|
|
Comment to “Dynamics of supercooled confined water measured by deep inelastic neutron scattering” |
Y. Finkelstein1( ), R. Moreh2 |
1. Nuclear Research Center-Negev, Beer-Sheva 84190, Israel 2. Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel |
|
|
Abstract We comment on the findings of “Dynamics of supercooled confined water measured by deep inelastic neutron scattering”, by V. De Michele, G. Romanelli, and A. Cupane [Front. Phys. 13, 138205 (2018)]. We show that the current sensitivity of the deep inelastic neutron scattering (DINS) method, cannot detect with confidence small differences in the proton kinetic energy, Ke(H), involved in a liquid-liquid transition in supercooled water confined in nanoporous silica. We also critisize the calculation of Ke(H) carried out in Front. Phys. 13, 138205 (2018).
|
Keywords
supercooled water
liquid–liquid transition
deep inelastic neutron scattering
libration
vibrational density of states
proton kinetic energy
|
Corresponding Author(s):
Y. Finkelstein
|
Issue Date: 16 October 2019
|
|
1 |
V. De Michele, G. Romanelli, and A. Cupane, Dynamics of supercooled confined water measured by deep inelastic neutron scattering, Front. Phys. 13(1), 138205 (2018)
https://doi.org/10.1007/s11467-017-0699-1
|
2 |
C. Andreani, M. Krzystyniak, G. Romanelli, R. Senesi, and F. Fernandez-Alonso, Electron-volt neutron spectroscopy: Beyond fundamental systems, Adv. Phys. 66(1), 1 (2017)
https://doi.org/10.1080/00018732.2017.1317963
|
3 |
C. Andreani, G. Romanelli, and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, J. Phys. Chem. Lett. 7(12), 2216 (2016)
https://doi.org/10.1021/acs.jpclett.6b00926
|
4 |
R. Senesi, G. Romanelli, M. A. Adams, and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chem. Phys. 427, 111 (2013)
https://doi.org/10.1016/j.chemphys.2013.09.010
|
5 |
V. De Michele, G. Romanelli, and A. Cupane, Kinetic energy and radial momentum distribution of hydrogen and oxygen atoms of water confined in silica hydrogel in the temperature interval 170–325 K, Sci. China Phys. Mech. & Astron. 62, 107012 (2019)
https://doi.org/10.1007/s11433-019-9420-1
|
6 |
Y. Finkelstein and R. Moreh, Applying semi-empirical quantum harmonic calculations for studying the atomic kinetic energies in hydrogen bonded systems, Curr. Phys. Chem. 7(1), 3 (2017)
https://doi.org/10.2174/1877946807666170117121857
|
7 |
Y. Finkelstein and R. Moreh, Temperature dependence of the proton kinetic energy in water between 5 and 673 K, Chem. Phys. 431–432, 58 (2014)
https://doi.org/10.1016/j.chemphys.2014.01.004
|
8 |
A. Cupane, M. Fomina, and G. Schirò, The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover, J. Chem. Phys. 141, 18C510 (2014)
https://doi.org/10.1063/1.4895793
|
9 |
Y. Finkelstein and R. Moreh, On H-dynamics of supercooled water confined in nanoporous silica, Chem. Phys. 523, 83 (2019)
https://doi.org/10.1016/j.chemphys.2019.04.015
|
10 |
A. I. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement, Phys. Rev. Lett. 93(3), 035503 (2004)
https://doi.org/10.1103/PhysRevLett.93.035503
|
11 |
F. Lehmkühler, Y. Forov, T. Büning, C. J. Sahle, I. Steinke, K. Julius, T. Buslaps, M. Tolan, M. Hakala, and C. Sternemann, Intramolecular structure and energetics in supercooled water down to 255 K, Phys. Chem. Chem. Phys. 18(9), 6925 (2016)
https://doi.org/10.1039/C5CP07721D
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|