Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 43401    https://doi.org/10.1007/s11467-023-1302-6
VIEW & PERSPECTIVE
Correlation, superconductivity and topology in graphene moiré superlattice
Lingxiao Li, Min Wu(), Xiaobo Lu()
International Centre for Quantum Materials, Peking University, Beijing 100871, China
 Download: PDF(8681 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Moiré superlattices created by stacking different pieces of two-dimensional layered materials with a slight lattice mismatch have recently emerged as an exceptional platform for exploring emergent quantum phenomena. In stark contrast to the “parent” materials, the electronic band structures are significantly modified from moiré engineering due to the large-scale periodic moiré potential and interlayer hybridization. In this paper, we mainly focus on the recent progresses achieved in graphene-based moiré systems which have been a condensed-matter playground showing unprecedented abundance of quantum states such as strongly correlated states, superconductivity and novel band topologies.

Keywords twisted graphene      moiré superlattices      correlation      superconductivity      topology     
Corresponding Author(s): Min Wu,Xiaobo Lu   
About author:

* These authors contributed equally to this work.

Issue Date: 21 June 2023
 Cite this article:   
Lingxiao Li,Min Wu,Xiaobo Lu. Correlation, superconductivity and topology in graphene moiré superlattice[J]. Front. Phys. , 2023, 18(4): 43401.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1302-6
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/43401
Fig.1  (a) Schematic of moiré pattern formed by stacking two layers of graphene with twisted angle θ [5]. (b) Color plot of schematic density of states (red color denotes high value and blue color denotes low value) in TBG as a function of energy E and twist angle θ (left). Density of states as a function of energy E with θ=1.05° (right) [2]. (c) Moiré pattern of magic-angle TBG measured by scanning tunnelling microscopy (STM) image [6]. (d) Band structures resolved by ARPES for monolayer graphene and TBG. The monolayer graphene displays linear band dispersion with Dirac cone structure (left). By contrast, flat electronic band is formed in TBG (right) [4].
Fig.2  (a) Conductance versus carrier density in magic-angle TBG at 0.3 K [5]. (b) Conductance versus carrier density in magic-angle under different pressure values [12]. (c) Color plot of the longitudinal resistivity as a function of dual gates in ABC-stacked trilayer graphene/h-BN heterostructure [14]. (d) Color plot of the longitudinal resistance as a function of dual gates at 4 K in twisted double bilayer graphene with θ=1.28° [15]. (e) Evolution of correlated insulator under in-plane magnetic field with D/ε0=?0.306V?nm?1 in twisted double bilayer graphene [15]. (f) Color plot of the longitudinal resistivity as a function of carrier density and displacement field in twisted monolayer-bilayer graphene with θ=1.08° [16].
Fig.3  (a, b) Superconducting phase diagram in magic-angle TBG, showing correlated state (CS) and superconducting state (SC) [10, 28]. (c) V-shaped tunnelling spectrum is well with the nodal fitting in TBG with θ=1.13° [32]. (d) Pressure dependent superconducting state in TBG with θ=1.27° [12]. (e) Color plot of longitudinal resistance against electric displacement field and filling factor in twisted trilayer graphene. Superconducting behavior observed at 2<|ν|<3 [36]. (f) Illustration of phase diagram in twisted trilayer graphene. VHS: Van Hove singularity [36]. (g) Measured superconductivity in twisted quadri-, and pentalayer graphene placed on monolayer WSe2 [27].
Fig.4  (a) Nonlocal resistance measurements to probe the edge state, a characteristic of topological phase [39]. (b) Magnetic field dependent Rxx and Rxy observed in magic angle TBG aligned with h-BN at 3/4 filling [41]. Quantized Rxy with Rxx approaching to zero provides an unambiguous evidence of quantized anomalous Hall effect. (c) Sign reversals of quantized anomalous Hall effect under small direct currents [41]. (d) Correlated Chern insulators at different filling factors with non-zero magnetic field [48]. (e) Schematic of Chern insulators at different fillings of TBG under magnetic field measured by STM [47]. (f) Schematic band structures showing proposed filling arrangements of different Chern insulators. [48]. (g) Color plot of inverse compressibility versus magnetic field and filling factor. The corresponded Wannier diagram is present in (h) [51].
1 Bistritzer R. , H. MacDonald A. . Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108(30): 12233
https://doi.org/10.1073/pnas.1108174108
2 Balents L. , R. Dean C. , K. Efetov D. , F. Young A. . Superconductivity and strong correlations in moiré flat bands. Nat. Phys., 2020, 16(7): 725
https://doi.org/10.1038/s41567-020-0906-9
3 Lisi S. , B. Lu X. , Benschop T. , A. de Jong T. , Stepanov P. , R. Duran J. , Margot F. , Cucchi I. , Cappelli E. , Hunter A. , Tamai A. , Kandyba V. , Giampietri A. , Barinov A. , Jobst J. , Stalman V. , Leeuwenhoek M. , Watanabe K. , Taniguchi T. , Rademaker L. , J. van der Molen S. , P. Allan M. , K. Efetov D. , Baumberger F. . Observation of flat bands in twisted bilayer graphene. Nat. Phys., 2021, 17(2): 189
https://doi.org/10.1038/s41567-020-01041-x
4 I. B. Utama M. , J. Koch R. , Lee K. , Leconte N. , Y. Li H. , H. Zhao S. , L. Jiang L. , Y. Zhu J. , Watanabe K. , Taniguchi T. , D. Ashby P. , Weber-Bargioni A. , Zettl A. , Jozwiak C. , Jung J. , Rotenberg E. , Bostwick A. , Wang F. . Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys., 2021, 17(2): 184
https://doi.org/10.1038/s41567-020-0974-x
5 Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
6 H. Jiang Y. , Y. Lai X. , Watanabe K. , Taniguchi T. , Haule K. , H. Mao J. , Y. Andrei E. . Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature, 2019, 573(7772): 91
https://doi.org/10.1038/s41586-019-1460-4
7 Kerelsky A. , J. McGilly L. , M. Kennes D. , D. Xian L. , Yankowitz M. , W. Chen S. , Watanabe K. , Taniguchi T. , Hone J. , Dean C. , Rubio A. , N. Pasupathy A. . Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature, 2019, 572(7767): 95
https://doi.org/10.1038/s41586-019-1431-9
8 L. Xie Y. , Lian B. , Jack B. , M. Liu X. , L. Chiu C. , Watanabe K. , Taniguchi T. , A. Bernevig B. , Yazdani A. . Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature, 2019, 572(7767): 101
https://doi.org/10.1038/s41586-019-1422-x
9 Choi Y. , Kemmer J. , Peng Y. , Thomson A. , Arora H. , Polski R. , R. Zhang Y. , C. Ren H. , Alicea J. , Refael G. , von Oppen F. , Watanabe K. , Taniguchi T. , Nadj-Perge S. . Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys., 2019, 15(11): 1174
https://doi.org/10.1038/s41567-019-0606-5
10 B. Lu X. , Stepanov P. , Yang W. , Xie M. , A. Aamir M. , Das I. , Urgell C. , Watanabe K. , Taniguchi T. , Y. Zhang G. , Bachtold A. , H. MacDonald A. , K. Efetov D. . Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 2019, 574(7780): 653
https://doi.org/10.1038/s41586-019-1695-0
11 Zondiner U. , Rozen A. , Rodan-Legrain D. , Cao Y. , Queiroz R. , Taniguchi T. , Watanabe K. , Oreg Y. , von Oppen F. , Stern A. , Berg E. , Jarillo-Herrero P. , Ilani S. . Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature, 2020, 582(7811): 203
https://doi.org/10.1038/s41586-020-2373-y
12 Yankowitz M. , W. Chen S. , Polshyn H. , X. Zhang Y. , Watanabe K. , Taniguchi T. , Graf D. , F. Young A. , R. Dean C. . Tuning superconductivity in twisted bilayer graphene. Science, 2019, 363(6431): 1059
https://doi.org/10.1126/science.aav1910
13 Zhang L. , Wang Y. , D. Hu R. , H. Wan P. , Zheliuk O. , P. Liang M. , L. Peng X. , J. Zeng Y. , T. Ye J. . Correlated states in strained twisted bilayer graphenes away from the magic angle. Nano Lett., 2022, 22(8): 3204
https://doi.org/10.1021/acs.nanolett.1c04400
14 R. Chen G. , L. Sharpe A. , J. Fox E. , H. Zhang Y. , X. Wang S. , L. Jiang L. , Lyu B. , Y. Li H. , J. Watanabe K. , Taniguchi T. , W. Shi Z. , Senthil T. , Goldhaber-Gordon D. , B. Zhang Y. , Wang F. . Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 2020, 579(7797): 56
https://doi.org/10.1038/s41586-020-2049-7
15 Shen C. , B. Chu Y. , S. Wu Q. , Li N. , P. Wang S. , C. Zhao Y. , Tang J. , Y. Liu J. , P. Tian J. , Watanabe K. , Taniguchi T. , Yang R. , Y. Meng Z. , X. Shi D. , V. Yazyev O. , Y. Zhang G. . Correlated states in twisted double bilayer graphene. Nat. Phys., 2020, 16(5): 520
https://doi.org/10.1038/s41567-020-0825-9
16 W. Chen S. , H. He M. , H. Zhang Y. , Hsieh V. , Y. Fei Z. , Watanabe K. , Taniguchi T. , H. Cobden D. , D. Xu X. , R. Dean C. , Yankowitz M. . Electrically tunable correlated and topological states in twisted monolayer-bilayer graphene. Nat. Phys., 2021, 17(3): 374
https://doi.org/10.1038/s41567-020-01062-6
17 R. Chen G. , L. Jiang L. , Wu S. , Lyu B. , Y. Li H. , L. Chittari B. , Watanabe K. , Taniguchi T. , W. Shi Z. , Jung J. , B. Zhang Y. , Wang F. . Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
https://doi.org/10.1038/s41567-018-0387-2
18 W. Burg G. , H. Zhu J. , Taniguchi T. , Watanabe K. , H. MacDonald A. , Tutuc E. . Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett., 2019, 123(19): 197702
https://doi.org/10.1103/PhysRevLett.123.197702
19 Cao Y. , Rodan-Legrain D. , Rubies-Bigorda O. , M. Park J. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. . Tunable correlated states and spin-polarized phases in twisted bilayer−bilayer graphene. Nature, 2020, 583(7815): 215
https://doi.org/10.1038/s41586-020-2260-6
20 Liu L. , H. Zhang S. , B. Chu Y. , Shen C. , Huang Y. , L. Yuan Y. , P. Tian J. , Tang J. , R. Ji Y. , Yang R. , Watanabe K. , Taniguchi T. , X. Shi D. , P. Liu J. , Yang W. , Y. Zhang G. . Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene. Nat. Commun., 2022, 13(1): 3292
https://doi.org/10.1038/s41467-022-30998-x
21 M. Liu X. , Y. Hao Z. , Khalaf E. , Y. Lee J. , Ronen Y. , Yoo H. , H. Najafabadi D. , Watanabe K. , Taniguchi T. , Vishwanath A. , Kim P. . Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 2020, 583(7815): 221
https://doi.org/10.1038/s41586-020-2458-7
22 M. Wang Y. , Herzog-Arbeitman J. , W. Burg G. , H. Zhu J. , Watanabe K. , Taniguchi T. , H. MacDonald A. , A. Bernevig B. , Tutuc E. . Bulk and edge properties of twisted double bilayer graphene. Nat. Phys., 2022, 18(1): 48
https://doi.org/10.1038/s41567-021-01419-5
23 Polshyn H. , Zhu J. , A. Kumar M. , Zhang Y. , Yang F. , L. Tschirhart C. , Serlin M. , Watanabe K. , Taniguchi T. , H. MacDonald A. , F. Young A. . Electrical switching of magnetic order in an orbital Chern insulator. Nature, 2020, 588(7836): 66
https://doi.org/10.1038/s41586-020-2963-8
24 W. Burg G. , Khalaf E. , M. Wang Y. , Watanabe K. , Taniguchi T. , Tutuc E. . Emergence of correlations in alternating twist quadrilayer graphene. Nat. Mater., 2022, 21(8): 884
https://doi.org/10.1038/s41563-022-01286-2
25 Christos M. , Sachdev S. , S. Scheurer M. . Correlated insulators, semimetals, and superconductivity in twisted trilayer graphene. Phys. Rev. X, 2022, 12(2): 021018
https://doi.org/10.1103/PhysRevX.12.021018
26 Liang M. , M. Xiao M. , Ma Z. , H. Gao J. . Moiré band structures of the double twisted few-layer graphene. Phys. Rev. B, 2022, 105(19): 195422
https://doi.org/10.1103/PhysRevB.105.195422
27 R. Zhang Y. , Polski R. , Lewandowski C. , Thomson A. , Peng Y. , Choi Y. , Kim H. , Watanabe K. , Taniguchi T. , Alicea J. , von Oppen F. , Refael G. , Nadj-Perge S. . Promotion of superconductivity in magic-angle graphene multilayers. Science, 2022, 377(6614): 1538
https://doi.org/10.1126/science.abn8585
28 Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
29 S. Arora H. , Polski R. , R. Zhang Y. , Thomson A. , Choi Y. , Kim H. , Lin Z. , Z. Wilson I. , D. Xu X. , H. Chu J. , Watanabe K. , Taniguchi T. , Alicea J. , Nadj-Perge S. . Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 2020, 583(7816): 379
https://doi.org/10.1038/s41586-020-2473-8
30 X. Liu X. , Wang Z. , Watanabe K. , Taniguchi T. , K. R. Vafek O. , Li A. . Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science, 2021, 371(6535): 1261
https://doi.org/10.1126/science.abb8754
31 Stepanov P. , Das I. , B. Lu X. , Fahimniya A. , Watanabe K. , Taniguchi T. , H. L. Koppens F. , Lischner J. , Levitov L. , K. Efetov D. . Untying the insulating and superconducting orders in magic-angle graphene. Nature, 2020, 583(7816): 375
https://doi.org/10.1038/s41586-020-2459-6
32 Oh M. , P. Nuckolls K. , Wong D. , L. Lee R. , M. Liu X. , Watanabe K. , Taniguchi T. , Yazdani A. . Evidence for unconventional superconductivity in twisted bilayer graphene. Nature, 2021, 600(7888): 240
https://doi.org/10.1038/s41586-021-04121-x
33 Y. Hao Z. , M. Zimmerman A. , Ledwith P. , Khalaf E. , H. Najafabadi D. , Watanabe K. , Taniguchi T. , Vishwanath A. , Kim P. . Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371(6534): 1133
https://doi.org/10.1126/science.abg0399
34 Khalaf E. , J. Kruchkov A. , Tarnopolsky G. , Vishwanath A. . Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B, 2019, 100(8): 085109
https://doi.org/10.1103/PhysRevB.100.085109
35 Mora C. , Regnault N. , A. Bernevig B. . Flatbands and perfect metal in trilayer moiré graphene. Phys. Rev. Lett., 2019, 123(2): 026402
https://doi.org/10.1103/PhysRevLett.123.026402
36 M. Park J. , Cao Y. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. . Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 2021, 590(7845): 249
https://doi.org/10.1038/s41586-021-03192-0
37 Kim H. , Choi Y. , Lewandowski C. , Thomson A. , R. Zhang Y. , Polski R. , Watanabe K. , Taniguchi T. , Alicea J. , Nadj-Perge S. . Evidence for unconventional superconductivity in twisted trilayer graphene. Nature, 2022, 606(7914): 494
https://doi.org/10.1038/s41586-022-04715-z
38 M. Park J. , Cao Y. , Q. Xia L. , W. Sun S. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. . Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater., 2022, 21(8): 877
https://doi.org/10.1038/s41563-022-01287-1
39 L. Sharpe A. , J. Fox E. , W. Barnard A. , Finney J. , Watanabe K. , Taniguchi T. , A. Kastner M. , Goldhaber-Gordon D. . Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 2019, 365(6453): 605
https://doi.org/10.1126/science.aaw3780
40 Stepanov P. , Xie M. , Taniguchi T. , Watanabe K. , B. Lu X. , H. MacDonald A. , A. Bernevig B. , K. Efetov D. . Competing zero-field Chern insulators in superconducting twisted bilayer graphene. Phys. Rev. Lett., 2021, 127(19): 197701
https://doi.org/10.1103/PhysRevLett.127.197701
41 Serlin M. , L. Tschirhart C. , Polshyn H. , Zhang Y. , Zhu J. , Watanabe K. , Taniguchi T. , Balents L. , F. Young A. . Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 2020, 367(6480): 900
https://doi.org/10.1126/science.aay5533
42 Bultinck N. , Chatterjee S. , P. Zaletel M. . Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett., 2020, 124(16): 166601
https://doi.org/10.1103/PhysRevLett.124.166601
43 P. Liu J. , Dai X. . Theories for the correlated insulating states and quantum anomalous Hall effect phenomena in twisted bilayer graphene. Phys. Rev. B, 2021, 103(3): 035427
https://doi.org/10.1103/PhysRevB.103.035427
44 H. Zhang Y. , Mao D. , Senthil T. . Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous Hall effect and a lattice model. Phys. Rev. Res., 2019, 1(3): 033126
https://doi.org/10.1103/PhysRevResearch.1.033126
45 Y. He W. , Goldhaber-Gordon D. , T. Law K. . Giant orbital magnetoelectric effect and current-induced magnetization switching in twisted bilayer graphene. Nat. Commun., 2020, 11(1): 1650
https://doi.org/10.1038/s41467-020-15473-9
46 Choi Y. , Kim H. , Peng Y. , Thomson A. , Lewandowski C. , Polski R. , R. Zhang Y. , S. Arora H. , Watanabe K. , Taniguchi T. , Alicea J. , Nadj-Perge S. . Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature, 2021, 589(7843): 536
https://doi.org/10.1038/s41586-020-03159-7
47 P. Nuckolls K. , Oh M. , Wong D. , Lian B. , Watanabe K. , Taniguchi T. , A. Bernevig B. , Yazdani A. . Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature, 2020, 588(7839): 610
https://doi.org/10.1038/s41586-020-3028-8
48 Das I. , B. Lu X. , Herzog-Arbeitman J. , D. Song Z. , Watanabe K. , Taniguchi T. , A. Bernevig B. , K. Efetov D. . Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys., 2021, 17(6): 710
https://doi.org/10.1038/s41567-021-01186-3
49 Wu S. , Y. Zhang Z. , Watanabe K. , Taniguchi T. , Y. Andrei E. . Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater., 2021, 20(4): 488
https://doi.org/10.1038/s41563-020-00911-2
50 P. Liu J. , W. Liu J. , Dai X. . Pseudo Landau level representation of twisted bilayer graphene: Band topology and implications on the correlated insulating phase. Phys. Rev. B, 2019, 99(15): 155415
https://doi.org/10.1103/PhysRevB.99.155415
51 L. Xie Y. , T. Pierce A. , M. Park J. , E. Parker D. , Khalaf E. , Ledwith P. , Cao Y. , H. Lee S. , W. Chen S. , R. Forrester P. , Watanabe K. , Taniguchi T. , Vishwanath A. , Jarillo-Herrero P. , Yacoby A. . Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature, 2021, 600(7889): 439
https://doi.org/10.1038/s41586-021-04002-3
52 M. Spanton E. , A. Zibrov A. , X. Zhou H. , Taniguchi T. , Watanabe K. , P. Zaletel M. , F. Young A. . Observation of fractional Chern insulators in a van der Waals heterostructure. Science, 2018, 360(6384): 62
https://doi.org/10.1126/science.aan8458
53 X. Z. Lin J. , Siriviboon P. , D. Scammell H. , Liu S. , Rhodes D. , Watanabe K. , Taniguchi T. , Hone J. , S. Scheurer M. , I. A. Li J. . Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys., 2022, 18(10): 1221
https://doi.org/10.1038/s41567-022-01700-1
54 Liu C. , Li Z. , Qiao R. , Wang Q. , Zhang Z. , Liu F. , Zhou Z. , Shang N. , Fang H. , Wang M. , Liu Z. , Feng Z. , Cheng Y. , Wu H. , Gong D. , Liu S. , Zhang Z. , Zou D. , Fu Y. , He J. , Hong H. , Wu M. , Gao P. , Tan P. , Wang X. , Yu D. , Wang E. , Wang Z. , Liu K. . Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater., 2022, 21(11): 1263
https://doi.org/10.1038/s41563-022-01361-8
55 Saito Y. , Ge J. , Watanabe K. , Taniguchi T. , F. Young A. . Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys., 2020, 16(9): 926
https://doi.org/10.1038/s41567-020-0928-3
56 X. Z. Lin J. , Siriviboon P. , D. Scammell H. , Liu S. , Rhodes D. , Watanabe K. , Taniguchi T. , Hone J. , S. Scheurer M. , I. A. Li J. . Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys., 2022, 18(10): 1221
https://doi.org/10.1038/s41567-022-01700-1
57 D. C. J. Diez-Merida A.Y. Yang S.M. Xie Y.J. Gao X.Watanabe K.Taniguchi T.Lu X.T. Law K.D. Efetov K., Magnetic Josephson junctions and superconducting diodes in magic angle twisted bilayer graphene, arXiv: 2110.01067 (2021)
58 Rubio-Verdú C. , Turkel S. , Song Y. , Klebl L. , Samajdar R. , S. Scheurer M. , W. F. Venderbos J. , Watanabe K. , Taniguchi T. , Ochoa H. , D. Xian L. , M. Kennes D. , M. Fernandes R. , Rubio A. , N. Pasupathy A. . Moiré nematic phase in twisted double bilayer graphene. Nat. Phys., 2022, 18(2): 196
https://doi.org/10.1038/s41567-021-01438-2
59 R. Klein D. , Q. Xia L. , MacNeill D. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. . Electrical switching of a bistable moiré superconductor. Nat. Nanotechnol., 2023, 18(4): 331
https://doi.org/10.1038/s41565-022-01314-x
[1] Peng-Fei Wei, Qi Luo, Huang-Qiu-Chen Wang, Shao-Jie Xiong, Bo Liu, Zhe Sun. Local quantum Fisher information and quantum correlation in the mixed-spin Heisenberg XXZ chain[J]. Front. Phys. , 2024, 19(2): 21201-.
[2] Ling-Yu Yao, Li-Juan Li, Xue-Ke Song, Liu Ye, Dong Wang. Manipulating the measured uncertainty under Lee−Yang dephasing channels through local PT-symmetric operations[J]. Front. Phys. , 2023, 18(5): 51302-.
[3] San-Dong Guo, Yu-Ling Tao, Wen-Qi Mu, Bang-Gui Liu. Correlation-driven threefold topological phase transition in monolayer OsBr2[J]. Front. Phys. , 2023, 18(3): 33304-.
[4] Yu-Long Hai, He-Jin Yan, Yong-Qing Cai. Structural screening of phosphorus sulfur ternary hydride PSH6 with a high-temperature superconductivity at 130 GPa[J]. Front. Phys. , 2023, 18(2): 23303-.
[5] Yue Chen, Zhengtao Liu, Ziyue Lin, Qiwen Jiang, Mingyang Du, Zihan Zhang, Hao Song, Hui Xie, Tian Cui, Defang Duan. High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures[J]. Front. Phys. , 2022, 17(6): 63502-.
[6] Long-Yu Cheng, Fei Ming, Fa Zhao, Liu Ye, Dong Wang. The uncertainty and quantum correlation of measurement in double quantum-dot systems[J]. Front. Phys. , 2022, 17(6): 61504-.
[7] Lei Qiao, Ning-hua Wu, Tianhao Li, Siqi Wu, Zhuyi Zhang, Miaocong Li, Jiang Ma, Baijiang Lv, Yupeng Li, Chenchao Xu, Qian Tao, Chao Cao, Guang-Han Cao, Zhu-An Xu. Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure[J]. Front. Phys. , 2021, 16(6): 63501-.
[8] Tian-Zhong Yuan, Mu-Yuan Zou, Wen-Tao Jin, Xin-Yuan Wei, Xu-Guang Xu, Wei Li. Pairing symmetry in monolayer of orthorhombic CoSb[J]. Front. Phys. , 2021, 16(4): 43500-.
[9] Yuan-Qiao Li, Tao Zhou. Impurity effect as a probe for the pairing symmetry of graphene-based superconductors[J]. Front. Phys. , 2021, 16(4): 43502-.
[10] Mike Guidry, Yang Sun, Lian-Ao Wu, Cheng-Li Wu. Fermion dynamical symmetry and strongly-correlated electrons: A comprehensive model of high-temperature superconductivity[J]. Front. Phys. , 2020, 15(4): 43301-.
[11] Xue-Hui Xiao, De-Fang Duan, Yan-Bin Ma, Hui Xie, Hao Song, Da Li, Fu-Bo Tian, Bing-Bing Liu, Hong-Yu Yu, Tian Cui. Ab initio studies of copper hydrides under high pressure[J]. Front. Phys. , 2019, 14(4): 43601-.
[12] Dong-Dong Wang, Bin Liu, Min Liu, Yi-Feng Yang, Shi-Ping Feng. Impurity-induced bound states as a signature of pairing symmetry in multiband superconducting CeCu2Si2[J]. Front. Phys. , 2019, 14(1): 13501-.
[13] Zhongzhou Ren, Bo Zhou. Alpha-clustering effects in heavy nuclei[J]. Front. Phys. , 2018, 13(6): 132110-.
[14] Xiao-Qin Gao, Zai-Chen Zhang, Bin Sheng. Multi-hop teleportation in a quantum network based on mesh topology[J]. Front. Phys. , 2018, 13(5): 130314-.
[15] Guang-Yong Zhou, Lin-Jian Huang, Jun-Ya Pan, Li-Yun Hu, Jie-Hui Huang. Quantifying quantum correlation via quantum coherence[J]. Front. Phys. , 2018, 13(4): 130701-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed