|
|
|
Topological non-Hermitian skin effect |
Rijia Lin1, Tommy Tai2,3( ), Linhu Li1( ), Ching Hua Lee3( ) |
1. Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China 2. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3. Department of Physics, National University of Singapore, Singapore 117542, Singapore |
|
|
|
|
Abstract This article reviews recent developments in the non-Hermitian skin effect (NHSE), particularly on its rich interplay with topology. The review starts off with a pedagogical introduction on the modified bulk-boundary correspondence, the synergy and hybridization of NHSE and band topology in higher dimensions, as well as, the associated topology on the complex energy plane such as spectral winding topology and spectral graph topology. Following which, emerging topics are introduced such as non-Hermitian criticality, dynamical NHSE phenomena, and the manifestation of NHSE beyond the traditional linear non-interacting crystal lattices, particularly its interplay with quantum many-body interactions. Finally, we survey the recent demonstrations and experimental proposals of NHSE.
|
| Keywords
non-Hermitian skin effect
topological phases
|
|
Corresponding Author(s):
Tommy Tai,Linhu Li,Ching Hua Lee
|
| About author: * These authors contributed equally to this work. |
|
Issue Date: 04 July 2023
|
|
| 1 |
M. Bender C. , Boettcher S. . Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
https://doi.org/10.1103/PhysRevLett.80.5243
|
| 2 |
M. Bender C. . Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
https://doi.org/10.1088/0034-4885/70/6/R03
|
| 3 |
Rotter I. . A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor., 2009, 42(15): 153001
https://doi.org/10.1088/1751-8113/42/15/153001
|
| 4 |
Yoshida T. , Peters R. , Kawakami N. . Non-Hermitian perspective of the band structure in heavy-Fermion systems. Phys. Rev. B, 2018, 98(3): 035141
https://doi.org/10.1103/PhysRevB.98.035141
|
| 5 |
Shen H. , Fu L. . Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett., 2018, 121(2): 026403
https://doi.org/10.1103/PhysRevLett.121.026403
|
| 6 |
Yamamoto K. , Nakagawa M. , Adachi K. , Takasan K. , Ueda M. , Kawakami N. . Theory of non-Hermitian Fermionic superfluidity with a complex-valued interaction. Phys. Rev. Lett., 2019, 123(12): 123601
https://doi.org/10.1103/PhysRevLett.123.123601
|
| 7 |
Ma G. , Sheng P. . Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv., 2016, 2(2): e1501595
https://doi.org/10.1126/sciadv.1501595
|
| 8 |
C. S. A. Cummer J. , Alù A. . Controlling sound with acoustic metamaterials. Nat. Rev. Mater., 2016, 1(3): 16001
https://doi.org/10.1038/natrevmats.2016.1
|
| 9 |
Zangeneh-Nejad F. , Fleury R. . Active times for acoustic metamaterials. Reviews in Physics, 2019, 4: 100031
https://doi.org/10.1016/j.revip.2019.100031
|
| 10 |
Feng L. , El-Ganainy R. , Ge L. . Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 2017, 11(12): 752
https://doi.org/10.1038/s41566-017-0031-1
|
| 11 |
El-Ganainy R. , G. Makris K. , Khajavikhan M. , H. Musslimani Z. , Rotter S. , N. Christodoulides D. . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
|
| 12 |
Longhi S. . Parity−time symmetry meets photonics: A new twist in non-Hermitian optics. Europhys. Lett., 2017, 120(6): 64001
https://doi.org/10.1209/0295-5075/120/64001
|
| 13 |
Ozawa T. , M. Price H. , Amo A. , Goldman N. , Hafezi M. , Lu L. , C. Rechtsman M. , Schuster D. , Simon J. , Zilberberg O. , Carusotto I. . Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006
https://doi.org/10.1103/RevModPhys.91.015006
|
| 14 |
Xiao L. , Deng T. , Wang K. , Zhu G. , Wang Z. , Yi W. , Xue P. . Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys., 2020, 16(7): 761
https://doi.org/10.1038/s41567-020-0836-6
|
| 15 |
Mostafazadeh A. . Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys., 2002, 43(1): 205
https://doi.org/10.1063/1.1418246
|
| 16 |
Günther U. , Rotter I. , F. Samsonov B. . Projective Hilbert space structures at exceptional points. J. Phys. A Math. Theor., 2007, 40(30): 8815
https://doi.org/10.1088/1751-8113/40/30/014
|
| 17 |
E. F. Foa Torres L. . Perspective on topological states of non-Hermitian lattices. Journal of Physics: Materials, 2019, 3: 014002
https://doi.org/10.1088/2515-7639/ab4092
|
| 18 |
Lin Z. , Ramezani H. , Eichelkraut T. , Kottos T. , Cao H. , N. Christodoulides D. . Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
https://doi.org/10.1103/PhysRevLett.106.213901
|
| 19 |
Feng L. , L. Xu Y. , S. Fegadolli W. , H. Lu M. , E. B. Oliveira J. , R. Almeida V. , F. Chen Y. , Scherer A. . Experimental demonstration of a unidirectional reflectionless parity−time metamaterial at optical frequencies. Nat. Mater., 2013, 12(2): 108
https://doi.org/10.1038/nmat3495
|
| 20 |
Wiersig J. . Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 2014, 112(20): 203901
https://doi.org/10.1103/PhysRevLett.112.203901
|
| 21 |
P. Liu Z. , Zhang J. , K. Özdemir Ş. , Peng B. , Jing H. , Y. Lü X. , W. Li C. , Yang L. , Nori F. , Liu Y. . Metrology with PT-symmetric cavities: Enhanced sensitivity near the PT-phase transition. Phys. Rev. Lett., 2016, 117(11): 110802
https://doi.org/10.1103/PhysRevLett.117.110802
|
| 22 |
Hodaei H. , U. Hassan A. , Wittek S. , Garcia-Gracia H. , El-Ganainy R. , N. Christodoulides D. , Khajavikhan M. . Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548(7666): 187
https://doi.org/10.1038/nature23280
|
| 23 |
Chen W. , K. Özdemir Ş. , Zhao G. , Wiersig J. , Yang L. . Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548(7666): 192
https://doi.org/10.1038/nature23281
|
| 24 |
Dembowski C. , D. Gräf H. , L. Harney H. , Heine A. , D. Heiss W. , Rehfeld H. , Richter A. . Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett., 2001, 86(5): 787
https://doi.org/10.1103/PhysRevLett.86.787
|
| 25 |
Gao T. , Estrecho E. , Y. Bliokh K. , C. H. Liew T. , D. Fraser M. , Brodbeck S. , Kamp M. , Schneider C. , Höfling S. , Yamamoto Y. , Nori F. , S. Kivshar Y. , G. Truscott A. , G. Dall R. , A. Ostrovskaya E. . Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature, 2015, 526(7574): 554
https://doi.org/10.1038/nature15522
|
| 26 |
A. Mailybaev A. , N. Kirillov O. , P. Seyranian A. . Geometric phase around exceptional points. Phys. Rev. A, 2005, 72(1): 014104
https://doi.org/10.1103/PhysRevA.72.014104
|
| 27 |
E. Lee T. . Anomalous edge state in a non-Hermitian lattice. Phys. Rev. Lett., 2016, 116(13): 133903
https://doi.org/10.1103/PhysRevLett.116.133903
|
| 28 |
Leykam D. , Y. Bliokh K. , Huang C. , D. Chong Y. , Nori F. . Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett., 2017, 118(4): 040401
https://doi.org/10.1103/PhysRevLett.118.040401
|
| 29 |
Yin C. , Jiang H. , Li L. , Lü R. , Chen S. . Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems. Phys. Rev. A, 2018, 97(5): 052115
https://doi.org/10.1103/PhysRevA.97.052115
|
| 30 |
Shen H. , Zhen B. , Fu L. . Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 2018, 120(14): 146402
https://doi.org/10.1103/PhysRevLett.120.146402
|
| 31 |
Li L. , H. Lee C. , Gong J. . Geometric characterization of non-Hermitian topological systems through the singularity ring in pseudospin vector space. Phys. Rev. B, 2019, 100(7): 075403
https://doi.org/10.1103/PhysRevB.100.075403
|
| 32 |
Hu W. , Wang H. , P. Shum P. , D. Chong Y. . Exceptional points in a non-Hermitian topological pump. Phys. Rev. B, 2017, 95(18): 184306
https://doi.org/10.1103/PhysRevB.95.184306
|
| 33 |
U. Hassan A. , Zhen B. , Soljačić M. , Khajavikhan M. , N. Christodoulides D. . Dynamically encircling exceptional points: Exact evolution and polarization state conversion. Phys. Rev. Lett., 2017, 118(9): 093002
https://doi.org/10.1103/PhysRevLett.118.093002
|
| 34 |
Z. Hasan M. , L. Kane C. . Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
|
| 35 |
L. Qi X. , C. Zhang S. . Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
|
| 36 |
A. Bernevig B.L. Hughes T., Topological Insulators and Topological Superconductors, Princeton University Press, 2013
|
| 37 |
S. Rudner M. , S. Levitov L. . Topological transition in a non-Hermitian quantum walk. Phys. Rev. Lett., 2009, 102(6): 065703
https://doi.org/10.1103/PhysRevLett.102.065703
|
| 38 |
C. Hu Y. , L. Hughes T. . Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians. Phys. Rev. B, 2011, 84(15): 153101
https://doi.org/10.1103/PhysRevB.84.153101
|
| 39 |
Esaki K. , Sato M. , Hasebe K. , Kohmoto M. . Edge states and topological phases in non-Hermitian systems. Phys. Rev. B, 2011, 84(20): 205128
https://doi.org/10.1103/PhysRevB.84.205128
|
| 40 |
Diehl S. , Rico E. , A. Baranov M. , Zoller P. . Topology by dissipation in atomic quantum wires. Nat. Phys., 2011, 7(12): 971
https://doi.org/10.1038/nphys2106
|
| 41 |
Zhu B. , Lü R. , Chen S. . PT symmetry in the non-Hermitian Su−Schrieffer−Heeger model with complex boundary potentials. Phys. Rev. A, 2014, 89(6): 062102
https://doi.org/10.1103/PhysRevA.89.062102
|
| 42 |
Malzard S. , Poli C. , Schomerus H. . Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity−time symmetry. Phys. Rev. Lett., 2015, 115(20): 200402
https://doi.org/10.1103/PhysRevLett.115.200402
|
| 43 |
K. Harter A. , E. Lee T. , N. Joglekar Y. . PT-breaking threshold in spatially asymmetric Aubry−André and Harper models: Hidden symmetry and topological states. Phys. Rev. A, 2016, 93(6): 062101
https://doi.org/10.1103/PhysRevA.93.062101
|
| 44 |
Xiong Y. . Why does bulk boundary correspondence fail in some non-Hermitian topological models. J. Phys. Commun., 2018, 2(3): 035043
https://doi.org/10.1088/2399-6528/aab64a
|
| 45 |
M. Martinez Alvarez V. , E. Barrios Vargas J. , E. F. Foa Torres L. . Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B, 2018, 97(12): 121401
https://doi.org/10.1103/PhysRevB.97.121401
|
| 46 |
Yao S. , Wang Z. . Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
https://doi.org/10.1103/PhysRevLett.121.086803
|
| 47 |
Yokomizo K. , Murakami S. . Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
https://doi.org/10.1103/PhysRevLett.123.066404
|
| 48 |
H. Lee C. , Li L. , Thomale R. , Gong J. . Unraveling non-Hermitian pumping: Emergent spectral singularities and anomalous responses. Phys. Rev. B, 2020, 102(8): 085151
https://doi.org/10.1103/PhysRevB.102.085151
|
| 49 |
Fu Y. , Wan S. . Degeneracy and defectiveness in non-Hermitian systems with open boundary. Phys. Rev. B, 2022, 105(7): 075420
https://doi.org/10.1103/PhysRevB.105.075420
|
| 50 |
H. Lee C. , Thomale R. . Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
https://doi.org/10.1103/PhysRevB.99.201103
|
| 51 |
K. Kunst F. , Edvardsson E. , C. Budich J. , J. Bergholtz E. . Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
https://doi.org/10.1103/PhysRevLett.121.026808
|
| 52 |
Y. Zou Y.Zhou Y.M. Chen L.Ye P., Measuring non-unitarity in non-Hermitian quantum systems, arXiv: 2208.14944 (2022)
|
| 53 |
Song F. , Yao S. , Wang Z. . Non-Hermitian skin effect and chiral damping in open quantum systems. Phys. Rev. Lett., 2019, 123(17): 170401
https://doi.org/10.1103/PhysRevLett.123.170401
|
| 54 |
C. Wanjura C. , Brunelli M. , Nunnenkamp A. . Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun., 2020, 11(1): 3149
https://doi.org/10.1038/s41467-020-16863-9
|
| 55 |
C. Wanjura C. , Brunelli M. , Nunnenkamp A. . Correspondence between non-Hermitian topology and directional amplification in the presence of disorder. Phys. Rev. Lett., 2021, 127(21): 213601
https://doi.org/10.1103/PhysRevLett.127.213601
|
| 56 |
T. Xue W. , R. Li M. , M. Hu Y. , Song F. , Wang Z. . Simple formulas of directional amplification from non-Bloch band theory. Phys. Rev. B, 2021, 103(24): L241408
https://doi.org/10.1103/PhysRevB.103.L241408
|
| 57 |
Longhi S. . Self-healing of non-Hermitian topological skin modes. Phys. Rev. Lett., 2022, 128(15): 157601
https://doi.org/10.1103/PhysRevLett.128.157601
|
| 58 |
T. Xue W. , M. Hu Y. , Song F. , Wang Z. . Non-Hermitian edge burst. Phys. Rev. Lett., 2022, 128(12): 120401
https://doi.org/10.1103/PhysRevLett.128.120401
|
| 59 |
C. Budich J. , J. Bergholtz E. . Non-Hermitian topological sensors. Phys. Rev. Lett., 2020, 125(18): 180403
https://doi.org/10.1103/PhysRevLett.125.180403
|
| 60 |
X. Guo C. , H. Liu C. , M. Zhao X. , Liu Y. , Chen S. . Exact solution of non-Hermitian systems with generalized boundary conditions: Size-dependent boundary effect and fragility of the skin effect. Phys. Rev. Lett., 2021, 127(11): 116801
https://doi.org/10.1103/PhysRevLett.127.116801
|
| 61 |
Li L. , H. Lee C. , Gong J. . Impurity induced scale-free localization. Commun. Phys., 2021, 4(1): 42
https://doi.org/10.1038/s42005-021-00547-x
|
| 62 |
Li L. , H. Lee C. , Mu S. , Gong J. . Critical non-Hermitian skin effect. Nat. Commun., 2020, 11: 5491
https://doi.org/10.1038/s41467-020-18917-4
|
| 63 |
Yokomizo K. , Murakami S. . Scaling rule for the critical non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): 165117
https://doi.org/10.1103/PhysRevB.104.165117
|
| 64 |
H. Liu C. , Zhang K. , Yang Z. , Chen S. . Helical damping and dynamical critical skin effect in open quantum systems. Phys. Rev. Res., 2020, 2(4): 043167
https://doi.org/10.1103/PhysRevResearch.2.043167
|
| 65 |
Q. Sun X. , Zhu P. , L. Hughes T. . Geometric response and disclination-induced skin effects in non-Hermitian systems. Phys. Rev. Lett., 2021, 127(6): 066401
https://doi.org/10.1103/PhysRevLett.127.066401
|
| 66 |
A. Bhargava B. , C. Fulga I. , van den Brink J. , G. Moghaddam A. . Non-Hermitian skin effect of dislocations and its topological origin. Phys. Rev. B, 2021, 104(24): L241402
https://doi.org/10.1103/PhysRevB.104.L241402
|
| 67 |
Schindler F. , Prem A. . Dislocation non-Hermitian skin effect. Phys. Rev. B, 2021, 104(16): L161106
https://doi.org/10.1103/PhysRevB.104.L161106
|
| 68 |
Panigrahi A. , Moessner R. , Roy B. . Non-Hermitian dislocation modes: Stability and melting across exceptional points. Phys. Rev. B, 2022, 106(4): L041302
https://doi.org/10.1103/PhysRevB.106.L041302
|
| 69 |
Manna S.Roy B., Inner skin effects on non-Hermitian topological fractals, arXiv: 2202.07658 (2022)
|
| 70 |
Zhang K. , Yang Z. , Fang C. . Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
https://doi.org/10.1038/s41467-022-30161-6
|
| 71 |
Helbig T. , Hofmann T. , Imhof S. , Abdelghany M. , Kiessling T. , W. Molenkamp L. , H. Lee C. , Szameit A. , Greiter M. , Thomale R. . Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys., 2020, 16(7): 747
https://doi.org/10.1038/s41567-020-0922-9
|
| 72 |
Hofmann T. , Helbig T. , Schindler F. , Salgo N. , Brzezińska M. , Greiter M. , Kiessling T. , Wolf D. , Vollhardt A. , Kabaši A. , H. Lee C. , Bilušić A. , Thomale R. , Neupert T. . Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res., 2020, 2(2): 023265
https://doi.org/10.1103/PhysRevResearch.2.023265
|
| 73 |
Liu S. , Shao R. , Ma S. , Zhang L. , You O. , Wu H. , J. Xiang Y. , J. Cui T. , Zhang S. . Non-Hermitian skin effect in a non-Hermitian electrical circuit. Research, 2021, 2021: 5608038
https://doi.org/10.34133/2021/5608038
|
| 74 |
Zou D. , Chen T. , He W. , Bao J. , H. Lee C. , Sun H. , Zhang X. . Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun., 2021, 12(1): 7201
https://doi.org/10.1038/s41467-021-26414-5
|
| 75 |
Zhang X. , Tian Y. , H. Jiang J. , H. Lu M. , F. Chen Y. . Observation of higher-order non-Hermitian skin effect. Nat. Commun., 2021, 12(1): 5377
https://doi.org/10.1038/s41467-021-25716-y
|
| 76 |
Shang C. , Liu S. , Shao R. , Han P. , Zang X. , Zhang X. , N. Salama K. , Gao W. , H. Lee C. , Thomale R. , Manchon A. , Zhang S. , J. Cui T. , Schwingenschlögl U. . Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning. Adv. Sci. (Weinh.), 2022, 9(36): 2202922
https://doi.org/10.1002/advs.202202922
|
| 77 |
Zhang L. , Yang Y. , Ge Y. , J. Guan Y. , Chen Q. , Yan Q. , Chen F. , Xi R. , Li Y. , Jia D. , Q. Yuan S. , X. Sun H. , Chen H. , Zhang B. . Acoustic non-Hermitian skin effect from twisted winding topology. Nat. Commun., 2021, 12(1): 6297
https://doi.org/10.1038/s41467-021-26619-8
|
| 78 |
Gao H.Xue H.Gu Z.Li L.Zhu W.Su Z.Zhu J.Zhang B.D. Chong Y., Non-Hermitian skin effect in a ring resonator lattice, arXiv: 2205.14824 (2022)
|
| 79 |
Weidemann S. , Kremer M. , Helbig T. , Hofmann T. , Stegmaier A. , Greiter M. , Thomale R. , Szameit A. . Topological funneling of light. Science, 2020, 368(6488): 311
https://doi.org/10.1126/science.aaz8727
|
| 80 |
Song Y. , Liu W. , Zheng L. , Zhang Y. , Wang B. , Lu P. . Two-dimensional non-Hermitian skin effect in a synthetic photonic lattice. Phys. Rev. Appl., 2020, 14(6): 064076
https://doi.org/10.1103/PhysRevApplied.14.064076
|
| 81 |
Xiao L. , Deng T. , Wang K. , Wang Z. , Yi W. , Xue P. . Observation of non-Bloch parity-time symmetry and exceptional points. Phys. Rev. Lett., 2021, 126(23): 230402
https://doi.org/10.1103/PhysRevLett.126.230402
|
| 82 |
Wang K. , Li T. , Xiao L. , Han Y. , Yi W. , Xue P. . Detecting non-Bloch topological invariants in quantum dynamics. Phys. Rev. Lett., 2021, 127(27): 270602
https://doi.org/10.1103/PhysRevLett.127.270602
|
| 83 |
Brandenbourger M. , Locsin X. , Lerner E. , Coulais C. . Non-reciprocal robotic metamaterials. Nat. Commun., 2019, 10(1): 4608
https://doi.org/10.1038/s41467-019-12599-3
|
| 84 |
Ghatak A. , Brandenbourger M. , van Wezel J. , Coulais C. . Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. USA, 2020, 117(47): 29561
https://doi.org/10.1073/pnas.2010580117
|
| 85 |
Gou W. , Chen T. , Xie D. , Xiao T. , S. Deng T. , Gadway B. , Yi W. , Yan B. . Tunable non-reciprocal quantum transport through a dissipative Aharonov−Bohm ring in ultracold atoms. Phys. Rev. Lett., 2020, 124(7): 070402
https://doi.org/10.1103/PhysRevLett.124.070402
|
| 86 |
Liang Q. , Xie D. , Dong Z. , Li H. , Li H. , Gadway B. , Yi W. , Yan B. . Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett., 2022, 129(7): 070401
https://doi.org/10.1103/PhysRevLett.129.070401
|
| 87 |
S. Scheurer M. , J. Slager R. . Unsupervised machine learning and band topology. Phys. Rev. Lett., 2020, 124(22): 226401
https://doi.org/10.1103/PhysRevLett.124.226401
|
| 88 |
W. Yu L. , L. Deng D. . Unsupervised learning of non-Hermitian topological phases. Phys. Rev. Lett., 2021, 126(24): 240402
https://doi.org/10.1103/PhysRevLett.126.240402
|
| 89 |
Yang R. , W. Tan J. , Tai T. , M. Koh J. , Li L. , Longhi S. , H. Lee C. . Designing non-Hermitian real spectra through electrostatics. Sci. Bull. (Beijing), 2022, 67(18): 1865
https://doi.org/10.1016/j.scib.2022.08.005
|
| 90 |
Oztas Z. , Candemir N. . Su−Schrieffer−Heeger model with imaginary gauge field. Phys. Lett. A, 2019, 383(15): 1821
https://doi.org/10.1016/j.physleta.2019.02.037
|
| 91 |
Zhu W. , X. Teo W. , Li L. , Gong J. . Delocalization of topological edge states. Phys. Rev. B, 2021, 103(19): 195414
https://doi.org/10.1103/PhysRevB.103.195414
|
| 92 |
Cheng J. , Zhang X. , H. Lu M. , F. Chen Y. . Competition between band topology and non-Hermiticity. Phys. Rev. B, 2022, 105(9): 094103
https://doi.org/10.1103/PhysRevB.105.094103
|
| 93 |
Okuma N. , Sato M. . Non-Hermitian topological phenomena: A review. Annu. Rev. Condens. Matter Phys., 2022, 14: 83
https://doi.org/10.1146/annurev-conmatphys-040521-033133
|
| 94 |
R. Wang X. , X. Guo C. , P. Kou S. . Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems. Phys. Rev. B, 2020, 101(12): 121116
https://doi.org/10.1103/PhysRevB.101.121116
|
| 95 |
H. Lee C. , Li L. , Gong J. . Hybrid higher-order skin-topological modes in nonreciprocal systems. Phys. Rev. Lett., 2019, 123(1): 016805
https://doi.org/10.1103/PhysRevLett.123.016805
|
| 96 |
Li L. , H. Lee C. , Gong J. . Topological switch for non-Hermitian skin effect in cold-atom systems with loss. Phys. Rev. Lett., 2020, 124(25): 250402
https://doi.org/10.1103/PhysRevLett.124.250402
|
| 97 |
Li Y. , Liang C. , Wang C. , Lu C. , C. Liu Y. . Gain-loss-induced hybrid skin-topological effect. Phys. Rev. Lett., 2022, 128(22): 223903
https://doi.org/10.1103/PhysRevLett.128.223903
|
| 98 |
Zhu W. , Gong J. . Hybrid skin-topological modes without asymmetric couplings. Phys. Rev. B, 2022, 106(3): 035425
https://doi.org/10.1103/PhysRevB.106.035425
|
| 99 |
Kawabata K. , Sato M. , Shiozaki K. . Higher-order non-Hermitian skin effect. Phys. Rev. B, 2020, 102(20): 205118
https://doi.org/10.1103/PhysRevB.102.205118
|
| 100 |
Okugawa R. , Takahashi R. , Yokomizo K. . Second- order topological non-Hermitian skin effects. Phys. Rev. B, 2020, 102(24): 241202
https://doi.org/10.1103/PhysRevB.102.241202
|
| 101 |
Fu Y. , Hu J. , Wan S. . Non-Hermitian second-order skin and topological modes. Phys. Rev. B, 2021, 103(4): 045420
https://doi.org/10.1103/PhysRevB.103.045420
|
| 102 |
Zhang K. , Yang Z. , Fang C. . Correspondence be- tween winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
https://doi.org/10.1103/PhysRevLett.125.126402
|
| 103 |
S. Borgnia D. , J. Kruchkov A. , J. Slager R. . Non-Hermitian boundary modes and topology. Phys. Rev. Lett., 2020, 124(5): 056802
https://doi.org/10.1103/PhysRevLett.124.056802
|
| 104 |
Okuma N. , Kawabata K. , Shiozaki K. , Sato M. . Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
https://doi.org/10.1103/PhysRevLett.124.086801
|
| 105 |
Li L. , Mu S. , H. Lee C. , Gong J. . Quantized classical response from spectral winding topology. Nat. Commun., 2021, 12(1): 5294
https://doi.org/10.1038/s41467-021-25626-z
|
| 106 |
Q. Liang H. , Mu S. , Gong J. , Li L. . Anomalous hybridization of spectral winding topology in quantized steady-state responses. Phys. Rev. B, 2022, 105(24): L241402
https://doi.org/10.1103/PhysRevB.105.L241402
|
| 107 |
Longhi S. . Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
https://doi.org/10.1103/PhysRevLett.122.237601
|
| 108 |
Jiang H. , J. Lang L. , Yang C. , L. Zhu S. , Chen S. . Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices. Phys. Rev. B, 2019, 100(5): 054301
https://doi.org/10.1103/PhysRevB.100.054301
|
| 109 |
Longhi S. . Metal−insulator phase transition in a non-Hermitian Aubry−André−Harper model. Phys. Rev. B, 2019, 100(12): 125157
https://doi.org/10.1103/PhysRevB.100.125157
|
| 110 |
B. Zeng Q. , Xu Y. . Winding numbers and generalized mobility edges in non-Hermitian systems. Phys. Rev. Res., 2020, 2(3): 033052
https://doi.org/10.1103/PhysRevResearch.2.033052
|
| 111 |
B. Zeng Q. , B. Yang Y. , Xu Y. . Topological phases in non-Hermitian Aubry−André−Harper models. Phys. Rev. B, 2020, 101(2): 020201
https://doi.org/10.1103/PhysRevB.101.020201
|
| 112 |
Liu Y. , P. Jiang X. , Cao J. , Chen S. . Non-Hermitian mobility edges in one-dimensional quasicrystals with parity−time symmetry. Phys. Rev. B, 2020, 101(17): 174205
https://doi.org/10.1103/PhysRevB.101.174205
|
| 113 |
J. Zhai L. , Yin S. , Y. Huang G. . Many-body localization in a non-Hermitian quasiperiodic system. Phys. Rev. B, 2020, 102(6): 064206
https://doi.org/10.1103/PhysRevB.102.064206
|
| 114 |
Cai X. . Boundary-dependent self-dualities, winding numbers, and asymmetrical localization in non-Hermitian aperiodic one-dimensional models. Phys. Rev. B, 2021, 103(1): 014201
https://doi.org/10.1103/PhysRevB.103.014201
|
| 115 |
Liu Y. , Wang Y. , J. Liu X. , Zhou Q. , Chen S. . Exact mobility edges, PT-symmetry breaking, and skin effect in one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 103(1): 014203
https://doi.org/10.1103/PhysRevB.103.014203
|
| 116 |
Liu Y. , Zhou Q. , Chen S. . Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 104(2): 024201
https://doi.org/10.1103/PhysRevB.104.024201
|
| 117 |
Claes J. , L. Hughes T. . Skin effect and winding number in disordered non-Hermitian systems. Phys. Rev. B, 2021, 103(14): L140201
https://doi.org/10.1103/PhysRevB.103.L140201
|
| 118 |
Longhi S. . Non-Hermitian topological mobility edges and transport in photonic quantum walks. Opt. Lett., 2022, 47(12): 2951
https://doi.org/10.1364/OL.460484
|
| 119 |
Zhang X. , Li G. , Liu Y. , Tai T. , Thomale R. , H. Lee C. . Tidal surface states as fingerprints of non-Hermitian nodal knot metals. Commun. Phys., 2021, 4(1): 47
https://doi.org/10.1038/s42005-021-00535-1
|
| 120 |
Herviou L. , H. Bardarson J. , Regnault N. . Defining a bulk-edge correspondence for non-Hermitian Hamiltonians via singular-value decomposition. Phys. Rev. A, 2019, 99(5): 052118
https://doi.org/10.1103/PhysRevA.99.052118
|
| 121 |
G. Zirnstein H. , Refael G. , Rosenow B. . Bulk-boundary correspondence for non-Hermitian Hamiltonians via Green functions. Phys. Rev. Lett., 2021, 126(21): 216407
https://doi.org/10.1103/PhysRevLett.126.216407
|
| 122 |
P. Su W. , R. Schrieffer J. , J. Heeger A. . Solitons in polyacetylene. Phys. Rev. Lett., 1979, 42(25): 1698
https://doi.org/10.1103/PhysRevLett.42.1698
|
| 123 |
Creutz M. . End states, ladder compounds, and domain-wall Fermions. Phys. Rev. Lett., 1999, 83(13): 2636
https://doi.org/10.1103/PhysRevLett.83.2636
|
| 124 |
Q. Liang H. , Li L. . Topological properties of non-Hermitian Creutz ladders. Chin. Phys. B, 2022, 31(1): 010310
https://doi.org/10.1088/1674-1056/ac3991
|
| 125 |
Edvardsson E. , K. Kunst F. , Yoshida T. , J. Bergholtz E. . Phase transitions and generalized biorthogonal polarization in non-Hermitian systems. Phys. Rev. Res., 2020, 2(4): 043046
https://doi.org/10.1103/PhysRevResearch.2.043046
|
| 126 |
Masuda S. , Nakamura M. . Relationship between the electronic polarization and the winding number in non-Hermitian systems. J. Phys. Soc. Jpn., 2022, 91(4): 043701
https://doi.org/10.7566/JPSJ.91.043701
|
| 127 |
Masuda S. , Nakamura M. . Electronic polarization in non-Bloch band theory. J. Phys. Soc. Jpn., 2022, 91(11): 114705
https://doi.org/10.7566/JPSJ.91.114705
|
| 128 |
S. Deng T. , Yi W. . Non-Bloch topological invariants in a non-Hermitian domain wall system. Phys. Rev. B, 2019, 100(3): 035102
https://doi.org/10.1103/PhysRevB.100.035102
|
| 129 |
Liu H.Lu M.Q. Zhang Z.Jiang H., Modified generalized-Brillouin-zone theory with on-site disorders, arXiv: 2208.03013 (2022)
|
| 130 |
Yang Z. , Zhang K. , Fang C. , Hu J. . Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 2020, 125(22): 226402
https://doi.org/10.1103/PhysRevLett.125.226402
|
| 131 |
Tai T.H. Lee C., Zoology of non-Hermitian spectra and their graph topology, arXiv: 2202.03462 (2022)
|
| 132 |
Q. Zhang Z. , Liu H. , Liu H. , Jiang H. , C. Xie X. . Bulk-boundary correspondence in disordered non-Hermitian systems. Sci. Bull. (Beijing), 2023, 68(2): 157
https://doi.org/10.1016/j.scib.2023.01.002
|
| 133 |
Chen R. , Z. Chen C. , Zhou B. , H. Xu D. . Finite-size effects in non-Hermitian topological systems. Phys. Rev. B, 2019, 99(15): 155431
https://doi.org/10.1103/PhysRevB.99.155431
|
| 134 |
M. Rafi-Ul-Islam S. , B. Siu Z. , Sahin H. , H. Lee C. , B. A. Jalil M. . Unconventional skin modes in generalized topolectrical circuits with multiple asymmetric couplings. Phys. Rev. Res., 2022, 4(4): 043108
https://doi.org/10.1103/PhysRevResearch.4.043108
|
| 135 |
Wang W. , Wang X. , Ma G. . Non-Hermitian morphing of topological modes. Nature, 2022, 608(7921): 50
https://doi.org/10.1038/s41586-022-04929-1
|
| 136 |
Wang W. , Wang X. , Ma G. . Extended state in a localized continuum. Phys. Rev. Lett., 2022, 129(26): 264301
https://doi.org/10.1103/PhysRevLett.129.264301
|
| 137 |
Longhi S. . Non-Hermitian gauged topological laser arrays. Ann. Phys., 2018, 530(7): 1800023
https://doi.org/10.1002/andp.201800023
|
| 138 |
Tang M.Wang J.Valligatla S.N. Saggau C.Dong H., et al.., Symmetry induced selective excitation of topological states in SSH waveguide arrays, arXiv: 2211.06228 (2022)
|
| 139 |
D. M. Haldane F. . Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 1988, 61(18): 2015
https://doi.org/10.1103/PhysRevLett.61.2015
|
| 140 |
L. Qi X. , L. Hughes T. , C. Zhang S. . Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 2008, 78(19): 195424
https://doi.org/10.1103/PhysRevB.78.195424
|
| 141 |
Z. Chang C. , Zhang J. , Feng X. , Shen J. , Zhang Z. , Guo M. , Li K. , Ou Y. , Wei P. , L. Wang L. , Q. Ji Z. , Feng Y. , Ji S. , Chen X. , Jia J. , Dai X. , Fang Z. , C. Zhang S. , He K. , Wang Y. , Lu L. , C. Ma X. , K. Xue Q. . Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 2013, 340(6129): 167
https://doi.org/10.1126/science.1234414
|
| 142 |
H. Lee C. , L. Qi X. . Lattice construction of pseu-dopotential Hamiltonians for fractional Chern insulators. Phys. Rev. B, 2014, 90(8): 085103
https://doi.org/10.1103/PhysRevB.90.085103
|
| 143 |
Neupert T. , Chamon C. , Iadecola T. , H. Santos L. , Mudry C. . Fractional (Chern and topological) insulators. Phys. Scr., 2015, T164: 014005
https://doi.org/10.1088/0031-8949/2015/T164/014005
|
| 144 |
Yao S. , Song F. , Wang Z. . Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
https://doi.org/10.1103/PhysRevLett.121.136802
|
| 145 |
Kawabata K. , Shiozaki K. , Ueda M. . Anomalous helical edge states in a non-Hermitian Chern insulator. Phys. Rev. B, 2018, 98(16): 165148
https://doi.org/10.1103/PhysRevB.98.165148
|
| 146 |
X. Xiao Y. , T. Chan C. . Topology in non-Hermitian Chern insulators with skin effect. Phys. Rev. B, 2022, 105(7): 075128
https://doi.org/10.1103/PhysRevB.105.075128
|
| 147 |
Liu H. , S. You J. , Ryu S. , C. Fulga I. . Supermetal−insulator transition in a non-Hermitian network model. Phys. Rev. B, 2021, 104(15): 155412
https://doi.org/10.1103/PhysRevB.104.155412
|
| 148 |
M. Philip T. , R. Hirsbrunner M. , J. Gilbert M. . Loss of Hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator. Phys. Rev. B, 2018, 98(15): 155430
https://doi.org/10.1103/PhysRevB.98.155430
|
| 149 |
Sayyad S. , D. Hannukainen J. , G. Grushin A. . Non-Hermitian chiral anomalies. Phys. Rev. Res., 2022, 4(4): L042004
https://doi.org/10.1103/PhysRevResearch.4.L042004
|
| 150 |
Bessho T. , Sato M. . Nielsen−Ninomiya theorem with bulk topology: Duality in Floquet and non-Hermitian systems. Phys. Rev. Lett., 2021, 127(19): 196404
https://doi.org/10.1103/PhysRevLett.127.196404
|
| 151 |
Wang C. , R. Wang X. . Hermitian chiral boundary states in non-Hermitian topological insulators. Phys. Rev. B, 2022, 105(12): 125103
https://doi.org/10.1103/PhysRevB.105.125103
|
| 152 |
H. Lee C. , Wang Y. , Chen Y. , Zhang X. . Electromagnetic response of quantum Hall systems in dimensions five and six and beyond. Phys. Rev. B, 2018, 98(9): 094434
https://doi.org/10.1103/PhysRevB.98.094434
|
| 153 |
Petrides I. , M. Price H. , Zilberberg O. . Six-dimensional quantum Hall effect and three-dimensional topological pumps. Phys. Rev. B, 2018, 98(12): 125431
https://doi.org/10.1103/PhysRevB.98.125431
|
| 154 |
Shao K. , T. Cai Z. , Geng H. , Chen W. , Y. Xing D. . Cyclotron quantization and mirror-time transition on nonreciprocal lattices. Phys. Rev. B, 2022, 106(8): L081402
https://doi.org/10.1103/PhysRevB.106.L081402
|
| 155 |
Deng K. , Flebus B. . Non-Hermitian skin effect in magnetic systems. Phys. Rev. B, 2022, 105(18): L180406
https://doi.org/10.1103/PhysRevB.105.L180406
|
| 156 |
M. Denner M.Schindler F., Magnetic flux response of non-Hermitian topological phases, arXiv: 2208.11712 (2022)
|
| 157 |
Lu M. , X. Zhang X. , Franz M. . Magnetic suppression of non-Hermitian skin effects. Phys. Rev. Lett., 2021, 127(25): 256402
https://doi.org/10.1103/PhysRevLett.127.256402
|
| 158 |
Zhen B. , W. Hsu C. , Igarashi Y. , Lu L. , Kaminer I. , Pick A. , L. Chua S. , D. Joannopoulos J. , Soljačić M. . Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354
https://doi.org/10.1038/nature14889
|
| 159 |
Xu Y. , T. Wang S. , M. Duan L. . Weyl exceptional rings in a three-dimensional dissipative cold atomic gas. Phys. Rev. Lett., 2017, 118(4): 045701
https://doi.org/10.1103/PhysRevLett.118.045701
|
| 160 |
Liu J. , Li Z. , G. Chen Z. , Tang W. , Chen A. , Liang B. , Ma G. , C. Cheng J. . Experimental realization of Weyl exceptional rings in a synthetic three-dimensional non-Hermitian phononic crystal. Phys. Rev. Lett., 2022, 129(8): 084301
https://doi.org/10.1103/PhysRevLett.129.084301
|
| 161 |
Cerjan A. , Huang S. , Wang M. , P. Chen K. , Chong Y. , C. Rechtsman M. . Experimental realization of a Weyl exceptional ring. Nat. Photonics, 2019, 13(9): 623
https://doi.org/10.1038/s41566-019-0453-z
|
| 162 |
Tang W.Ding K.Ma G., Realization and topological properties of third-order exceptional lines embedded in exceptional surfaces, arXiv: 2211.15921 (2022)
|
| 163 |
Bzdušek T. , S. Wu Q. , Rüegg A. , Sigrist M. , A. Soluyanov A. . Nodal-chain metals. Nature, 2016, 538: 75
https://doi.org/10.1038/nature19099
|
| 164 |
Huh Y. , G. Moon E. , B. Kim Y. . Long-range Coulomb interaction in nodal-ring semimetals. Phys. Rev. B, 2016, 93(3): 035138
https://doi.org/10.1103/PhysRevB.93.035138
|
| 165 |
Li L. , A. N. Araujo M. . Topological insulating phases from two-dimensional nodal loop semimetals. Phys. Rev. B, 2016, 94(16): 165117
https://doi.org/10.1103/PhysRevB.94.165117
|
| 166 |
Li L. , Yin C. , Chen S. , A. N. Araujo M. . Chiral topological insulating phases from three-dimensional nodal loop semimetals. Phys. Rev. B, 2017, 95(12): 121107
https://doi.org/10.1103/PhysRevB.95.121107
|
| 167 |
Li L. , Chesi S. , Yin C. , Chen S. . 2π-flux loop semimetals. Phys. Rev. B, 2017, 96(8): 081116
https://doi.org/10.1103/PhysRevB.96.081116
|
| 168 |
Yan Z. , Bi R. , Shen H. , Lu L. , C. Zhang S. , Wang Z. . Nodal-link semimetals. Phys. Rev. B, 2017, 96(4): 041103
https://doi.org/10.1103/PhysRevB.96.041103
|
| 169 |
Li S. , M. Yu Z. , Liu Y. , Guan S. , S. Wang S. , Zhang X. , Yao Y. , A. Yang S. . Type-II nodal loops: Theory and material realization. Phys. Rev. B, 2017, 96(8): 081106
https://doi.org/10.1103/PhysRevB.96.081106
|
| 170 |
Li L. , H. Yap H. , A. N. Araújo M. , Gong J. . Engineering topological phases with a three-dimensional nodal-loop semimetal. Phys. Rev. B, 2017, 96(23): 235424
https://doi.org/10.1103/PhysRevB.96.235424
|
| 171 |
Zhou Y. , Xiong F. , Wan X. , An J. . Hopf-link topological nodal-loop semimetals. Phys. Rev. B, 2018, 97(15): 155140
https://doi.org/10.1103/PhysRevB.97.155140
|
| 172 |
Pezzini S. , R. van Delft M. , M. Schoop L. , V. Lotsch B. , Carrington A. , I. Katsnelson M. , E. Hussey N. , Wiedmann S. . Unconventional mass enhancement around the Dirac nodal loop in ZrSiS. Nat. Phys., 2018, 14(2): 178
https://doi.org/10.1038/nphys4306
|
| 173 |
Zhang X. , M. Yu Z. , Zhu Z. , Wu W. , S. Wang S. , L. Sheng X. , A. Yang S. . Nodal loop and nodal surface states in the Ti3Al family of materials. Phys. Rev. B, 2018, 97(23): 235150
https://doi.org/10.1103/PhysRevB.97.235150
|
| 174 |
H. Lee C. , W. Ho W. , Yang B. , Gong J. , Papić Z. . Floquet mechanism for non-Abelian fractional quantum Hall states. Phys. Rev. Lett., 2018, 121(23): 237401
https://doi.org/10.1103/PhysRevLett.121.237401
|
| 175 |
N. Ünal F. , Bouhon A. , J. Slager R. . Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett., 2020, 125(5): 053601
https://doi.org/10.1103/PhysRevLett.125.053601
|
| 176 |
Bouhon A. , S. Wu Q. , J. Slager R. , Weng H. , V. Yazyev O. , Bzdušek T. . Non-Abelian reciprocal braiding of Weyl points and its manifestation in ZrTe. Nat. Phys., 2020, 16(11): 1137
https://doi.org/10.1038/s41567-020-0967-9
|
| 177 |
H. Lee C. , H. Yap H. , Tai T. , Xu G. , Zhang X. , Gong J. . Enhanced higher harmonic generation from nodal topology. Phys. Rev. B, 2020, 102(3): 035138
https://doi.org/10.1103/PhysRevB.102.035138
|
| 178 |
S. Ang Y.H. Lee C.K. Ang L., Universal scaling and signatures of nodal structures in electron tunneling from two-dimensional semimetals, arXiv: 2003.14004 (2020)
|
| 179 |
Yang E. , Yang B. , You O. , C. Chan H. , Mao P. , Guo Q. , Ma S. , Xia L. , Fan D. , Xiang Y. , Zhang S. . Observation of non-Abelian nodal links in photonics. Phys. Rev. Lett., 2020, 125(3): 033901
https://doi.org/10.1103/PhysRevLett.125.033901
|
| 180 |
H. Lee C. , Sutrisno A. , Hofmann T. , Helbig T. , Liu Y. , S. Ang Y. , K. Ang L. , Zhang X. , Greiter M. , Thomale R. . Imaging nodal knots in momentum space through topolectrical circuits. Nat. Commun., 2020, 11: 4385
https://doi.org/10.1038/s41467-020-17716-1
|
| 181 |
Tai T. , H. Lee C. . Anisotropic nonlinear optical response of nodal-loop materials. Phys. Rev. B, 2021, 103(19): 195125
https://doi.org/10.1103/PhysRevB.103.195125
|
| 182 |
M. Lenggenhager P. , Liu X. , S. Tsirkin S. , Neupert T. , Bzdušek T. . From triple-point materials to multiband nodal links. Phys. Rev. B, 2021, 103(12): L121101
https://doi.org/10.1103/PhysRevB.103.L121101
|
| 183 |
Wang M. , Liu S. , Ma Q. , Y. Zhang R. , Wang D. , Guo Q. , Yang B. , Ke M. , Liu Z. , T. Chan C. . Experimental observation of non-Abelian earring nodal links in phononic crystals. Phys. Rev. Lett., 2022, 128(24): 246601
https://doi.org/10.1103/PhysRevLett.128.246601
|
| 184 |
J. Slager R.Bouhon A.N. Ünal F., Floquet multi-gap topology: Non-Abelian braiding and anomalous Dirac string phase, arXiv: 2208.12824 (2022)
|
| 185 |
Peng B. , Bouhon A. , Monserrat B. , J. Slager R. . Phonons as a platform for non-Abelian braiding and its manifestation in layered silicates. Nat. Commun., 2022, 13(1): 423
https://doi.org/10.1038/s41467-022-28046-9
|
| 186 |
Bouhon A.J. Slager R., Multi-gap topological conversion of Euler class via band-node braiding: Minimal models, PT-linked nodal rings, and chiral heirs, arXiv: 2203.16741 (2022)
|
| 187 |
Park H. , Wong S. , Bouhon A. , J. Slager R. , S. Oh S. . Topological phase transitions of non-Abelian charged nodal lines in spring-mass systems. Phys. Rev. B, 2022, 105(21): 214108
https://doi.org/10.1103/PhysRevB.105.214108
|
| 188 |
Yang X. , Cao Y. , Zhai Y. . Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Chin. Phys. B, 2022, 31(1): 010308
https://doi.org/10.1088/1674-1056/ac3738
|
| 189 |
Li L. , H. Lee C. , Gong J. . Realistic Floquet semimetal with exotic topological linkages between arbitrarily many nodal loops. Phys. Rev. Lett., 2018, 121(3): 036401
https://doi.org/10.1103/PhysRevLett.121.036401
|
| 190 |
Yan Z. , Wang Z. . Floquet multi-Weyl points in crossing-nodal-line semimetals. Phys. Rev. B, 2017, 96(4): 041206
https://doi.org/10.1103/PhysRevB.96.041206
|
| 191 |
Carlström J. , J. Bergholtz E. . Exceptional links and twisted Fermi ribbons in non-Hermitian systems. Phys. Rev. A, 2018, 98(4): 042114
https://doi.org/10.1103/PhysRevA.98.042114
|
| 192 |
Chen R. , Zhou B. , H. Xu D. . Floquet Weyl semimetals in light-irradiated type-II and hybrid line-node semimetals. Phys. Rev. B, 2018, 97(15): 155152
https://doi.org/10.1103/PhysRevB.97.155152
|
| 193 |
Carlström J. , Stålhammar M. , C. Budich J. , J. Bergholtz E. . Knotted non-Hermitian metals. Phys. Rev. B, 2019, 99(16): 161115
https://doi.org/10.1103/PhysRevB.99.161115
|
| 194 |
W. Kim K. , Kwon H. , Park K. . Floquet topological semimetal with a helical nodal line in 2+1 dimensions. Phys. Rev. B, 2019, 99(11): 115136
https://doi.org/10.1103/PhysRevB.99.115136
|
| 195 |
Stålhammar M. , Rødland L. , Arone G. , C. Budich J. , Bergholtz E. . Hyperbolic nodal band structures and knot invariants. SciPost Phys., 2019, 7: 019
https://doi.org/10.21468/SciPostPhys.7.2.019
|
| 196 |
Salerno G. , Goldman N. , Palumbo G. . Floquet-engineering of nodal rings and nodal spheres and their characterization using the quantum metric. Phys. Rev. Res., 2020, 2(1): 013224
https://doi.org/10.1103/PhysRevResearch.2.013224
|
| 197 |
Meng H. , Wang L. , H. Lee C. , S. Ang Y. . Terahertz polarization conversion from optical dichroism in a topological Dirac semimetal. Appl. Phys. Lett., 2022, 121(19): 193102
https://doi.org/10.1063/5.0122299
|
| 198 |
Qin F. , H. Lee C. , Chen R. . Light-induced phase crossovers in a quantum spin Hall system. Phys. Rev. B, 2022, 106(23): 235405
https://doi.org/10.1103/PhysRevB.106.235405
|
| 199 |
Wu H. , H. An J. . Non-Hermitian Weyl semimetal and its Floquet engineering. Phys. Rev. B, 2022, 105(12): L121113
https://doi.org/10.1103/PhysRevB.105.L121113
|
| 200 |
Wang K. , Xiao L. , C. Budich J. , Yi W. , Xue P. . Simulating exceptional non-Hermitian metals with single-photon interferometry. Phys. Rev. Lett., 2021, 127(2): 026404
https://doi.org/10.1103/PhysRevLett.127.026404
|
| 201 |
A. Benalcazar W. , A. Bernevig B. , L. Hughes T. . Quantized electric multipole insulators. Science, 2017, 357(6346): 61
https://doi.org/10.1126/science.aah6442
|
| 202 |
Edvardsson E. , K. Kunst F. , J. Bergholtz E. . Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence. Phys. Rev. B, 2019, 99(8): 081302
https://doi.org/10.1103/PhysRevB.99.081302
|
| 203 |
K. Ghosh A. , Nag T. . Non-Hermitian higher-order topological superconductors in two dimensions: Statics and dynamics. Phys. Rev. B, 2022, 106(14): L140303
https://doi.org/10.1103/PhysRevB.106.L140303
|
| 204 |
M. Kim K. , J. Park M. . Disorder-driven phase transition in the second-order non-Hermitian skin effect. Phys. Rev. B, 2021, 104(12): L121101
https://doi.org/10.1103/PhysRevB.104.L121101
|
| 205 |
T. Lei Z.H. Lee C.H. Li L., PT-activated non-Hermitian skin modes, arXiv: 2304.13955v1 (2023)
|
| 206 |
Note that asymmetric couplings are not always need to break reciprocity [98].
|
| 207 |
Li J. , K. Harter A. , Liu J. , de Melo L. , N. Joglekar Y. , Luo L. . Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms. Nat. Commun., 2019, 10(1): 855
https://doi.org/10.1038/s41467-019-08596-1
|
| 208 |
Wu H. , Q. Wang B. , H. An J. . Floquet second-order topological insulators in non-Hermitian systems. Phys. Rev. B, 2021, 103(4): L041115
https://doi.org/10.1103/PhysRevB.103.L041115
|
| 209 |
W. Zhou L. , W. Bomantara R. , L. Wu S. . qth-root non-Hermitian Floquet topological insulators. SciPost Phys., 2022, 13: 015
https://doi.org/10.21468/SciPostPhys.13.2.015
|
| 210 |
Cao Y. , Li Y. , Yang X. . Non-Hermitian bulk-boundary correspondence in a periodically driven system. Phys. Rev. B, 2021, 103(7): 075126
https://doi.org/10.1103/PhysRevB.103.075126
|
| 211 |
Ezawa M. . Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization. Phys. Rev. B, 2019, 99(20): 201411
https://doi.org/10.1103/PhysRevB.99.201411
|
| 212 |
Ezawa M. . Non-Hermitian boundary and interface states in nonreciprocal higher-order topological metals and electrical circuits. Phys. Rev. B, 2019, 99(12): 121411
https://doi.org/10.1103/PhysRevB.99.121411
|
| 213 |
Song Z. , Fang Z. , Fang C. . (d-2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett., 2017, 119(24): 246402
https://doi.org/10.1103/PhysRevLett.119.246402
|
| 214 |
Khalaf E. . Higher-order topological insulators and superconductors protected by inversion symmetry. Phys. Rev. B, 2018, 97(20): 205136
https://doi.org/10.1103/PhysRevB.97.205136
|
| 215 |
Trifunovic L. , W. Brouwer P. . Higher-order topological band structures. physica status solidi (b), 2021, 258: 2000090
https://doi.org/10.1002/pssb.202000090
|
| 216 |
A. Li C.Trauzettel B.Neupert T.B. Zhang S., Enhancement of second-order non-Hermitian skin effect by magnetic fields, arXiv: 2212.14691v1 (2022)
|
| 217 |
Jiang H.H. Lee C., Dimensional transmutation from non-hermiticity, arXiv: 2207.08843 (2022)
|
| 218 |
Zhu P.Q. Sun X.L. Hughes T.Bahl G., Higher rank chirality and non-Hermitian skin effect in a topolectrical circuit, arXiv: 2207.02228 (2022)
|
| 219 |
Song F.Y. Wang H.Wang Z., Non-Bloch PT symmetry breaking: Universal threshold and dimensional surprise, A Festschrift in Honor of the C. N. Yang Centenary, arXiv: 2102.02230 (2022)
|
| 220 |
Jiang H. , H. Lee C. . Filling up complex spectral regions through non-Hermitian disordered chains. Chin. Phys. B, 2022, 31(5): 050307
https://doi.org/10.1088/1674-1056/ac4a73
|
| 221 |
Kawabata K. , Shiozaki K. , Ueda M. , Sato M. . Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
https://doi.org/10.1103/PhysRevX.9.041015
|
| 222 |
Theiler J. . Estimating fractal dimension. J. Opt. Soc. Am. A, 1990, 7(6): 1055
https://doi.org/10.1364/JOSAA.7.001055
|
| 223 |
L. Qi X., Exact holographic mapping and emergent space−time geometry, arXiv: 1309.6282 (2013)
|
| 224 |
H. Lee C. , L. Qi X. . Exact holographic mapping in free Fermion systems. Phys. Rev. B, 2016, 93(3): 035112
https://doi.org/10.1103/PhysRevB.93.035112
|
| 225 |
Gu Y. , H. Lee C. , Wen X. , Y. Cho G. , Ryu S. , L. Qi X. . Holographic duality between (2+1)-dimensional quantum anomalous Hall state and (3+1)-dimensional topological insulators. Phys. Rev. B, 2016, 94(12): 125107
https://doi.org/10.1103/PhysRevB.94.125107
|
| 226 |
Yoshida T. , Mizoguchi T. , Hatsugai Y. . Mirror skin effect and its electric circuit simulation. Phys. Rev. Res., 2020, 2(2): 022062
https://doi.org/10.1103/PhysRevResearch.2.022062
|
| 227 |
H. Liu C. , Chen S. . Topological classification of defects in non-Hermitian systems. Phys. Rev. B, 2019, 100(14): 144106
https://doi.org/10.1103/PhysRevB.100.144106
|
| 228 |
H. Liu C. , Hu H. , Chen S. . Symmetry and topological classification of Floquet non-Hermitian systems. Phys. Rev. B, 2022, 105(21): 214305
https://doi.org/10.1103/PhysRevB.105.214305
|
| 229 |
Okugawa R. , Takahashi R. , Yokomizo K. . Non-Hermitian band topology with generalized inversion symmetry. Phys. Rev. B, 2021, 103(20): 205205
https://doi.org/10.1103/PhysRevB.103.205205
|
| 230 |
M. Vecsei P. , M. Denner M. , Neupert T. , Schindler F. . Symmetry indicators for inversion-symmetric non-Hermitian topological band structures. Phys. Rev. B, 2021, 103(20): L201114
https://doi.org/10.1103/PhysRevB.103.L201114
|
| 231 |
Gong Z. , Ashida Y. , Kawabata K. , Takasan K. , Higashikawa S. , Ueda M. . Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
https://doi.org/10.1103/PhysRevX.8.031079
|
| 232 |
M. Denner M. , Skurativska A. , Schindler F. , H. Fischer M. , Thomale R. , Bzdušek T. , Neupert T. . Exceptional topological insulators. Nat. Commun., 2021, 12: 5681
https://doi.org/10.1038/s41467-021-25947-z
|
| 233 |
Nakamura D.Bessho T.Sato M., Bulk-boundary correspondence in point-gap topological phases, arXiv: 2205.15635 (2022)
|
| 234 |
Song F. , Yao S. , Wang Z. . Non-Hermitian topological invariants in real space. Phys. Rev. Lett., 2019, 123(24): 246801
https://doi.org/10.1103/PhysRevLett.123.246801
|
| 235 |
Z. Tang L. , F. Zhang L. , Q. Zhang G. , W. Zhang D. . Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Phys. Rev. A, 2020, 101(6): 063612
https://doi.org/10.1103/PhysRevA.101.063612
|
| 236 |
A. A. Ghorashi S. , Li T. , Sato M. , L. Hughes T. . Non-Hermitian higher-order Dirac semimetals. Phys. Rev. B, 2021, 104(16): L161116
https://doi.org/10.1103/PhysRevB.104.L161116
|
| 237 |
A. A. Ghorashi S. , Li T. , Sato M. . Non-Hermitian higher-order Weyl semimetals. Phys. Rev. B, 2021, 104(16): L161117
https://doi.org/10.1103/PhysRevB.104.L161117
|
| 238 |
Edvardsson E. , Ardonne E. . Sensitivity of non-Hermitian systems. Phys. Rev. B, 2022, 106(11): 115107
https://doi.org/10.1103/PhysRevB.106.115107
|
| 239 |
Böttcher A.M. Grudsky S., Spectral Properties of Banded Toeplitz Matrices, SIAM, 2005
|
| 240 |
Bartlett J. , Hu H. , Zhao E. . Illuminating the bulk-boundary correspondence of a non-Hermitian stub lattice with Majorana stars. Phys. Rev. B, 2021, 104(19): 195131
https://doi.org/10.1103/PhysRevB.104.195131
|
| 241 |
X. Teo W. , Li L. , Zhang X. , Gong J. . Topological characterization of non-Hermitian multiband systems using Majorana’s stellar representation. Phys. Rev. B, 2020, 101(20): 205309
https://doi.org/10.1103/PhysRevB.101.205309
|
| 242 |
S. Pan J. , Li L. , Gong J. . Point-gap topology with complete bulk-boundary correspondence and anomalous amplification in the Fock space of dissipative quantum systems. Phys. Rev. B, 2021, 103(20): 205425
https://doi.org/10.1103/PhysRevB.103.205425
|
| 243 |
Wang K. , Dutt A. , Y. Yang K. , C. Wojcik C. , Vučković J. , Fan S. . Generating arbitrary topological windings of a non-Hermitian band. Science, 2021, 371(6535): 1240
https://doi.org/10.1126/science.abf6568
|
| 244 |
H. Lee C. , Imhof S. , Berger C. , Bayer F. , Brehm J. , W. Molenkamp L. , Kiessling T. , Thomale R. . Topolectrical circuits. Commun. Phys., 2018, 1: 39
https://doi.org/10.1038/s42005-018-0035-2
|
| 245 |
Liu Y. , Zeng Y. , Li L. , Chen S. . Exact solution of the single impurity problem in nonreciprocal lattices: Impurity-induced size-dependent non-Hermitian skin effect. Phys. Rev. B, 2021, 104(8): 085401
https://doi.org/10.1103/PhysRevB.104.085401
|
| 246 |
Ou Z. , Wang Y. , Li L. . Non-Hermitian boundary spectral winding. Phys. Rev. B, 2023, 107: L161404
https://doi.org/10.1103/PhysRevB.107.L161404
|
| 247 |
Okuma N. . Boundary-dependent dynamical instability of bosonic Green’s function: Dissipative Bogoliubov–de Gennes Hamiltonian and its application to non-Hermitian skin effect. Phys. Rev. B, 2022, 105(22): 224301
https://doi.org/10.1103/PhysRevB.105.224301
|
| 248 |
Mao L. , Deng T. , Zhang P. . Boundary condition independence of non-Hermitian Hamiltonian dynamics. Phys. Rev. B, 2021, 104(12): 125435
https://doi.org/10.1103/PhysRevB.104.125435
|
| 249 |
Hu H. , Zhao E. . Knots and non-Hermitian Bloch bands. Phys. Rev. Lett., 2021, 126(1): 010401
https://doi.org/10.1103/PhysRevLett.126.010401
|
| 250 |
Li Y. , Ji X. , Chen Y. , Yan X. , Yang X. . Topological energy braiding of non-Bloch bands. Phys. Rev. B, 2022, 106(19): 195425
https://doi.org/10.1103/PhysRevB.106.195425
|
| 251 |
Louis H., Kauffman, Knots and Physics, Vol. 1, World Scientific, 1991
|
| 252 |
Hu H. , Sun S. , Chen S. . Knot topology of exceptional point and non-Hermitian no−go theorem. Phys. Rev. Res., 2022, 4(2): L022064
https://doi.org/10.1103/PhysRevResearch.4.L022064
|
| 253 |
Li L. , H. Lee C. . Non-Hermitian pseudo-gaps. Sci. Bull. (Beijing), 2022, 67(7): 685
https://doi.org/10.1016/j.scib.2022.01.017
|
| 254 |
Wang K. , Dutt A. , C. Wojcik C. , Fan S. . Topological complex-energy braiding of non-Hermitian bands. Nature, 2021, 598(7879): 59
https://doi.org/10.1038/s41586-021-03848-x
|
| 255 |
Tang W. , Ding K. , Ma G. . Experimental realization of non-Abelian permutations in a three-state non-Hermitian system. Natl. Sci. Rev., 2022, 9(11): nwac010
https://doi.org/10.1093/nsr/nwac010
|
| 256 |
Tang W. , Jiang X. , Ding K. , X. Xiao Y. , Q. Zhang Z. , T. Chan C. , Ma G. . Exceptional nexus with a hybrid topological invariant. Science, 2020, 370(6520): 1077
https://doi.org/10.1126/science.abd8872
|
| 257 |
Fu Y.Zhang Y., Anatomy of open-boundary bulk in multiband non-Hermitian systems, arXiv: 2212.13753 (2022)
|
| 258 |
Kohn W. . Analytic properties of Bloch waves and Wannier functions. Phys. Rev., 1959, 115(4): 809
https://doi.org/10.1103/PhysRev.115.809
|
| 259 |
He L. , Vanderbilt D. . Exponential decay properties of Wannier functions and related quantities. Phys. Rev. Lett., 2001, 86(23): 5341
https://doi.org/10.1103/PhysRevLett.86.5341
|
| 260 |
Brouder C. , Panati G. , Calandra M. , Mourougane C. , Marzari N. . Exponential localization of Wannier functions in insulators. Phys. Rev. Lett., 2007, 98(4): 046402
https://doi.org/10.1103/PhysRevLett.98.046402
|
| 261 |
H. Lee C. , P. Arovas D. , Thomale R. . Band flatness optimization through complex analysis. Phys. Rev. B, 2016, 93(15): 155155
https://doi.org/10.1103/PhysRevB.93.155155
|
| 262 |
Monaco D. , Panati G. , Pisante A. , Teufel S. . Optimal decay of Wannier functions in Chern and quantum Hall insulators. Commun. Math. Phys., 2018, 359(1): 61
https://doi.org/10.1007/s00220-017-3067-7
|
| 263 |
Longhi S. . Non-Bloch-band collapse and chiral Zener tunneling. Phys. Rev. Lett., 2020, 124(6): 066602
https://doi.org/10.1103/PhysRevLett.124.066602
|
| 264 |
Qin F.Ma Y.Shen R.H. Lee C., Universal competitive spectral scaling from the critical non-Hermitian skin effect, arXiv: 2212.13536 (2022)
|
| 265 |
M. Rafi-Ul-Islam S. , B. Siu Z. , Sahin H. , H. Lee C. , B. A. Jalil M. . Critical hybridization of skin modes in coupled non-Hermitian chains. Phys. Rev. Res., 2022, 4(1): 013243
https://doi.org/10.1103/PhysRevResearch.4.013243
|
| 266 |
M. Rafi-Ul-Islam S. , B. Siu Z. , Sahin H. , H. Lee C. , B. A. Jalil M. . System size dependent topological zero modes in coupled topolectrical chains. Phys. Rev. B, 2022, 106(7): 075158
https://doi.org/10.1103/PhysRevB.106.075158
|
| 267 |
Sun G. , C. Tang J. , P. Kou S. . Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2022, 17(3): 33502
https://doi.org/10.1007/s11467-021-1126-1
|
| 268 |
X. Bao X. , F. Guo G. , P. Du X. , Q. Gu H. , Tan L. . The topological criticality in disordered non-Hermitian system. J. Phys.: Condens. Matter, 2021, 33(18): 185401
https://doi.org/10.1088/1361-648X/abee3d
|
| 269 |
Arouca R. , H. Lee C. , M. Smith C. . Unconventional scaling at non-Hermitian critical points. Phys. Rev. B, 2020, 102(24): 245145
https://doi.org/10.1103/PhysRevB.102.245145
|
| 270 |
Aquino R.Lopes N.G. Barci D., Critical and non-critical non-Hermitian topological phase transitions in one dimensional chains, arXiv: 2208.14400 (2022)
|
| 271 |
Rahul S. , Sarkar S. . Topological quantum criticality in non-Hermitian extended Kitaev chain. Sci. Rep., 2022, 12(1): 1
https://doi.org/10.1038/s41598-022-11126-7
|
| 272 |
K. Jian S. , C. Yang Z. , Bi Z. , Chen X. . Yang−Lee edge singularity triggered entanglement transition. Phys. Rev. B, 2021, 104(16): L161107
https://doi.org/10.1103/PhysRevB.104.L161107
|
| 273 |
Shen R.Chen T.Qin F.Zhong Y.H. Lee C., Proposal for observing Yang−Lee criticality in Rydberg atomic arrays, arXiv: 2302.06662 (2023)
|
| 274 |
Zhou B. , Wang R. , Wang B. . Renormalization group approach to non-Hermitian topological quantum criticality. Phys. Rev. B, 2020, 102(20): 205116
https://doi.org/10.1103/PhysRevB.102.205116
|
| 275 |
Yin S. , Y. Huang G. , Y. Lo C. , Chen P. . Kibble−Zurek scaling in the Yang−Lee edge singularity. Phys. Rev. Lett., 2017, 118(6): 065701
https://doi.org/10.1103/PhysRevLett.118.065701
|
| 276 |
Okuma N. , Sato M. . Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems. Phys. Rev. B, 2021, 103(8): 085428
https://doi.org/10.1103/PhysRevB.103.085428
|
| 277 |
Kawabata K.Numasawa T.Ryu S., Entanglement phase transition induced by the non-Hermitian skin effect, arXiv: 2206.05384 (2022)
|
| 278 |
H. Lee C. . Exceptional bound states and negative entanglement entropy. Phys. Rev. Lett., 2022, 128(1): 010402
https://doi.org/10.1103/PhysRevLett.128.010402
|
| 279 |
Peschel I. , Eisler V. . Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A Math. Theor., 2009, 42(50): 504003
https://doi.org/10.1088/1751-8113/42/50/504003
|
| 280 |
L. Qi X. . Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators. Phys. Rev. Lett., 2011, 107(12): 126803
https://doi.org/10.1103/PhysRevLett.107.126803
|
| 281 |
L. Hughes T. , Prodan E. , A. Bernevig B. . Inversion-symmetric topological insulators. Phys. Rev. B, 2011, 83(24): 245132
https://doi.org/10.1103/PhysRevB.83.245132
|
| 282 |
Alexandradinata A. , L. Hughes T. , A. Bernevig B. . Trace index and spectral flow in the entanglement spectrum of topological insulators. Phys. Rev. B, 2011, 84(19): 195103
https://doi.org/10.1103/PhysRevB.84.195103
|
| 283 |
H. Lee C. , Ye P. . Free-Fermion entanglement spectrum through Wannier interpolation. Phys. Rev. B, 2015, 91(8): 085119
https://doi.org/10.1103/PhysRevB.91.085119
|
| 284 |
Herviou L. , Regnault N. , H. Bardarson J. . Entanglement spectrum and symmetries in non-Hermitian Fermionic non-interacting models. SciPost Phys., 2019, 7: 069
https://doi.org/10.21468/SciPostPhys.7.5.069
|
| 285 |
M. Chen L. , A. Chen S. , Ye P. . Entanglement, non-hermiticity, and duality. SciPost Phys., 2021, 11: 003
https://doi.org/10.21468/SciPostPhys.11.1.003
|
| 286 |
Y. Chang P. , S. You J. , Wen X. , Ryu S. . Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res., 2020, 2(3): 033069
https://doi.org/10.1103/PhysRevResearch.2.033069
|
| 287 |
Li H. , Wan S. . Dynamic skin effects in non-Hermitian systems. Phys. Rev. B, 2022, 106(24): L241112
https://doi.org/10.1103/PhysRevB.106.L241112
|
| 288 |
Longhi S. . Non-Hermitian skin effect and self-acceleration. Phys. Rev. B, 2022, 105(24): 245143
https://doi.org/10.1103/PhysRevB.105.245143
|
| 289 |
Li T. , Z. Sun J. , S. Zhang Y. , Yi W. . Non-Bloch quench dynamics. Phys. Rev. Res., 2021, 3(2): 023022
https://doi.org/10.1103/PhysRevResearch.3.023022
|
| 290 |
H. Lee C. , Longhi S. . Ultrafast and anharmonic Rabi oscillations between non-Bloch bands. Commun. Phys., 2020, 3: 1
|
| 291 |
Li L. , X. Teo W. , Mu S. , Gong J. . Direction reversal of non-Hermitian skin effect via coherent coupling. Phys. Rev. B, 2022, 106(8): 085427
https://doi.org/10.1103/PhysRevB.106.085427
|
| 292 |
Peng Y. , Jie J. , Yu D. , Wang Y. . Manipulating the non-Hermitian skin effect via electric fields. Phys. Rev. B, 2022, 106(16): L161402
https://doi.org/10.1103/PhysRevB.106.L161402
|
| 293 |
Zhang X. , Gong J. . Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect. Phys. Rev. B, 2020, 101(4): 045415
https://doi.org/10.1103/PhysRevB.101.045415
|
| 294 |
Longhi S. . Probing non-Hermitian skin effect and non-Bloch phase transitions. Phys. Rev. Res., 2019, 1(2): 023013
https://doi.org/10.1103/PhysRevResearch.1.023013
|
| 295 |
Yang F. , D. Jiang Q. , J. Bergholtz E. . Liouvillian skin effect in an exactly solvable model. Phys. Rev. Res., 2022, 4(2): 023160
https://doi.org/10.1103/PhysRevResearch.4.023160
|
| 296 |
Longhi S. . Unraveling the non-Hermitian skin effect in dissipative systems. Phys. Rev. B, 2020, 102(20): 201103
https://doi.org/10.1103/PhysRevB.102.201103
|
| 297 |
Longhi S. . Stochastic non-Hermitian skin effect. Opt. Lett., 2020, 45(18): 5250
https://doi.org/10.1364/OL.403182
|
| 298 |
Longhi S. . Bulk-edge correspondence and trapping at a non-Hermitian topological interface. Opt. Lett., 2021, 46(24): 6107
https://doi.org/10.1364/OL.445437
|
| 299 |
Longhi S. . Non-Hermitian Hartman effect. Ann. Phys., 2022, 534(10): 2200250
https://doi.org/10.1002/andp.202200250
|
| 300 |
Stegmaier A. , Imhof S. , Helbig T. , Hofmann T. , H. Lee C. , Kremer M. , Fritzsche A. , Feichtner T. , Klembt S. , Höfling S. , Boettcher I. , C. Fulga I. , Ma L. , G. Schmidt O. , Greiter M. , Kiessling T. , Szameit A. , Thomale R. . Topological defect engineering and PT symmetry in non-Hermitian electrical circuits. Phys. Rev. Lett., 2021, 126(21): 215302
https://doi.org/10.1103/PhysRevLett.126.215302
|
| 301 |
Longhi S. . Phase transitions in a non-Hermitian Aubry−André−Harper model. Phys. Rev. B, 2021, 103(5): 054203
https://doi.org/10.1103/PhysRevB.103.054203
|
| 302 |
Suthar K. , C. Wang Y. , P. Huang Y. , H. Jen H. , S. You J. . Non-Hermitian many-body localization with open boundaries. Phys. Rev. B, 2022, 106(6): 064208
https://doi.org/10.1103/PhysRevB.106.064208
|
| 303 |
Zhang B. , Li Q. , Zhang X. , H. Lee C. . Real non-Hermitian energy spectra without any symmetry. Chin. Phys. B, 2022, 31(7): 070308
https://doi.org/10.1088/1674-1056/ac67c6
|
| 304 |
C. Rechtsman M. , M. Zeuner J. , Plotnik Y. , Lumer Y. , Podolsky D. , Dreisow F. , Nolte S. , Segev M. , Szameit A. . Photonic Floquet topological insulators. Nature, 2013, 496: 196
https://doi.org/10.1038/nature12066
|
| 305 |
Fläschner N. , S. Rem B. , Tarnowski M. , Vogel D. , S. Lühmann D. , Sengstock K. , Weitenberg C. . Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science, 2016, 352(6289): 1091
https://doi.org/10.1126/science.aad4568
|
| 306 |
Zhou L. , Gong J. . Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states. Phys. Rev. B, 2018, 98(20): 205417
https://doi.org/10.1103/PhysRevB.98.205417
|
| 307 |
Ma N. , Gong J. . Unsupervised identification of Floquet topological phase boundaries. Phys. Rev. Res., 2022, 4(1): 013234
https://doi.org/10.1103/PhysRevResearch.4.013234
|
| 308 |
Wu H. , H. An J. . Floquet topological phases of non-Hermitian systems. Phys. Rev. B, 2020, 102(4): 041119
https://doi.org/10.1103/PhysRevB.102.041119
|
| 309 |
N. Zhang Y. , Xu S. , D. Liu H. , X. Yi X. . Floquet spectrum and dynamics for non-Hermitian Floquet one-dimension lattice model. Int. J. Theor. Phys., 2021, 60(1): 355
https://doi.org/10.1007/s10773-020-04699-4
|
| 310 |
Zhou L. , Pan J. . Non-Hermitian Floquet topological phases in the double-kicked rotor. Phys. Rev. A, 2019, 100(5): 053608
https://doi.org/10.1103/PhysRevA.100.053608
|
| 311 |
Zhou L. . Dynamical characterization of non-Hermitian Floquet topological phases in one dimension. Phys. Rev. B, 2019, 100(18): 184314
https://doi.org/10.1103/PhysRevB.100.184314
|
| 312 |
S. Rudner M. , H. Lindner N. , Berg E. , Levin M. . Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X, 2013, 3(3): 031005
https://doi.org/10.1103/PhysRevX.3.031005
|
| 313 |
Y. Wang H. , M. Zhao X. , Zhuang L. , M. Liu W. . Non-Floquet engineering in periodically driven dissipative open quantum systems. J. Phys.: Condens. Matter, 2022, 34(36): 365402
https://doi.org/10.1088/1361-648X/ac7c4e
|
| 314 |
Zhou L. , Gu Y. , Gong J. . Dual topological characterization of non-Hermitian Floquet phases. Phys. Rev. B, 2021, 103(4): L041404
https://doi.org/10.1103/PhysRevB.103.L041404
|
| 315 |
Zhang Z. , Delplace P. , Fleury R. . Superior robustness of anomalous non-reciprocal topological edge states. Nature, 2021, 598(7880): 293
https://doi.org/10.1038/s41586-021-03868-7
|
| 316 |
Zhou L. . Non-Hermitian Floquet topological superconductors with multiple Majorana edge modes. Phys. Rev. B, 2020, 101(1): 014306
https://doi.org/10.1103/PhysRevB.101.014306
|
| 317 |
Pan J. , Zhou L. . Non-Hermitian Floquet second order topological insulators in periodically quenched lattices. Phys. Rev. B, 2020, 102(9): 094305
https://doi.org/10.1103/PhysRevB.102.094305
|
| 318 |
Liu H.C. Fulga I., Mixed higher-order topology: Boundary non-Hermitian skin effect induced by a Floquet bulk, arXiv: 2210.03097 (2022)
|
| 319 |
Longhi S. . Non-Hermitian skin effect beyond the tight- binding models. Phys. Rev. B, 2021, 104(12): 125109
https://doi.org/10.1103/PhysRevB.104.125109
|
| 320 |
J. Lang L. , L. Zhu S. , D. Chong Y. . Non-Hermitian topological end breathers. Phys. Rev. B, 2021, 104(2): L020303
https://doi.org/10.1103/PhysRevB.104.L020303
|
| 321 |
H. Lee C. . Many-body topological and skin states without open boundaries. Phys. Rev. B, 2021, 104(19): 195102
https://doi.org/10.1103/PhysRevB.104.195102
|
| 322 |
Shen R. , H. Lee C. . Non-Hermitian skin clusters from strong interactions. Commun. Phys., 2022, 5(1): 1
https://doi.org/10.1038/s42005-022-01015-w
|
| 323 |
Sarkar R. , S. Hegde S. , Narayan A. . Interplay of disorder and point-gap topology: Chiral modes, localization, and non-Hermitian Anderson skin effect in one dimension. Phys. Rev. B, 2022, 106(1): 014207
https://doi.org/10.1103/PhysRevB.106.014207
|
| 324 |
Yuce C. , Ramezani H. . Coexistence of extended and localized states in the one-dimensional non-Hermitian Anderson model. Phys. Rev. B, 2022, 106(2): 024202
https://doi.org/10.1103/PhysRevB.106.024202
|
| 325 |
Roccati F. . Non-Hermitian skin effect as an impurity problem. Phys. Rev. A, 2021, 104(2): 022215
https://doi.org/10.1103/PhysRevA.104.022215
|
| 326 |
Wang C. , R. Wang X. . Chiral hinge transport in disordered non-Hermitian second-order topological insulators. Phys. Rev. B, 2022, 106(4): 045142
https://doi.org/10.1103/PhysRevB.106.045142
|
| 327 |
Longhi S. . Spectral deformations in non-Hermitian lattices with disorder and skin effect: A solvable model. Phys. Rev. B, 2021, 103(14): 144202
https://doi.org/10.1103/PhysRevB.103.144202
|
| 328 |
M. Chen L. , Zhou Y. , A. Chen S. , Ye P. . Quantum entanglement of non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(12): L121115
https://doi.org/10.1103/PhysRevB.105.L121115
|
| 329 |
Chakrabarty A.Datta S., Skin effect and dynamical delocalization in non-Hermitian quasicrystals with spin-orbit interaction, arXiv: 2208.10359 (2022)
|
| 330 |
Wang W.Hu M.Wang X.Ma G.Ding K., Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice, arXiv: 2302.06314 (2023)
|
| 331 |
Lv C. , Zhang R. , Zhai Z. , Zhou Q. . Curving the space by non-hermiticity. Nat. Commun., 2022, 13(1): 2184
https://doi.org/10.1038/s41467-022-29774-8
|
| 332 |
X. Wang S. , Wan S. . Duality between the generalized non-Hermitian Hatano−Nelson model in flat space and a Hermitian system in curved space. Phys. Rev. B, 2022, 106(7): 075112
https://doi.org/10.1103/PhysRevB.106.075112
|
| 333 |
W. Lv C.Zhou Q., Emergent spacetimes from Hermitian and non-Hermitian quantum dynamics, arXiv: 2205.07429 (2022)
|
| 334 |
Gao W. , Lawrence M. , Yang B. , Liu F. , Fang F. , Béri B. , Li J. , Zhang S. . Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett., 2015, 114(3): 037402
https://doi.org/10.1103/PhysRevLett.114.037402
|
| 335 |
J. Kollár A. , Fitzpatrick M. , A. Houck A. . Hyperbolic lattices in circuit quantum electrodynamics. Nature, 2019, 571(7763): 45
https://doi.org/10.1038/s41586-019-1348-3
|
| 336 |
M. Lenggenhager P. , Stegmaier A. , K. Upreti L. , Hofmann T. , Helbig T. , Vollhardt A. , Greiter M. , H. Lee C. , Imhof S. , Brand H. , Kießling T. , Boettcher I. , Neupert T. , Thomale R. , Bzdušek T. . Simulating hyperbolic space on a circuit board. Nat. Commun., 2022, 13(1): 4373
https://doi.org/10.1038/s41467-022-32042-4
|
| 337 |
Ezawa M. . Dynamical nonlinear higher-order non-Hermitian skin effects and topological trap-skin phase. Phys. Rev. B, 2022, 105(12): 125421
https://doi.org/10.1103/PhysRevB.105.125421
|
| 338 |
Yuce C. . Nonlinear non-Hermitian skin effect. Phys. Lett. A, 2021, 408: 127484
https://doi.org/10.1016/j.physleta.2021.127484
|
| 339 |
Tuloup T. , W. Bomantara R. , H. Lee C. , Gong J. . Nonlinearity induced topological physics in momentum space and real space. Phys. Rev. B, 2020, 102(11): 115411
https://doi.org/10.1103/PhysRevB.102.115411
|
| 340 |
Hadad Y. , C. Soric J. , B. Khanikaev A. , Alù A. . Self-induced topological protection in nonlinear circuit arrays. Nat. Electron., 2018, 1(3): 178
https://doi.org/10.1038/s41928-018-0042-z
|
| 341 |
Wang Y. , J. Lang L. , H. Lee C. , Zhang B. , D. Chong Y. . Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nat. Commun., 2019, 10(1): 1102
https://doi.org/10.1038/s41467-019-08966-9
|
| 342 |
Kotwal T. , Moseley F. , Stegmaier A. , Imhof S. , Brand H. , Kießling T. , Thomale R. , Ronellenfitsch H. , Dunkel J. . Active topolectrical circuits. Proc. Natl. Acad. Sci. USA, 2021, 118(32): e2106411118
https://doi.org/10.1073/pnas.2106411118
|
| 343 |
Hohmann H. , Hofmann T. , Helbig T. , Imhof S. , Brand H. , K. Upreti L. , Stegmaier A. , Fritzsche A. , Müller T. , Schwingenschlögl U. , H. Lee C. , Greiter M. , W. Molenkamp L. , Kießling T. , Thomale R. . Observation of Cnoidal wave localization in nonlinear topolectric circuits. Phys. Rev. Res., 2023, 5(1): L012041
https://doi.org/10.1103/PhysRevResearch.5.L012041
|
| 344 |
A. Dobrykh D. , V. Yulin A. , P. Slobozhanyuk A. , N. Poddubny A. , S. Kivshar Y. . Nonlinear control of electromagnetic topological edge states. Phys. Rev. Lett., 2018, 121(16): 163901
https://doi.org/10.1103/PhysRevLett.121.163901
|
| 345 |
H. Fu P.Xu Y.H. Lee C.S. Ang Y.F. Liu J., Gate-tunable topological Josephson diode, arXiv: 2212.01980 (2022)
|
| 346 |
Ezawa M. . Nonlinear topological Toda quasicrystal. J. Phys. Soc. Jpn., 2022, 91(8): 084703
https://doi.org/10.7566/JPSJ.91.084703
|
| 347 |
Hofmann T. , Helbig T. , H. Lee C. , Greiter M. , Thomale R. . Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett., 2019, 122(24): 247702
https://doi.org/10.1103/PhysRevLett.122.247702
|
| 348 |
Mu S. , H. Lee C. , Li L. , Gong J. . Emergent Fermi surface in a many-body non-Hermitian fermionic chain. Phys. Rev. B, 2020, 102(8): 081115
https://doi.org/10.1103/PhysRevB.102.081115
|
| 349 |
B. Zhang S. , M. Denner M. , Bzdušek T. , A. Sentef M. , Neupert T. . Symmetry breaking and spectral structure of the interacting Hatano−Nelson model. Phys. Rev. B, 2022, 106(12): L121102
https://doi.org/10.1103/PhysRevB.106.L121102
|
| 350 |
Alsallom F. , Herviou L. , V. Yazyev O. , Brzezińska M. . Fate of the non-Hermitian skin effect in many-body fermionic systems. Phys. Rev. Res., 2022, 4(3): 033122
https://doi.org/10.1103/PhysRevResearch.4.033122
|
| 351 |
Dóra B. , P. Moca C. . Full counting statistics in the many-body Hatano−Nelson model. Phys. Rev. B, 2022, 106(23): 235125
https://doi.org/10.1103/PhysRevB.106.235125
|
| 352 |
Yoshida T. , Kudo K. , Hatsugai Y. . Non-Hermitian fractional quantum Hall states. Sci. Rep., 2019, 9(1): 16895
https://doi.org/10.1038/s41598-019-53253-8
|
| 353 |
N. Wang Y. , L. You W. , Sun G. . Quantum criticality in interacting bosonic Kitaev−Hubbard models. Phys. Rev. A, 2022, 106(5): 053315
https://doi.org/10.1103/PhysRevA.106.053315
|
| 354 |
Mao L.Hao Y.Pan L., Non-Hermitian skin effect in one-dimensional interacting Bose gas, arXiv: 2207.12637 (2022)
|
| 355 |
Chen G.Song F.L. Lado J., Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm, arXiv: 2208.06425 (2022)
|
| 356 |
Yoshida T. , Hatsugai Y. . Reduction of one-dimensional non-Hermitian point-gap topology by interactions. Phys. Rev. B, 2022, 106(20): 205147
https://doi.org/10.1103/PhysRevB.106.205147
|
| 357 |
Zhang W. , Di F. , Yuan H. , Wang H. , Zheng X. , He L. , Sun H. , Zhang X. . Observation of non-Hermitian aggregation effects induced by strong interactions. Phys. Rev. B, 2022, 105(19): 195131
https://doi.org/10.1103/PhysRevB.105.195131
|
| 358 |
Kawabata K. , Shiozaki K. , Ryu S. . Many-body topology of non-Hermitian systems. Phys. Rev. B, 2022, 105(16): 165137
https://doi.org/10.1103/PhysRevB.105.165137
|
| 359 |
Yoshida T. . Real-space dynamical mean field theory study of non-Hermitian skin effect for correlated systems: Analysis based on pseudospectrum. Phys. Rev. B, 2021, 103(12): 125145
https://doi.org/10.1103/PhysRevB.103.125145
|
| 360 |
I. Arkhipov I. , Minganti F. . Emergent non-Hermitian localization phenomena in the synthetic space of zero-dimensional bosonic systems. Phys. Rev. A, 2023, 107(1): 012202
https://doi.org/10.1103/PhysRevA.107.012202
|
| 361 |
Qin F. , Shen R. , H. Lee C. . Non-Hermitian squeezed polarons. Phys. Rev. A, 2023, 107(1): L010202
https://doi.org/10.1103/PhysRevA.107.L010202
|
| 362 |
Micallo T.Lehmann C.C. Budich J., Correlation-induced sensitivity and non-Hermitian skin effect of quasiparticles, arXiv: 2302.00019 (2023)
|
| 363 |
Yang K. , C. Morampudi S. , J. Bergholtz E. . Exceptional spin liquids from couplings to the environment. Phys. Rev. Lett., 2021, 126(7): 077201
https://doi.org/10.1103/PhysRevLett.126.077201
|
| 364 |
Žnidarič M. . Solvable non-Hermitian skin effect in many body unitary dynamics. Phys. Rev. Res., 2022, 4(3): 033041
https://doi.org/10.1103/PhysRevResearch.4.033041
|
| 365 |
Gong Z. , Bello M. , Malz D. , K. Kunst F. . Anomalous behaviors of quantum emitters in non-Hermitian baths. Phys. Rev. Lett., 2022, 129(22): 223601
https://doi.org/10.1103/PhysRevLett.129.223601
|
| 366 |
Roccati F. , Lorenzo S. , Calajò G. , M. Palma G. , Carollo A. , Ciccarello F. . Exotic interactions mediated by a non-Hermitian photonic bath. Optica, 2022, 9(5): 565
https://doi.org/10.1364/OPTICA.443955
|
| 367 |
K. Cao, Q. Du, X. R. Wang, and S. P. Kou, Physics of many-body nonreciprocal model: From non-Hermitian skin effect to quantum Maxwell’s pressure − Demon effect, arXiv: 2109.03690 (2021)
|
| 368 |
G. Zhou T. , N. Zhou Y. , Zhang P. , Zhai H. . Space-time duality between quantum chaos and non-Hermitian boundary effect. Phys. Rev. Res., 2022, 4(2): L022039
https://doi.org/10.1103/PhysRevResearch.4.L022039
|
| 369 |
Xu K. , Zhang X. , Luo K. , Yu R. , Li D. , Zhang H. . Coexistence of topological edge states and skin effects in the non-Hermitian Su−Schrieffer−Heeger model with long-range nonreciprocal hopping in topoelectric realizations. Phys. Rev. B, 2021, 103(12): 125411
https://doi.org/10.1103/PhysRevB.103.125411
|
| 370 |
Deng W. , Chen T. , Zhang X. . nth power root topological phases in Hermitian and non-Hermitian systems. Phys. Rev. Res., 2022, 4(3): 033109
https://doi.org/10.1103/PhysRevResearch.4.033109
|
| 371 |
Zhang H. , Chen T. , Li L. , H. Lee C. , Zhang X. . Electrical circuit realization of topological switching for the non-Hermitian skin effect. Phys. Rev. B, 2023, 107(8): 085426
https://doi.org/10.1103/PhysRevB.107.085426
|
| 372 |
Li L. , H. Lee C. , Gong J. . Emergence and full 3d-imaging of nodal boundary Seifert surfaces in 4D topological matter. Commun. Phys., 2019, 2(1): 135
https://doi.org/10.1038/s42005-019-0235-4
|
| 373 |
Lin Q. , Li T. , Xiao L. , Wang K. , Yi W. , Xue P. . Topological phase transitions and mobility edges in non-Hermitian quasicrystals. Phys. Rev. Lett., 2022, 129(11): 113601
https://doi.org/10.1103/PhysRevLett.129.113601
|
| 374 |
Lin Q. , Li T. , Xiao L. , Wang K. , Yi W. , Xue P. . Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
https://doi.org/10.1038/s41467-022-30938-9
|
| 375 |
S. Palacios L. , Tchoumakov S. , Guix M. , Pagonabarraga I. , Sánchez S. , G. Grushin A. . Guided accumulation of active particles by topological design of a second-order skin effect. Nat. Commun., 2021, 12(1): 4691
https://doi.org/10.1038/s41467-021-24948-2
|
| 376 |
F. Yu Y. , W. Yu L. , G. Zhang W. , L. Zhang H. , L. Ouyang X. , Q. Liu Y. , L. Deng D. , Duan L.-M. . Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. npj Quantum Inform., 2022, 8: 116
https://doi.org/10.1038/s41534-022-00629-w
|
| 377 |
J. Bergholtz E. , C. Budich J. , K. Kunst F. . Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
https://doi.org/10.1103/RevModPhys.93.015005
|
| 378 |
Zhang X. , Zhang T. , H. Lu M. , F. Chen Y. . A review on non-Hermitian skin effect. Adv. Phys. X, 2022, 7(1): 2109431
https://doi.org/10.1080/23746149.2022.2109431
|
| 379 |
Zhu B. , Wang Q. , Leykam D. , Xue H. , W. Qi J. , D. Chong Y. . Anomalous single-mode lasing induced by nonlinearity and the non-Hermitian skin effect. Phys. Rev. Lett., 2022, 129(1): 013903
https://doi.org/10.1103/PhysRevLett.129.013903
|
| 380 |
Mandal S. , Banerjee R. , C. H. Liew T. . From the topological spin-Hall effect to the non-Hermitian skin effect in an elliptical micropillar chain. ACS Photonics, 2022, 9(2): 527
https://doi.org/10.1021/acsphotonics.1c01425
|
| 381 |
Xu X. , Bao R. , C. H. Liew T. . Non-Hermitian topological exciton−polariton corner modes. Phys. Rev. B, 2022, 106(20): L201302
https://doi.org/10.1103/PhysRevB.106.L201302
|
| 382 |
F. Yu Z. , K. Xue J. , Zhuang L. , Zhao J. , M. Liu W. . Non-Hermitian spectrum and multistability in exciton−polariton condensates. Phys. Rev. B, 2021, 104(23): 235408
https://doi.org/10.1103/PhysRevB.104.235408
|
| 383 |
Yang M. , Wang L. , Wu X. , Xiao H. , Yu D. , Yuan L. , Chen X. . Concentrated subradiant modes in a one-dimensional atomic array coupled with chiral waveguides. Phys. Rev. A, 2022, 106(4): 043717
https://doi.org/10.1103/PhysRevA.106.043717
|
| 384 |
Lin Z. , Ding L. , Ke S. , Li X. . Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators. Opt. Lett., 2021, 46(15): 3512
https://doi.org/10.1364/OL.431904
|
| 385 |
Zhong J. , Wang K. , Park Y. , Asadchy V. , C. Wojcik C. , Dutt A. , Fan S. . Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals. Phys. Rev. B, 2021, 104(12): 125416
https://doi.org/10.1103/PhysRevB.104.125416
|
| 386 |
Price H. , Chong Y. , Khanikaev A. , Schomerus H. , J. Maczewsky L. . et al.. Roadmap on topological photonics. J. Phys.: Photonics, 2022, 4: 032501
https://doi.org/10.1088/2515-7647/ac4ee4
|
| 387 |
Yan Q.Chen H.Yang Y., Non-Hermitian skin effect and delocalized edge states in photonic crystals with anomalous parity−time symmetry, arXiv: 2111.08213 (2021)
|
| 388 |
C. Xie L.Jin L.Song Z., Antihelical edge states in two-dimensional photonic topological metals, arXiv: 2302.05842 (2023)
|
| 389 |
Lin Q.Yi W.Xue P., Manipulating non-reciprocity in a two-dimensional magnetic quantum walk, arXiv: 2212.00387 (2022)
|
| 390 |
Li T. , S. Zhang Y. , Yi W. . Two-dimensional quantum walk with non-Hermitian skin effects. Chin. Phys. Lett., 2021, 38(3): 030301
https://doi.org/10.1088/0256-307X/38/3/030301
|
| 391 |
G. Pyrialakos G. , Ren H. , S. Jung P. , Khajavikhan M. , N. Christodoulides D. . Thermalization dynamics of nonlinear non-Hermitian optical lattices. Phys. Rev. Lett., 2022, 128(21): 213901
https://doi.org/10.1103/PhysRevLett.128.213901
|
| 392 |
Fleckenstein C. , Zorzato A. , Varjas D. , J. Bergholtz E. , H. Bardarson J. , Tiwari A. . Non-Hermitian topology in monitored quantum circuits. Phys. Rev. Res., 2022, 4(3): L032026
https://doi.org/10.1103/PhysRevResearch.4.L032026
|
| 393 |
H. Lin S. , Dilip R. , G. Green A. , Smith A. , Pollmann F. . Real- and imaginary-time evolution with compressed quantum circuits. PRX Quantum, 2021, 2(1): 010342
https://doi.org/10.1103/PRXQuantum.2.010342
|
| 394 |
Liu T. , G. Liu J. , Fan H. . Probabilistic non-unitary gate in imaginary time evolution. Quantum Inform. Process., 2021, 20(6): 1
https://doi.org/10.1007/s11128-021-03145-6
|
| 395 |
Kamakari H. , N. Sun S. , Motta M. , J. Minnich A. . Digital quantum simulation of open quantum systems using quantum imaginary–time evolution. PRX Quantum, 2022, 3(1): 010320
https://doi.org/10.1103/PRXQuantum.3.010320
|
| 396 |
Smith A. , S. Kim M. , Pollmann F. , Knolle J. . Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inform., 2019, 5: 106
https://doi.org/10.1038/s41534-019-0217-0
|
| 397 |
M. Koh J. , Tai T. , H. Phee Y. , E. Ng W. , H. Lee C. . Stabilizing multiple topological Fermions on a quantum computer. npj Quantum Inform., 2022, 8: 16
https://doi.org/10.1038/s41534-022-00527-1
|
| 398 |
M. Koh J. , Tai T. , H. Lee C. . Simulation of interaction-induced chiral topological dynamics on a digital quantum computer. Phys. Rev. Lett., 2022, 129(14): 140502
https://doi.org/10.1103/PhysRevLett.129.140502
|
| 399 |
M. Koh J.Tai T.H. Lee C., Observation of higher-order topological states on a quantum computer, arXiv: 2303.02179 (2023)
|
| 400 |
Chen T.Shen R.H. Lee C.Yang B., High-fidelity realization of the Aklt state on a NISQ-era quantum processor, arXiv: 2210.13840 (2022)
|
| 401 |
Schomerus H. . Nonreciprocal response theory of non-Hermitian mechanical metamaterials: Response phase transition from the skin effect of zero modes. Phys. Rev. Res., 2020, 2(1): 013058
https://doi.org/10.1103/PhysRevResearch.2.013058
|
| 402 |
Braghini D. , G. G. Villani L. , I. N. Rosa M. , R. de F Arruda J. . Non-Hermitian elastic waveguides with piezoelectric feedback actuation: Non-reciprocal bands and skin modes. J. Phys. D Appl. Phys., 2021, 54(28): 285302
https://doi.org/10.1088/1361-6463/abf9d9
|
| 403 |
Jin Y. , Zhong W. , Cai R. , Zhuang X. , Pennec Y. , Djafari-Rouhani B. . Non-Hermitian skin effect in a phononic beam based on piezoelectric feedback control. Appl. Phys. Lett., 2022, 121(2): 022202
https://doi.org/10.1063/5.0097530
|
| 404 |
Wen P. , Wang M. , L. Long G. . Optomechanically induced transparency and directional amplification in a non-Hermitian optomechanical lattice. Opt. Express, 2022, 30(22): 41012
https://doi.org/10.1364/OE.473652
|
| 405 |
Ren Z. , Liu D. , Zhao E. , He C. , K. Pak K. , Li J. , B. Jo G. . Chiral control of quantum states in non-Hermitian spin–orbit-coupled Fermions. Nat. Phys., 2022, 18(4): 385
https://doi.org/10.1038/s41567-021-01491-x
|
| 406 |
Guo S. , Dong C. , Zhang F. , Hu J. , Yang Z. . Theoretical prediction of a non-Hermitian skin effect in ultracold-atom systems. Phys. Rev. A, 2022, 106(6): L061302
https://doi.org/10.1103/PhysRevA.106.L061302
|
| 407 |
Zhou L. , Li H. , Yi W. , Cui X. . Engineering non-Hermitian skin effect with band topology in ultracold gases. Commun. Phys., 2022, 5(1): 252
https://doi.org/10.1038/s42005-022-01021-y
|
| 408 |
Qin Y.Zhang K.H. Li L., Geometry-dependent skin effect and anisotropic Bloch oscillations in a non-Hermitian optical lattice, arXiv: 2304.03792v1 (2023)
|
| 409 |
Li H. , Cui X. , Yi W. . Non-Hermitian skin effect in a spin−orbit-coupled Bose−Einstein condensate. JUSTC, 2022, 52(8): 2
https://doi.org/10.52396/JUSTC-2022-0003
|
| 410 |
Yoshida T. , Mizoguchi T. , Hatsugai Y. . Non-Hermitian topology in Rock–Paper–Scissors games. Sci. Rep., 2022, 12(1): 560
https://doi.org/10.1038/s41598-021-04178-8
|
| 411 |
Dobrinevski A. , Frey E. . Extinction in neutrally stable stochastic Lotka−Volterra models. Phys. Rev. E, 2012, 85(5): 051903
https://doi.org/10.1103/PhysRevE.85.051903
|
| 412 |
Knebel J. , Krüger T. , F. Weber M. , Frey E. . Coexistence and survival in conservative Lotka−Volterra networks. Phys. Rev. Lett., 2013, 110(16): 168106
https://doi.org/10.1103/PhysRevLett.110.168106
|
| 413 |
Knebel J. , M. Geiger P. , Frey E. . Topological phase transition in coupled Rock−Paper−Scissors cycles. Phys. Rev. Lett., 2020, 125(25): 258301
https://doi.org/10.1103/PhysRevLett.125.258301
|
| 414 |
Yoshida T. , Mizoguchi T. , Hatsugai Y. . Chiral edge modes in evolutionary game theory: A kagome network of Rock−Paper−Scissors cycles. Phys. Rev. E, 2021, 104(2): 025003
https://doi.org/10.1103/PhysRevE.104.025003
|
| 415 |
Umer M. , Gong J. . Topologically protected dynamics in three-dimensional nonlinear antisymmetric Lotka−Volterra systems. Phys. Rev. B, 2022, 106(24): L241403
https://doi.org/10.1103/PhysRevB.106.L241403
|
| 416 |
Scheibner C. , T. M. Irvine W. , Vitelli V. . Non-Hermitian band topology and skin modes in active elastic media. Phys. Rev. Lett., 2020, 125(11): 118001
https://doi.org/10.1103/PhysRevLett.125.118001
|
| 417 |
Fruchart M. , Hanai R. , B. Littlewood P. , Vitelli V. . Non-reciprocal phase transitions. Nature, 2021, 592(7854): 363
https://doi.org/10.1038/s41586-021-03375-9
|
| 418 |
Yu T. , Zeng B. . Giant microwave sensitivity of a magnetic array by long-range chiral interaction driven skin effect. Phys. Rev. B, 2022, 105(18): L180401
https://doi.org/10.1103/PhysRevB.105.L180401
|
| 419 |
Zeng B. , Yu T. . Radiation-free and non-Hermitian topology inertial defect states of on-chip magnons. Phys. Rev. Res., 2023, 5(1): 013003
https://doi.org/10.1103/PhysRevResearch.5.013003
|
| 420 |
Franca S. , Könye V. , Hassler F. , van den Brink J. , Fulga C. . Non-Hermitian physics without gain or loss: The skin effect of reflected waves. Phys. Rev. Lett., 2022, 129(8): 086601
https://doi.org/10.1103/PhysRevLett.129.086601
|
| 421 |
Zhang X.Zhang B.Zhao W.H. Lee C., Observation of non-local impedance response in a passive electrical circuit, arXiv: 2211.09152 (2022)
|
| 422 |
Geng H. , Y. Wei J. , H. Zou M. , Sheng L. , Chen W. , Y. Xing D. . Nonreciprocal charge and spin transport induced by non-Hermitian skin effect in mesoscopic heterojunctions. Phys. Rev. B, 2023, 107(3): 035306
https://doi.org/10.1103/PhysRevB.107.035306
|
| 423 |
Ghaemi-Dizicheh H. , Schomerus H. . Compatibility of transport effects in non-Hermitian nonreciprocal systems. Phys. Rev. A, 2021, 104(2): 023515
https://doi.org/10.1103/PhysRevA.104.023515
|
| 424 |
Schomerus H. . Fundamental constraints on the observability of non-Hermitian effects in passive systems. Phys. Rev. A, 2022, 106(6): 063509
https://doi.org/10.1103/PhysRevA.106.063509
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|