
https://doi.org/10.1126/science.1158736
9 Simon P. and Gogotsi Y., Materials for electrochemical capacitors, Nat. Mater. 7(11), 845 (2008)
https://doi.org/10.1038/nmat2297
10 Zhou Q., Wang L., Ju W., Su D., Zhu J., Yong Y., and Wu S., Quantum capacitance of graphene-like/graphene heterostructures for supercapacitor electrodes, Electrochim. Acta 461, 142655 (2023)
https://doi.org/10.1016/j.electacta.2023.142655
11 Xia J., Chen F., Li J., and Tao N., Measurement of the quantum capacitance of graphene, Nat. Nanotechnol. 4(8), 505 (2009)
https://doi.org/10.1038/nnano.2009.177
12 Wang Y., Wu Y., Huang Y., Zhang F., Yang X., Ma Y., and Chen Y., Preventing graphene sheets from restacking for high-capacitance performance, J. Phys. Chem. C 115(46), 23192 (2011)
https://doi.org/10.1021/jp206444e
13 F. El-Kady M., Strong V., Dubin S., and B. Kaner R., Laser scribing of high-performance and flexible graphene-based electrochemical capacitors, Science 335(6074), 1326 (2012)
https://doi.org/10.1126/science.1216744
14 Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M., and Chen Y., Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113(30), 13103 (2009)
https://doi.org/10.1021/jp902214f
15 Chen J., Li C., and Shi G., Graphene materials for electrochemical capacitors, J. Phys. Chem. Lett. 4(8), 1244 (2013)
https://doi.org/10.1021/jz400160k
16 Jana S., Bandyopadhyay A., Datta S., Bhattacharya D., and Jana D., Emerging properties of carbon based 2D material beyond graphene, J. Phys.: Condens. Matter 34(5), 053001 (2021)
https://doi.org/10.1088/1361-648X/ac3075
17 Naguib M., N. Mochalin V., W. Barsoum M., and Gogotsi Y., MXenes: A new family of two-dimensional materials, Adv. Mater. 26(7), 992 (2014)
https://doi.org/10.1002/adma.201304138
18 Zhou J.Zha X.Y. Chen F.Ye Q.Eklund P. Du S.Huang Q., A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5, Angew. Chem. Int. Ed. 55(16), 5008 (2016)
19 Anasori B.R. Lukatskaya M.Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)
20 Naguib M., W. Barsoum M., and Gogotsi Y., Ten years of progress in the synthesis and development of MXenes, Adv. Mater. 33(39), 2103393 (2021)
https://doi.org/10.1002/adma.202103393
21 P. Nguyen T., M. Tuan Nguyen D., L. Tran D., K. Le H., V. N. Vo D., S. Lam S., S. Varma R., Shokouhimehr M., C. Nguyen C., and V. Le Q., MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction, Mol. Catal. 486, 110850 (2020)
https://doi.org/10.1016/j.mcat.2020.110850
22 Zhang K., Q. Li D., Y. Cao H., H. Zhu Q., Trapalis C., F. Zhu P., H. Gao X., and Y. Wang C., Insights into different dimensional MXenes for photocatalysis, Chem. Eng. J. 424, 130340 (2021)
https://doi.org/10.1016/j.cej.2021.130340
23 Shan G., Ding Z., and Gogotsi Y., Two-dimensional MXenes and their applications, Front. Phys. 18, 13604 (2023)
https://doi.org/10.1007/s11467-022-1254-2
24 Zhu X.Zhang Y.Liu M.Liu Y.Liu Y., 2D titanium carbide MXenes as emerging optical biosensing platforms, Biosens. Bioelectron. 171, 112730 (2021)
25 Huang H., Dong C., Feng W., Wang Y., Huang B., and Chen Y., Biomedical engineering of two-dimensional MXenes, Adv. Drug Deliv. Rev. 184, 114178 (2022)
https://doi.org/10.1016/j.addr.2022.114178
26 Alwarappan S.Nesakumar N.L. Sun D. Y. Hu T.Z. Li C., 2D metal carbides and nitrides (MXenes) for sensors and biosensors, Biosens. Bioelectron. 205, 113943 (2022)
27 Zhang C., L. Ma Y., T. Zhang X., Abdolhosseinzadeh S., W. Sheng H., Lan W., Pakdel A., Heier J., and Nüesch F., Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications, Energy Environ. Mater. 3(1), 29 (2020)
https://doi.org/10.1002/eem2.12058
28 Nahirniak S., Ray A., and Saruhan B., Challenges and future prospects of the MXene-based materials for energy storage applications, Batteries (Basel) 9(2), 126 (2023)
https://doi.org/10.3390/batteries9020126
29 Zhang J., Cui Z., Liu J., Li C., Tan H., Shan G., and Ma R., Bifunctional oxygen electrocatalysts for rechargeable zinc−air battery based on MXene and beyond, Front. Phys. 18, 13603 (2023)
https://doi.org/10.1007/s11467-022-1208-8
30 Ma R., Chen Z., Zhao D., Zhang X., Zhuo J., Yin Y., Wang X., Yang G., and Yi F., Ti3C2Tx MXene for electrode materials of supercapacitors, J. Mater. Chem. A 9(19), 11501 (2021)
https://doi.org/10.1039/D1TA00681A
31 Z. Zhu Q., P. Li J., Simon P., and Xu B., Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives, Energy Storage Mater. 35, 630 (2021)
https://doi.org/10.1016/j.ensm.2020.11.035
32 Peng Z., Huang J., and Guo Z., Anisotropic Janus materials: From micro-/nanostructures to applications, Nanoscale 13(45), 18839 (2021)
https://doi.org/10.1039/D1NR05499F
33 Pang X., Wan C., Wang M., and Lin Z., Strictly biphasic soft and hard Janus structures: Synthesis, properties, and applications, Angew. Chem. Int. Ed. 53(22), 5524 (2014)
https://doi.org/10.1002/anie.201309352
34 Zhang J., Jia S., Kholmanov I., Dong L., Er D., Chen W., Guo H., Jin Z., B. Shenoy V., Shi L., and Lou J., Janus monolayer transition-metal dichalcogenides, ACS Nano 11(8), 8192 (2017)
https://doi.org/10.1021/acsnano.7b03186
35 Y. Lu A., Zhu H., Xiao J., P. Chuu C., Han Y., H. Chiu M., C. Cheng C., W. Yang C., H. Wei K., Yang Y., Wang Y., Sokaras D., Nordlund D., Yang P., A. Muller D., Y. Chou M., Zhang X., and J. Li L., Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
https://doi.org/10.1038/nnano.2017.100
36 C. Riis-Jensen A., Deilmann T., Olsen T., and S. Thygesen K., Classifying the electronic and optical properties of Janus monolayers, ACS Nano 13(11), 13354 (2019)
https://doi.org/10.1021/acsnano.9b06698
37 Yagmurcukardes M., Qin Y., Ozen S., Sayyad M., M. Peeters F., Tongay S., and Sahin H., Quantum properties and applications of 2D Janus crystals and their superlattices, Appl. Phys. Rev. 7(1), 011311 (2020)
https://doi.org/10.1063/1.5135306
38 Zhang L., J. F. Yang Z., Gong T., K. Pan R., D. Wang H., A. Guo Z., Zhang H., and Fu X., Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications, J. Mater. Chem. A 8(18), 8813 (2020)
https://doi.org/10.1039/D0TA01999B
39 W. Ng S., Noor N., and Zheng Z., Graphene-based two-dimensional Janus materials, NPG Asia Mater. 10(4), 217 (2018)
https://doi.org/10.1038/s41427-018-0023-8
40 Li R., Cheng Y., and Huang W., Recent progress of Janus 2D transition metal chalcogenides: From theory to experiments, Small 14(45), 1802091 (2018)
https://doi.org/10.1002/smll.201802091
41 Tang X.Kou L., 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 2100562 (2022)
42 Jin W., Wu S., and Wang Z., Structural, electronic and mechanical properties of two-dimensional Janus transition metal carbides and nitrides, Physica E 103, 307 (2018)
https://doi.org/10.1016/j.physe.2018.06.024
43 Akgenc B., Intriguing of two-dimensional Janus surface-functionalized MXenes: An ab initio calculation, Comput. Mater. Sci. 171, 109231 (2020)
https://doi.org/10.1016/j.commatsci.2019.109231
44 Tang R., Zhou S., Li C., Chen R., Zhang L., Zhang Z., and Yin L., Janus-structured Co-Ti3C2 MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation, Adv. Funct. Mater. 30(19), 2000637 (2020)
https://doi.org/10.1002/adfm.202000637
45 Gao P., Song M., Wang X., Liu Q., He S., Su Y., and Qian P., Theoretical study on the electronic structure and magnetic properties regulation of Janus structure of M’MCO2 2D MXenes, Nanomaterials (Basel) 12(3), 556 (2022)
https://doi.org/10.3390/nano12030556
46 Das M. and Ghosh S., Improved charge storage capacity of supercapacitor electrodes by engineering surfaces: The case of Janus MXenes, J. Phys. Chem. C 128(3), 1014 (2024)
https://doi.org/10.1021/acs.jpcc.3c07443
47 Xiong K., Cheng Z., Liu J., F. Liu P., Zi Z., Computational studies on functionalized Janus MXenes MM′CT2, and (M = Zr, Hf, M ≠ M′; T = –O, –F, –OH): Photoelectronic properties and potential photocatalytic activities, RSC Advances 13(12), 7972 (2023)
https://doi.org/10.1039/D3RA00303E
48 Guan Z., Ni S., and Hu S., Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: A first-principles study, J. Phys. Chem. C 122(11), 6209 (2018)
https://doi.org/10.1021/acs.jpcc.8b00257
49 Peng Z., Chen X., Fan Y., J. Srolovitz D., and Lei D., Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications, Light Sci. Appl. 9(1), 190 (2020)
https://doi.org/10.1038/s41377-020-00421-5
50 L. Hou L., H. Li J., C. Cui C., H. Li X., Z. Zhang R., and L. Cui H., Biaxial strain tunable electronic properties, photocatalytic properties and quantum capacitance of Sc2CO2 MXenes, Vacuum 212, 112016 (2023)
https://doi.org/10.1016/j.vacuum.2023.112016
51 P. Reji R., K. C. Balaji S., Sivalingam Y., Kawazoe Y., and Velappa Jayaraman S., First-principles density functional theory calculations on the potential of Sc2CO2 MXene nanosheets as a dual-mode sensor for detection of volatile organic compounds in exhaled human breath, ACS Appl. Nano Mater. 6(7), 5345 (2023)
https://doi.org/10.1021/acsanm.2c05474
52 H. Zha X., Huang Q., He J., He H., Zhai J., S. Francisco J., and Du S., The thermal and electrical properties of the promising semiconductor MXene Hf2CO2, Sci. Rep. 6, 27971 (2016)
https://doi.org/10.1038/srep27971
53 Li X., Dai Y., Ma Y., Liu Q., Huang B., and Intriguing electronic properties of two dimensional MoS2/TM2CO2 (TM= Ti, Zr, or Hf) hetero-bilayers: Type-II semiconductors with tunable band gaps, Nanotechnology 26(13), 135703 (2015)
https://doi.org/10.1088/0957-4484/26/13/135703
54 Jain A., Shin Y., and A. Persson K., Computational predictions of energy materials using density functional theory, Nat. Rev. Mater. 1(1), 15004 (2016)
https://doi.org/10.1038/natrevmats.2015.4
55 Levämäki H., Kuisma M., and Kokko K., Space partitioning of exchange-correlation functionals with the projector augmented-wave method, J. Chem. Phys. 150(5), 054101 (2019)
https://doi.org/10.1063/1.5078432
56 W. Peng H. and P. Perdew J., Rehabilitation of the Perdew–Burke–Ernzerhof generalized gradient approximation for layered materials, Phys. Rev. B 95(8), 081105 (2017)
https://doi.org/10.1103/PhysRevB.95.081105
57 Bandyopadhyay P., Priya, and M. Sadhukhan, A simple fragment-based method for van der waals corrections over density functional theory, Phys. Chem. Chem. Phys. 24(14), 8508 (2022)
https://doi.org/10.1039/D2CP00744D
58 L. John D., C. Castro L., and L. Pulfrey D., Quantum capacitance in nanoscale device modeling, J. Appl. Phys. 96(9), 5180 (2004)
https://doi.org/10.1063/1.1803614
59 Paek E.J. Pak A.S. Hwang G., A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid, J. Electrochem. Soc. 160(1), A1 (2013)
60 Hirunsit P., Liangruksa M., and Khanchaitit P., Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by Al, B, N and P doping, and monovacancy: Theoretical study, Carbon 108, 7 (2016)
https://doi.org/10.1016/j.carbon.2016.07.005
61 Zhang Z., H. Li X., Z. Zhang R., L. Cui H., and T. Yan H., First-principles calculations of the electronic, optical properties and quantum capacitance of Mn doped Sc2CO2 monolayer under biaxial strain, J. Energy Storage 71, 108222 (2023)
https://doi.org/10.1016/j.est.2023.108222
62 Zhang Y., Sa B., Zhou J., and Sun Z., Two-dimensional (Zr0.5Hf0.5)2CO2: A promising visible light water-splitting photocatalyst with efficiently carrier separation, Comput. Mater. Sci. 186, 110013 (2021)
https://doi.org/10.1016/j.commatsci.2020.110013
63 H. Li X., H. Cui X., Z. Zhang R., and L. Cui H., The effect of biaxial strain on the electronic properties, quantum capacitance and diffusion of Li adsorption on Sc2CO2 MXene, J. Energy Storage 74, 109159 (2023)
https://doi.org/10.1016/j.est.2023.109159
64 M. Hu H. and Ouyang G., Interface-induced transition from Schottky-to-Ohmic contact in Sc2CO2-based multiferroic heterojunctions, Phys. Chem. Chem. Phys. 23(2), 827 (2021)
https://doi.org/10.1039/D0CP05684G
65 Zhang H., H. Li X., Z. Zhang R., L. Cui H., Electronic structures, optical properties, and quantum capacitance of 2D Janus ZrMCO2 (M = Sc, Ta, W) MXenes for supercapacitor electrodes, Ceram. Int. 50(11), 18932 (2024)
https://doi.org/10.1016/j.ceramint.2024.02.381
66 C. Ma X., Dai Y., Yu L., and B. Huang B., Energy transfer in plasmonic photocatalytic composites, Light Sci. Appl. 5(2), e16017 (2016)
https://doi.org/10.1038/lsa.2016.17
[1] fop-25013-of-lixiaohong_suppl_1 Download
[1] Yu Guo, Yang Zhao, Qiao Ling, Si Zhou, Jijun Zhao. Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters[J]. Front. Phys. , 2024, 19(6): 63210-.
[2] Chang Lu, Shunhui Zhang, Meili Chen, Haitao Chen, Mengjian Zhu, Zhengwei Zhang, Jun He, Lin Zhang, Xiaoming Yuan. Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications[J]. Front. Phys. , 2024, 19(5): 53206-.
[3] B. Li, D. Vretenar, T. Nikšić, J. Zhao, P. W. Zhao, J. Meng. Generalized time-dependent generator coordinate method for induced fission dynamics[J]. Front. Phys. , 2024, 19(4): 44201-.
[4] Lin Ju, Junxian Liu, Minghui Wang, Shenbo Yang, Shuli Liu. Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy[J]. Front. Phys. , 2024, 19(4): 43208-.
[5] Qingyun Zhou, Yusheng Hou, Tianshu Lai. Electronic properties and tunability in graphene/3D-InP mixed-dimensional van der Waals heterostructure[J]. Front. Phys. , 2023, 18(2): 23301-.
[6] Erjun Liang, Qiang Sun, Huanli Yuan, Jiaqi Wang, Gaojie Zeng, Qilong Gao. Negative thermal expansion: Mechanisms and materials[J]. Front. Phys. , 2021, 16(5): 53302-.
[7] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[8] Zhaobo Zhou, Shijun Yuan, Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures[J]. Front. Phys. , 2021, 16(4): 43203-.
[9] Leilei Lan, Yimeng Gao, Xingce Fan, Mingze Li, Qi Hao, Teng Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Front. Phys. , 2021, 16(4): 43300-.
[10] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[11] Qinye Li, Siyao Qiu, Baohua Jia. Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction[J]. Front. Phys. , 2021, 16(1): 13503-.
[12] Zhitao Cui, Wei Du, Chengwei Xiao, Qiaohong Li, Rongjian Sa, Chenghua Sun, Zuju Ma. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain[J]. Front. Phys. , 2020, 15(6): 63502-.
[13] Zhi-Yue Zheng, Yu-Hao Pan, Teng-Fei Pei, Rui Xu, Kun-Qi Xu, Le Lei, Sabir Hussain, Xiao-Jun Liu, Li-Hong Bao, Hong-Jun Gao, Wei Ji, Zhi-Hai Cheng. Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy[J]. Front. Phys. , 2020, 15(6): 63505-.
[14] Thomas Pope, Werner Hofer. Exact orbital-free kinetic energy functional for general many-electron systems[J]. Front. Phys. , 2020, 15(2): 23603-.
[15] Qi-Tao Liu, De-Yu Liu, Jian-Ming Li, Yong-Bo Kuang. The impact of crystal defects towards oxide semiconductor photoanode for photoelectrochemical water splitting[J]. Front. Phys. , 2019, 14(5): 53403-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed