|
|
Graphitic carbon nitride based single-atom photocatalysts |
Junwei Fu (傅俊伟)1, Shuandi Wang (王栓娣)1, Zihua Wang (王自华)1, Kang Liu (刘康), Huangjingwei Li (李黄经纬)1, Hui Liu (刘恢)2, Junhua Hu (胡俊华)3, Xiaowen Xu (徐效文)1, Hongmei Li (李红梅)1( ), Min Liu (刘敏)1( ) |
1. School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha 410083, China 2. School of Metallurgy and Environment, Central South University, Changsha 410083, China 3. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China |
|
|
Abstract Single-atom photocatalysts, due to their high catalysis activity, selectivity and stability, become a hotspot in the field of photocatalysis. Graphitic carbon nitride (g-C3N4) is known as both a good support for single atoms and a star photocatalyst. Developing g-C3N4-based single-atom photocatalysts exhibits great potential in improving the photocatalytic performance. In this review, we summarize the recent progress in g-C3N4-based single-atom photocatalysts, mainly including preparation strategies, characterizations, and their photocatalytic applications. The significant roles of single atoms and catalysis mechanism in g-C3N4-based single-atom photocatalysts are analyzed. At last, the challenges and perspectives for exploring high-efficient g-C3N4-based single-atom photocatalysts are presented.
|
Keywords
graphitic carbon nitride
single atoms
atomically dispersed sites
site-isolated catalysts
photocatalysis
|
Corresponding Author(s):
Hongmei Li (李红梅),Min Liu (刘敏)
|
Issue Date: 08 January 2020
|
|
1 |
L. Jiao and H. L. Jiang, Metal-organic-framework-based single-atom catalysts for energy applications, Chem 5(4), 786 (2019)
https://doi.org/10.1016/j.chempr.2018.12.011
|
2 |
A. Liu, K. Liu, H. Zhou, H. Li, X. Qiu, Y. Yang, and M. Liu, Solution evaporation processed high quality perovskite films, Sci. Bull. 63(23), 1591 (2018)
https://doi.org/10.1016/j.scib.2018.11.004
|
3 |
A. Alarawi, V. Ramalingam, and J. H. He, Recent advances in emerging single atom confined two-dimensional materials for water splitting applications, Mater. Today Energy 11, 1 (2019)
https://doi.org/10.1016/j.mtener.2018.10.014
|
4 |
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1), 76 (2009)
https://doi.org/10.1038/nmat2317
|
5 |
J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang, X. Qiu, and M. Liu, Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4, Adv. Sci. 6(18), 1900796 (2019)
https://doi.org/10.1002/advs.201900796
|
6 |
J. Fu, Q. Xu, J. Low, C. Jiang, and J. Yu, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B 243, 556 (2019)
https://doi.org/10.1016/j.apcatb.2018.11.011
|
7 |
J. Fu, C. Bie, B. Cheng, C. Jiang, and J. Yu, Hollow CoSx polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4, ACS Sustain. Chem. & Eng. 6(2), 2767 (2018)
https://doi.org/10.1021/acssuschemeng.7b04461
|
8 |
P. Huang, W. Liu, Z. He, C. Xiao, T. Yao, Y. Zou, C. Wang, Z. Qi, W. Tong, B. Pan, S. Wei, and Y. Xie, Single atom accelerates ammonia photosynthesis, Sci. China Chem. 61(9), 1187 (2018)
https://doi.org/10.1007/s11426-018-9273-1
|
9 |
M. Ou, S. Wan, Q. Zhong, S. Zhang, and Y. Wang, Single Pt atoms deposition on g-C3N4 nanosheets for photocatalytic H2 evolution or NO oxidation under visible light, Int. J. Hydrogen Energy 42(44), 27043 (2017)
https://doi.org/10.1016/j.ijhydene.2017.09.047
|
10 |
C. Ling, X. Niu, Q. Li, A. Du, and J. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light, J. Am. Chem. Soc. 140(43), 14161 (2018)
https://doi.org/10.1021/jacs.8b07472
|
11 |
F. Zeng, W. Q. Huang, J. H. Xiao, Y. Y. Li, W. Peng, W. Hu, K. Li, and G. F. Huang, Isotype heterojunction g-C3N4/g-C3N4 nanosheets as 2D support to highly dispersed 0D metal oxide nanoparticles: Generalized selfassembly and its high photocatalytic activity, J. Phys. D Appl. Phys. 52(2), 025501 (2019)
https://doi.org/10.1088/1361-6463/aae81a
|
12 |
H. He, J. Li, Y. Liu, Q. Liu, F. Zhan, Y. Li, W. Li, and J. Wen, S-C3N4 quantum dot decorated ZnO nanorods to improve their photoelectrochemical performance, Nano 12(05), 1750064 (2017)
https://doi.org/10.1142/S1793292017500643
|
13 |
Y. Y. Li, S. F. Ma, B. X. Zhou, W. Q. Huang, X. Fan, X. Li, K. Li, and G. F. Huang, Hydroxy-carbonate-assisted synthesis of high porous graphitic carbon nitride with broken of hydrogen bonds as a highly efficient visiblelight-driven photocatalyst, J. Phys. D Appl. Phys. 52(10), 105502 (2019)
https://doi.org/10.1088/1361-6463/aaf84a
|
14 |
J. Fu, J. Yu, C. Jiang, and B. Cheng, g-C3N4-based heterostructured photocatalysts, Adv. Energy Mater. 8(3), 1701503 (2018)
https://doi.org/10.1002/aenm.201701503
|
15 |
J. Fu, K. Jiang, X. Qiu, J. Yu, and M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today (2019), doi: 10.1016/j.mattod.2019.06.009 (in press)
https://doi.org/10.1016/j.mattod.2019.06.009
|
16 |
Q. Wang, D. Zhang, Y. Chen, W. F. Fu, and X. J. Lv, Single-atom catalysts for photocatalytic reactions, ACS Sustain. Chem. & Eng. 7(7), 6430 (2019)
https://doi.org/10.1021/acssuschemeng.8b06273
|
17 |
Y. Zhu, T. Wang, T. Xu, Y. Li, and C. Wang, Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution, Appl. Surf. Sci. 464, 36 (2019)
https://doi.org/10.1016/j.apsusc.2018.09.061
|
18 |
J. Li, P. Yan, K. Li, J. You, H. Wang, W. Cui, W. Cen, Y. Chu, and F. Dong, Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: A combined kinetics and thermodynamics investigation, J. Mater. Chem. A Mater. Energy Sustain. 7(28), 17014 (2019)
https://doi.org/10.1039/C9TA05112K
|
19 |
C. Jin, C. Xu, W. Chang, X. Ma, X. Hu, E. Liu, and J. Fan, Bimetallic phosphide NiCoP anchored g-C3N4 nanosheets for efficient photocatalytic H2 evolution, J. Alloys Compd. 803, 205 (2019)
https://doi.org/10.1016/j.jallcom.2019.06.252
|
20 |
H. Zhang, X. Han, H. Yu, Y. Zou, and X. Dong, Enhanced photocatalytic performance of boron and phosphorous codoped graphitic carbon nitride nanosheets for removal of organic pollutants, Separ. Purif. Tech. 226, 128 (2019)
https://doi.org/10.1016/j.seppur.2019.05.066
|
21 |
J. Li, D. Wu, J. Iocozzia, H. Du, X. Liu, Y. Yuan, W. Zhou, Z. Li, Z. Xue, and Z. Lin, Achieving efficient incorporation of π-electrons into graphitic carbon nitride for markedly improved hydrogen generation, Angew. Chem. Int. Ed. 58(7), 1985 (2019)
https://doi.org/10.1002/anie.201813117
|
22 |
Y. Jiang, Z. Sun, C. Tang, Y. Zhou, L. Zeng, and L. Huang, Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition, Appl. Catal. B 240, 30 (2019)
https://doi.org/10.1016/j.apcatb.2018.08.059
|
23 |
J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
https://doi.org/10.1007/s11467-018-0812-0
|
24 |
F. Zeng, W. Q. Huang, J. H. Xiao, Y. Y. Li, W. Peng, W. Hu, K. Li, and G. F. Huang, Isotype heterojunction g-C3N4/g-C3N4 nanosheets as 2D support to highly dispersed 0D metal oxide nanoparticles: Generalized selfassembly and its high photocatalytic activity, J. Phys. D: Appl. Phys. 52(2), 025501 (2019)
https://doi.org/10.1088/1361-6463/aae81a
|
25 |
S. S. Ding, W. Q. Huang, Y. C. Yang, B. X. Zhou, W. Y. Hu, M. Q. Long, P. Peng, and G. F. Huang, Dual role of monolayer MoS2 in enhanced photocatalytic performance of hybrid MoS2/SnO2 nanocomposite, J. Appl. Phys. 119(20), 205704 (2016)
https://doi.org/10.1063/1.4952377
|
26 |
X. Ren, X. Qi, Y. Shen, S. Xiao, G. Xu, Z. Zhang, Z. Huang, and J. Zhong, 2D co-catalytic MoS2 nanosheets embedded with 1D TiO2 nanoparticles for enhancing photocatalytic activity, J. Phys. D Appl. Phys. 49(31), 315304 (2016)
https://doi.org/10.1088/0022-3727/49/31/315304
|
27 |
D. Xu, S. Wang, B. Wu, B. Zhang, Y. Qin, C. Huo, L. Huang, X. Wen, Y. Yang, and Y. Li, Highly dispersed single-atom Pt and Pt clusters in the Fe-modified kl zeolite with enhanced selectivity for n-heptane aromatization, ACS Appl. Mater. Inter. 11(33), 29858 (2019)
https://doi.org/10.1021/acsami.9b08137
|
28 |
A. Wang, J. Li, and T. Zhang, Heterogeneous single-atom catalysis, Nat. Rev. Chem. 2(6), 65 (2018)
https://doi.org/10.1038/s41570-018-0010-1
|
29 |
Z. Chen, E. Vorobyeva, S. Mitchell, E. Fako, N. Lopez, S. M. Collins, R. K. Leary, P. A. Midgley, R. Hauert, and J. Perez-Ramirez, Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds, Natl. Sci. Rev. 5(5), 642 (2018)
https://doi.org/10.1093/nsr/nwy048
|
30 |
Z. Chen, J. Zhang, S. Zheng, J. Ding, J. Sun, M. Dong, M. Abbas, Y. Chen, Z. Jiang, and J. Chen, The texture evolution of g-C3N4 nanosheets supported Fe catalyst during Fischer-Tropsch synthesis, Mol. Catal. 444, 90 (2018)
https://doi.org/10.1016/j.molcata.2016.12.011
|
31 |
J. Di, C. Chen, S. Z. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y. X. Weng, J. Xia, L. Song, S. Li, H. Li, and Z. Liu, Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction, Nat. Commun. 10(1), 2840 (2019)
https://doi.org/10.1038/s41467-019-10392-w
|
32 |
Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
https://doi.org/10.1007/s11467-018-0760-8
|
33 |
P. Huang, J. Huang, S. A. Pantovich, A. D. Carl, T. G. Fenton, C. A. Caputo, R. L. Grimm, A. I. Frenkel, and G. Li, Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation, J. Am. Chem. Soc. 140(47), 16042 (2018)
https://doi.org/10.1021/jacs.8b10380
|
34 |
T. He, C. Zhang, L. Zhang, and A. Du, Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline, Nano Res. 12(8), 1817 (2019)
https://doi.org/10.1007/s12274-019-2439-z
|
35 |
B. C. Gates, M. Flytzani-Stephanopoulos, D. A. Dixon, and A. Katz, Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research, Catal. Sci. Technol. 7(19), 4259 (2017)
https://doi.org/10.1039/C7CY00881C
|
36 |
J. Liu, Catalysis by supported single metal atoms, ACS Catal. 7(1), 34 (2017)
https://doi.org/10.1021/acscatal.6b01534
|
37 |
X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, and T. Zhang, Single-atom catalysts: A new frontier in heterogeneous catalysis, Acc. Chem. Res. 46(8), 1740 (2013)
https://doi.org/10.1021/ar300361m
|
38 |
J. Di, J. Xiong, H. Li, and Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications, Adv. Mater. 30(1), 1704548 (2018)
https://doi.org/10.1002/adma.201704548
|
39 |
B. Zhang, T. Fan, N. Xie, G. Nie, and H. Zhang, Versatile applications of metal single-atom@2D material nanoplatforms, Adv. Sci. 6(21), 1901787 (2019)
https://doi.org/10.1002/advs.201901787
|
40 |
J. Liu, B. R. Bunes, L. Zang, and C. Wang, Supported single-atom catalysts: synthesis, characterization, properties, and applications, Environ. Chem. Lett. 16(2), 477 (2018)
https://doi.org/10.1007/s10311-017-0679-2
|
41 |
L. Wang, L. Huang, F. Liang, S. Liu, Y. Wang, and H. Zhang, Preparation, characterization and catalytic performance of single-atom catalysts, Chin. J. Catal. 38(9), 1528 (2017)
https://doi.org/10.1016/S1872-2067(17)62770-0
|
42 |
S. L. Li, H. Yin, X. Kan, L. Y. Gan, U. Schwingenschlogl, and Y. Zhao, Potential of transition metal atoms embedded in buckled monolayer g-C3N4 as single-atom catalysts, Phys. Chem. Chem. Phys. 19(44), 30069 (2017)
https://doi.org/10.1039/C7CP05195F
|
43 |
Y. Li, T. Kong, and S. Shen, Artificial photosynthesis with polymeric carbon nitride: When meeting metal nanoparticles, single atoms, and molecular complexes, Small 15(32), 1900772 (2019)
https://doi.org/10.1002/smll.201900772
|
44 |
Z. Chen, S. Mitchell, E. Vorobyeva, R. K. Leary, R. Hauert, T. Furnival, Q. M. Ramasse, J. M. Thomas, P. A. Midgley, D. Dontsova, M. Antonietti, S. Pogodin, N. López, and J. Pérez-Ramírez, Stabilization of single metal atoms on graphitic carbon nitride, Adv. Funct. Mater. 27(8), 1605785 (2017)
https://doi.org/10.1002/adfm.201605785
|
45 |
G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N. Lopez, and J. Perez-Ramirez, A stable single-site palladium catalyst for hydrogenations, Angew. Chem. Int. Ed. 54(38), 11265 (2015)
https://doi.org/10.1002/anie.201505073
|
46 |
S. Tian, Z. Wang, W. Gong, W. Chen, Q. Feng, Q. Xu, C. Chen, C. Chen, Q. Peng, L. Gu, H. Zhao, P. Hu, D. Wang, and Y. Li, Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst, J. Am. Chem. Soc. 140(36), 11161 (2018)
https://doi.org/10.1021/jacs.8b06029
|
47 |
X. Li, W. Bi, L. Zhang, S. Tao, W. Chu, Q. Zhang, Y. Luo, C. Wu, and Y. Xie, Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution, Adv. Mater. 28(12), 2427 (2016)
https://doi.org/10.1002/adma.201505281
|
48 |
Z. Chen, Q. Zhang, W. Chen, J. Dong, H. Yao, X. Zhang, X. Tong, D. Wang, Q. Peng, C. Chen, W. He, and Y. Li, Single-site Au-I catalyst for silane oxidation with water, Adv. Mater. 30(5), 1704720 (2018)
https://doi.org/10.1002/adma.201704720
|
49 |
L. Liu, H. Su, F. Tang, X. Zhao, and Q. Liu, Confined organometallic Au1Nx single-site as an efficient bifunctional oxygen electrocatalyst, Nano Energy 46, 110 (2018)
https://doi.org/10.1016/j.nanoen.2018.01.044
|
50 |
Z. Chen, S. Mitchell, F. Krumeich, R. Hauert, S. Yakunin, M. V. Kovalenko, and J. Perez-Ramirez, Tunability and scalability of single-atom catalysts based on carbon nitride, ACS Sustain. Chem. & Eng. 7(5), 5223 (2019)
https://doi.org/10.1021/acssuschemeng.8b06148
|
51 |
W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu, W. Zhang, X. Mou, L. Jin, X. Zheng, W. Che, Q. Liu, T. Yao, and S. Wei, Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting, Angew. Chem. Int. Ed. 56(32), 9312 (2017)
https://doi.org/10.1002/anie.201704358
|
52 |
P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, and S. Guo, Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production, Nano Energy 56, 127 (2019)
https://doi.org/10.1016/j.nanoen.2018.11.033
|
53 |
X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu, and Y. Deng, Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries, Angew. Chem. Int. Ed. 58(16), 5359 (2019)
https://doi.org/10.1002/anie.201901109
|
54 |
F. Dubray, S. Moldovan, C. Kouvatas, J. Grand, C. Aquino, N. Barrier, J. P. Gilson, N. Nesterenko, D. Minoux, and S. Mintova, Direct evidence for single molybdenum atoms incorporated in the framework of MFI zeolite nanocrystals, J. Am. Chem. Soc. 141(22), 8689 (2019)
https://doi.org/10.1021/jacs.9b02589
|
55 |
Q. Feng, S. Zhao, Q. Xu, W. Chen, S. Tian, Y. Wang, W. Yan, J. Luo, D. Wang, and Y. Li, Mesoporous nitrogendoped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene, Adv. Mater. 31(36), 1901024 (2019)
https://doi.org/10.1002/adma.201901024
|
56 |
H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge, J. Ma, B. Wen, S. Zhang, Q. Li, M. Lei, C. Zhang, J. Irawan, L. M. Liu, and H. Wu, Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth, Nat. Commun. 8(1), 1490 (2017)
https://doi.org/10.1038/s41467-017-01521-4
|
57 |
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, and N. Zheng, Photochemical route for synthesizing atomically dispersed palladium catalysts, Science 352(6287), 797 (2016)
https://doi.org/10.1126/science.aaf5251
|
58 |
Y. Oh, J. O. Hwang, E. S. Lee, M. Yoon, V. D. Le, Y. H. Kim, D. H. Kim, and S. O. Kim, Divalent Fe atom coordination in two-dimensional microporous graphitic carbon nitride, ACS Appl. Mater. Interfaces 8(38), 25438 (2016)
https://doi.org/10.1021/acsami.6b07287
|
59 |
H. Li, Y. Xia, T. Hu, Q. Deng, N. Du, and W. Hou, Enhanced charge carrier separation of manganese(ii)-doped graphitic carbon nitride: Formation of N–Mn bonds through redox reactions, J. Mater. Chem. A Mater. Energy Sustain. 6(15), 6238 (2018)
https://doi.org/10.1039/C8TA00607E
|
60 |
Z. Chen, S. Pronkin, T. P. Fellinger, K. Kailasam, G. Vile, D. Albani, F. Krumeich, R. Leary, J. Barnard, J. M. Thomas, J. Perez-Ramirez, M. Antonietti, and D. Dontsova, Merging single-atom-dispersed silver and carbon nitride to a joint electronic system via copolymerization with silver tricyanomethanide, ACS Nano 10(3), 3166 (2016)
https://doi.org/10.1021/acsnano.5b04210
|
61 |
F. Wang, Y. Wang, Y. Li, X. Cui, Q. Zhang, Z. Xie, H. Liu, Y. Feng, W. Lv, and G. Liu, The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate, Dalton Trans. 47(20), 6924 (2018)
https://doi.org/10.1039/C8DT00919H
|
62 |
F. Wang, Y. Wang, Y. Feng, Y. Zeng, Z. Xie, Q. Zhang, Y. Su, P. Chen, Y. Liu, K. Yao, W. Lv, and G. Liu, Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen, Appl. Catal. B 221, 510 (2018)
https://doi.org/10.1016/j.apcatb.2017.09.055
|
63 |
Y. Li, Z. Wang, T. Xia, H. Ju, K. Zhang, R. Long, Q. Xu, C. Wang, L. Song, J. Zhu, J. Jiang, and Y. Xiong, Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis, Adv. Mater. 28(32), 6959 (2016)
https://doi.org/10.1002/adma.201601960
|
64 |
Y. Cao, S. Chen, Q. Luo, H. Yan, Y. Lin, W. Liu, L. Cao, J. Lu, J. Yang, T. Yao, and S. Wei, Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1N4 single-site photocatalyst, Angew. Chem. Int. Ed. 56(40), 12191 (2017)
https://doi.org/10.1002/anie.201706467
|
65 |
A. Kumar, P. K. Prajapati, M. S. Aathira, A. Bansiwal, R. Boukherroub, and S. L. Jain, Highly improved photoreduction of carbon dioxide to methanol using cobalt phthalocyanine grafted to graphitic carbon nitride as photocatalyst under visible light irradiation, J. Colloid Interface Sci. 543, 201 (2019)
https://doi.org/10.1016/j.jcis.2019.02.061
|
66 |
T. Shi, H. Li, L. Ding, F. You, L. Ge, Q. Liu, and K. Wang, Facile preparation of unsubstituted iron(ii) phthalocyanine/carbon nitride nanocomposites: A multipurpose catalyst with reciprocally enhanced photo/electrocatalytic activity, ACS Sustain. Chem. & Eng. 7(3), 3319 (2019)
https://doi.org/10.1021/acssuschemeng.8b05366
|
67 |
T. Xu, D. Wang, L. Dong, H. Shen, W. Lu, and W. Chen, Graphitic carbon nitride co-modified by zinc phthalocyanine and graphene quantum dots for the efficient photocatalytic degradation of refractory contaminants, Appl. Catal. B 244, 96 (2019)
https://doi.org/10.1016/j.apcatb.2018.11.049
|
68 |
T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, and H. Wang, Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst, Joule 3(1), 265 (2019)
https://doi.org/10.1016/j.joule.2018.10.015
|
69 |
H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, and C. He, Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol, J. Am. Chem. Soc. 141(32), 12717 (2019)
https://doi.org/10.1021/jacs.9b04907
|
70 |
H. Yang, L. Shang, Q. Zhang, R. Shi, G. I. N. Waterhouse, L. Gu, and T. Zhang, A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts, Nat. Commun. 10(1), 4585 (2019)
https://doi.org/10.1038/s41467-019-12510-0
|
71 |
K. Jiang, S. Siahrostami, A. J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W. B. Cai, D. Bell, K. Chan, J. K. Norskov, Y. Cui, and H. Wang, Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis, Chem 3(6), 950 (2017)
https://doi.org/10.1016/j.chempr.2017.09.014
|
72 |
C. Asokan, L. DeRita, and P. Christopher, Using probe molecule FTIR spectroscopy to identify and characterize Pt‐group metal based single atom catalysts, Chin. J. Catal. 38(9), 1473 (2017)
https://doi.org/10.1016/S1872-2067(17)62882-1
|
73 |
K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, and P. C. Stair, Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts., Science 350(6257), 189 (2015) (2015)
https://doi.org/10.1126/science.aac6368
|
74 |
Y. Wang, X. Zhao, D. Cao, Y. Wang, and Y. Zhu, Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid, Appl. Catal. B 211, 79 (2017)
https://doi.org/10.1016/j.apcatb.2017.03.079
|
75 |
L. Liu, X. Wu, L. Wang, X. Xu, L. Gan, Z. Si, J. Li, Q. Zhang, Y. Liu, Y. Zhao, R. Ran, X. Wu, D. Weng, and F. Kang, Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation, Commun. Chem. 2(1), 18 (2019)
https://doi.org/10.1038/s42004-019-0117-4
|
76 |
G. Wu, S. Hu, Z. Han, C. Liu, and Q. Li, The effect of Ni(i)–N active sites on the photocatalytic H2O2 production ability over nickel doped graphitic carbon nitride nanofibers, New J. Chem. 41(24), 15289 (2017)
https://doi.org/10.1039/C7NJ03298F
|
77 |
Q. Song, J. Li, L. Wang, Y. Qin, L. Pang, and H. Liu, Stable single-atom cobalt as a strong coupling bridge to promote electron transfer and separation in photoelectrocatalysis, J. Catal. 370, 176 (2019)
https://doi.org/10.1016/j.jcat.2018.12.021
|
78 |
S. Cao, H. Li, T. Tong, H. C. Chen, A. Yu, J. Yu, and H. M. Chen, Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution, Adv. Funct. Mater. 28(32), 1802169 (2018)
https://doi.org/10.1002/adfm.201802169
|
79 |
Y. Cao, D. Wang, Y. Lin, W. Liu, L. Cao, X. Liu, W. Zhang, X. Mou, S. Fang, X. Shen, and T. Yao, Single Pt atom with highly vacant d-orbital for accelerating photocatalytic H2 evolution, ACS Appl. Energy Mater. 1(11), 6082 (2018)
https://doi.org/10.1021/acsaem.8b01143
|
80 |
T. Tong, B. Zhu, C. Jiang, B. Cheng, and J. Yu, Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4, Appl. Surf. Sci. 433, 1175 (2018)
https://doi.org/10.1016/j.apsusc.2017.10.120
|
81 |
T. Tong, B. He, B. Zhu, B. Cheng, and L. Zhang, First-principle investigation on charge carrier transfer in transition-metal single atoms loaded g-C3N4, Appl. Surf. Sci. 459, 385 (2018)
https://doi.org/10.1016/j.apsusc.2018.08.007
|
82 |
H. Li, Y. Wu, L. Li, Y. Gong, L. Niu, X. Liu, T. Wang, C. Sun, and C. Li, Adjustable photocatalytic ability of monolayer g-C3N4 utilizing single-metal atom: Density functional theory, Appl. Surf. Sci. 457, 735 (2018)
https://doi.org/10.1016/j.apsusc.2018.06.298
|
83 |
G. Gao, Y. Jiao, E. R. Waclawik, and A. Du, Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide, J. Am. Chem. Soc. 138(19), 6292 (2016)
https://doi.org/10.1021/jacs.6b02692
|
84 |
X. Lv, W. Wei, F. Li, B. Huang, and Y. Dai, Metalfree B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia, Nano Lett. 19(9), 6391 (2019)
https://doi.org/10.1021/acs.nanolett.9b02572
|
85 |
M. M. Millet, G. Algara-Siller, S. Wrabetz, A. Mazheika, F. Girgsdies, D. Teschner, F. Seitz, A. Tarasov, S. V. Levchenko, R. Schlögl, and E. Frei, Ni single atom catalysts for CO2 activation, J. Am. Chem. Soc. 141(6), 2451 (2019)
https://doi.org/10.1021/jacs.8b11729
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|