|
|
Dominant ferromagnetic coupling over antiferromagnetic in Ni doped ZnO: First-principles calculations |
Bakhtiar Ul Haq1,2,Rashid Ahmed1,*( ),Galila Abdellatif5,Amiruddin Shaari1,Faheem K. Butt3,4,Mohammed Benali Kanoun6,Souraya Goumri-Said6,*( ) |
1. Department of Physics, Faculty of Science, UniversitiTeknologi Malaysia, UTM Skudai, Johor 81310, Malaysia
2. Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea
3. Physik-Department ECS, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
4. Department of Physics, The University of Lahore, 1-KM Defence Road, Lahore, Pakistan
5. Department of Physics, Faculty of Science, Cairo University, Giza Egypt
6. Physics Department, College of Science, AlFaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia |
|
|
Abstract The low magnetic moment (MM) in diluted magnetic semiconductors (DMS) at low impurity doping levels has triggered considerable research into condensed magnetic semiconductors (CMS).This work reports an ab-initio investigation of the electronic structures and magnetic properties of ZnO in a zinc-blende (ZB) structure doped with nickel ions. Ni-doped ZnO-based DMS and CMS exhibit a dominance of ferromagnetic coupling over antiferromagnetic. A robust increase in the magnetization has been observed as a function of Ni impurity levels. This material favors short-range magnetic interactions at the ground state, suggesting that the observed ferromagnetism is defined by the double exchange mechanism. The spin-polarized density of states (DOS) of Ni-doped ZnO characterizes it as half-metallic with a considerable energy gap for up-spin components and as metallic for-down spins. Half-metallic Ni:ZnO based magnetic semiconductors with high magnetization are expected to have potential applications in spintronics.
|
Keywords
ZnO
diluted magnetic semiconductors
ab-initio calculations
electronic structure
magnetic properties
|
Fund: |
Corresponding Author(s):
Rashid Ahmed,Souraya Goumri-Said
|
Online First Date: 18 January 2016
Issue Date: 01 February 2016
|
|
1 |
Y. Ohno, D. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. Awschalom, Nature 402(6763), 790 (1999)
https://doi.org/10.1038/45509
|
2 |
T. Dietl, H. Ohno, F. Matsukura, J.Cibert, and D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287(5455), 1019 (2000)
https://doi.org/10.1126/science.287.5455.1019
|
3 |
T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, and H. Koinuma, Magnetic properties of Mn-doped ZnO, Appl. Phys. Lett. 78(7), 958 (2001)
https://doi.org/10.1063/1.1348323
|
4 |
T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, An oxide-diluted magnetic semiconductor: Mn-doped ZnO, Appl. Phys. Lett. 75(21), 3366 (1999)
https://doi.org/10.1063/1.125353
|
5 |
A. Bonanni and T. Dietl, A story of high-temperature ferromagnetism in semiconductors, Chem. Soc. Rev. 39(2), 528 (2010)
https://doi.org/10.1039/B905352M
|
6 |
I. Bilecka, L. Luo, I. Djerdj, M. D. Rossell, M. Jagodic, Z. Jaglicic, Y. Masubuchi, S. Kikkawa, and M. Niederberger, Microwave-assisted nonaqueous sol-gel chemistry for highly concentrated ZnO-based magnetic semiconductor nanocrystals, J. Phys. Chem. C 115(5), 1484 (2011)
https://doi.org/10.1021/jp108050w
|
7 |
F. Filippone, G. Mattioli, P. Alippi, and A. A. Bonapasta, Clusters and magnetic anchoring points in (Ga,Fe)N condensed magnetic semiconductors, Phys. Rev. Lett. 107(19), 196401 (2011)
https://doi.org/10.1103/PhysRevLett.107.196401
|
8 |
M. V. Limaye, S. B. Singh, S. K.Date, R. Gholap, and S. K. Kulkarni, Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles, Mater. Res. Bull. 44(2), 339 (2009)
https://doi.org/10.1016/j.materresbull.2008.05.015
|
9 |
A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases, J. Appl. Phys. 102(7), 071101 (2007)
https://doi.org/10.1063/1.2787957
|
10 |
G. Lee, T. Kawazoe, and M. Ohtsu, Room temperature near-field photoluminescence of zinc-blend and wurtzite ZnO structures, Appl. Surf. Sci. 239(3), 394 (2005)
https://doi.org/10.1016/j.apsusc.2004.06.004
|
11 |
J. Zhang, K. Yao, Z. Liu, and G. Gao, First principles calculations of Co-doped zinc-blende ZnO magnetic semiconductor, Physica B 405(6), 1447 (2010)
https://doi.org/10.1016/j.physb.2009.11.001
|
12 |
N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. Saidi, and E. Hlil, Electronic and magnetic structures of V-doped zinc blende Zn 1-xVxNyO1-y and Zn 1-xVxPyO1-y, Chin. Phys. B 20(8), 087504 (2011)
https://doi.org/10.1088/1674-1056/20/8/087504
|
13 |
C. C. Xu, L. Jiang, N. Leng, and P. J. Liu, Selective triggering of phase change in dielectrics by femtosecond pulse trains based on electron dynamics control, Chin. Phys. B 22(4), 047507 (2013)
https://doi.org/10.1088/1674-1056/22/4/045203
|
14 |
X. Li, J. Zhang, B. Xu, and K. Yao, Half-metallic ferromagnetism in Cu-doped zinc-blende ZnO from first principles study, J. Magn. Magn. Mater. 324(4), 584 (2012)
https://doi.org/10.1016/j.jmmm.2011.08.042
|
15 |
B. U. Haq, R. Ahmed, A. Afaq, A. Shaari, and M. Zarshenas, Structural and electronic properties of ni-doped ZnO in zinc-blende phase: A DFT investigations, in: International Conference on Fundamental and Applied Sciences 2012 (ICFAS2012), AIP Publishing, 2012
https://doi.org/10.1063/1.4757437
|
16 |
T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito, Magnetic and magneto-transport properties of ZnO:Ni films, Physica E 10(1), 260 (2001)
https://doi.org/10.1016/S1386-9477(01)00095-9
|
17 |
S. W. Jung, W. I. Park, G. C. Yi, and M. Kim, Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures, Adv. Mater. 15(16), 1358 (2003)
https://doi.org/10.1002/adma.200305172
|
18 |
J. Cui and U. Gibson, Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays, Appl. Phys. Lett. 87(13), 133108 (2005)
https://doi.org/10.1063/1.2058222
|
19 |
M. Venkatesan, C. Fitzgerald, J. Lunney, and J. Coey, Anisotropic ferromagnetism in substituted zinc oxide, Phys. Rev. Lett. 93(17), 177206 (2004)
https://doi.org/10.1103/PhysRevLett.93.177206
|
20 |
B. Li, X. Xiu, R. Zhang, Z. Tao, L. Chen, Z. Xie, Y. Zheng, and Z., Study of structure and magnetic properties of Ni-doped ZnO-based DMSs, Mater. Sci. Semicond. Process. 9(1), 141 (2006)
https://doi.org/10.1016/j.mssp.2006.01.074
|
21 |
D. L. Hou, R. B. Zhao, Y. Y. Wei, C. M. Zhen, C. F. Pan, and G. D. Tang, Room temperature ferromagnetism in Ni-doped ZnO films, Curr. Appl. Phys. 10(1), 124 (2010)
https://doi.org/10.1016/j.cap.2009.05.007
|
22 |
B. Pandey, S. Ghosh, P. Srivastava, D. Avasthi, D. Kabiraj, and J. Pivin, Synthesis and characterization of Ni-doped ZnO: A transparent magnetic semiconductor, J. Magn. Magn. Mater. 320(24), 3347 (2008)
https://doi.org/10.1016/j.jmmm.2008.07.018
|
23 |
C. Cong, J. Hong, Q. Liu, L. Liao, and K. Zhang, Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles, Solid State Commun. 138(10), 511 (2006)
https://doi.org/10.1016/j.ssc.2006.04.020
|
24 |
G. Pei, C. Xia, S. Cao, J. Zhang, F. Wu, and J. Xu, Synthesis and magnetic properties of Ni-doped zinc oxide powders, J. Magn. Magn. Mater. 302(2), 340 (2006)
https://doi.org/10.1016/j.jmmm.2005.09.029
|
25 |
T. Li, H. Qiu, P. Wu, M. Wang, and R. Ma, Characteristics of Ni-doped ZnO:Al films grown on glass by direct current magnetron co-sputtering, Thin Solid Films 515(7), 3905 (2007)
https://doi.org/10.1016/j.tsf.2006.11.019
|
26 |
G. Gu, G. Xiang, J. Luo, H. Ren, M. Lan, D. He, and X. Zhang, Magnetism in transition-metal-doped ZnO: A first-principles study, J. Appl. Phys. 112(2), 023913 (2012)
https://doi.org/10.1063/1.4739450
|
27 |
Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, and H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties, Appl. Phys. Lett. 78(24), 3824 (2001)
https://doi.org/10.1063/1.1377856
|
28 |
Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, and K. Ibrahim, Structural, magnetic properties and photoemission study of Ni-doped ZnO, Solid State Commun. 135(7), 430 (2005)
https://doi.org/10.1016/j.ssc.2005.05.024
|
29 |
G. Pei, C. Xia, B. Wu, T. Wang, L. Zhang, Y. Dong, and J. Xu, Studies of magnetic interactions in Ni-doped ZnO from first-principles calculations, Comput. Mater. Sci. 43(3), 489 (2008)
https://doi.org/10.1016/j.commatsci.2007.12.012
|
30 |
B. B. Straumal, A. A. Myatiev, P. B. Straumal, A. A. Mazilkin, S. G. Protasova, E. Goering, and B. Baretzky, Grain boundary layers in nanocrystalline ferromagnetic zinc oxide, JETP Lett. 92(6), 396 (2010)
https://doi.org/10.1134/S0021364010180074
|
31 |
P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, An augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Austria, 2001
|
32 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
33 |
V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
https://doi.org/10.1103/PhysRevB.44.943
|
34 |
F. Murnaghan, The compressibility of media under extreme pressures, Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)
https://doi.org/10.1073/pnas.30.9.244
|
35 |
B. Ul Haq, R. Ahmed, S. Goumri-Said, A. Shaari, and A. Afaq, Electronic structure engineering of ZnO with the modified Becke–Johnson exchange versus the classical correlation potential approaches, Phase Transitions 86 (12), 1167 (2013)
https://doi.org/10.1080/01411594.2012.755183
|
36 |
B. Ul Haq, R. Ahmed, R. Khenata, M. Ahmed, and R. Hussain, A first-principles comparative study of exchange and correlation potentials for ZnO, Mater. Sci. Semicond. Process. 16 (4), 1169(2013)
|
37 |
B. Ul Haq, A. Afaq, R. Ahmed, and S. Naseem, A Comprehensive DFT study of zinc oxide in different phases, Int. J. Mod. Phys. C 23(06), 1250043 (2012)
https://doi.org/10.1142/S012918311250043X
|
38 |
J. Fu, B. Wu, H. Liu, C. Zhang, M. Lin, and L. Chen, Structural and magnetic ordering behaviour of (Co, Ni, and Al) doped ZnO diluted magnetic semiconductor, in: 2010 Symposium on Photonics and Optoelectronic (SOPO), IEEE, 2010
https://doi.org/10.1109/SOPO.2010.5504395
|
39 |
B. Ul Haq, R. Ahmed, A. Shaari, and S. Goumri-Said, GGA+Uinvestigations of impurity d-electrons effects on the electronic and magnetic properties of ZnO, J. Magn. Magn. Mater. 362, 104 (2014)
https://doi.org/10.1016/j.jmmm.2014.03.033
|
40 |
B. Ul Haq, R. Ahmed, and S. Goumri-Said, Tailoring ferromagnetism in chromium-doped zinc oxide, Mater. Res. Exp. 1(1), 016108 (2014)
https://doi.org/10.1088/2053-1591/1/1/016108
|
41 |
S. Goumri-Said, M. B. Kanoun, A. Manchon, and U. Schwingenschlögl, Spin-polarization reversal at the interface between benzene and Fe(100), J. Appl. Phys. 113(1), 013905 (2013)
https://doi.org/10.1063/1.4772610
|
42 |
A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96(1), 99 (1954)
https://doi.org/10.1103/PhysRev.96.99
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|