

RESEARCH ARTICLE

Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products

Xiao-Dong Zhang¹, Kang Liu¹, Jun-Wei Fu¹, Hong-Mei Li¹, Hao Pan², Jun-Hua Hu³, Min Liu^{1,†}

¹School of Physics and Electronics, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

²Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China

³School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China Corresponding author. E-mail: [†]minliu@csu.edu.cn

SUPPLEMENTARY MATERIAL

Computational details

The adsorption energy (E_{ads}) of the intermediate on the catalysts was calculated by the following equation: $E_{ads} = E_{(sub+ads)} - E_{sub} - E_{ads}$, where $E_{(sub+ads)}$ is the total energy of the adsorbed intermediate on the substrate, E_{sub} is the energy of the substrate, and E_{ads} is the energy of the adsorbed intermediate.

The Gibbs free energy of each elementary step was calculated as: $\Delta G = \Delta E + \Delta ZPE - T^*\Delta S$, where ΔE is the reaction energy calculated by the DFT. ΔZPE and ΔS are the changes in zero-point energy and entropy during the reaction, respectively. *T* is a constant (298.15 K).

Fig. S1 Top view of (a) NiZn(110), (b) NiZn₃(001), (c) Cu(100), (d) NiZn(101), (e) NiZn₃(100), (f) Cu(111), (g) Ni(100), (h) Ni(111) and (i) Zn(001) crystal facets. Each crystal facet is composed of a $3 \times 3 \times 4$ surface supercells model.

Table S1 C	Calculated	lattice cons	tants of the	different	facets.
------------	------------	--------------	--------------	-----------	---------

	Calculated lattice
Catalysts	constant (Å)
NiZn(110)	a = 9.80, b = 11.59
NiZn(101)	a = 12.78, b = 8.20
NiZn ₃ (001)	a = b = 11.01
NiZn ₃ (100)	a = 11.01, b = 15.67
Cu(100)	a = b = 11.04
Cu(111)	a = 17.80, b = 10.27
Ni(100)	a = b = 10.53
Ni(111)	a = 17.20, b = 9.93
Zn(001)	a = b = 11.25

Table S2 Calculated adsorption energies of *CO ₂ , *CO and *H on the square geometric site. The
trigonal sites were used as adsorption sites in Cu(111) and Ni(111).

8		-)	
	$\Delta E_{\rm CO2}$	$\Delta E_{\rm CO}$	$\Delta E_{ m H}$
Catalysts	(eV)	(eV)	(eV)
NiZn(110)	-0.023	-1.28	-0.39
NiZn(101)	-0.026	-1.65	-0.51
NiZn ₃ (001)	-0.020	-0.92	-0.08
NiZn ₃ (100)	-0.017	-1.44	-0.45
Cu(100)	-0.023	-0.86	-0.11
Cu(111)	-0.019	-0.78	-0.14
Ni(100)	-0.030	-2.11	-0.52
Ni(111)	-0.024	-2.13	-0.61
Zn(001)	-0.015	-0.09	1.14

Table S3 Calculated free energy barriers of reaction steps from CO_2 to *CO.

	Free energy barrier	Free energy barrier	Free energy barrier
Reaction steps	on NiZn(110) (eV)	on NiZn ₃ (001) (eV)	on Cu(100) (eV)
$CO_2 \rightarrow *CO_2$	-0.02	-0.01	-0.02
$*CO_2 \rightarrow *COOH$	0.09	0.21	0.53
$*COOH \rightarrow *CO$	-0.55	-0.45	-0.60

Table 54 Calculated free energy	Table S4 Calculated free energy barriers of reaction steps from CO_2 to $^{\circ}$ HCOOH.				
			Free energy		
	Free energy barrier on	Free energy barrier on	barrier on		
Reaction steps	NiZn(110) (eV)	NiZn ₃ (001) (eV)	Cu(100) (eV)		
$CO_2 \rightarrow *CO_2$	-0.02	-0.01	-0.02		
$*CO_2 \rightarrow *OCHO$	-0.46	-0.18	-0.16		
*OCHO →*HCOOH	0.62	0.53	0.45		

Table S4 Calculated free energy barriers of reaction steps from CO₂ to *HCOOH.

Table S5 Calculated free energy barriers of reaction steps along the pathway from CO to *CHO, *COH and *CO–CO.

	Free energy barrier	Free energy barrier	Free energy barrier
Reaction steps	on NiZn(110) (eV)	on NiZn ₃ (001) (eV)	on Cu(100) (eV)
$CO \rightarrow *CO$	-1.21	-0.97	-0.82
$*CO \rightarrow *CHO$	0.57	0.60	0.70
$*CO \rightarrow *COH$	1.66	0.98	0.91
*CO→*CO−CO	1.57	1.24	0.91

Fable S6 Calculated free energy barriers of C–C coupling reaction steps via *CHO intermediate.				
			Free energy	
	Free energy barrier	Free energy barrier	barrier on	
Reaction steps	on NiZn(110) (eV)	on NiZn ₃ (001) (eV)	Cu(100) (eV)	
$*CO \rightarrow *CHO$	0.57	0.60	0.70	
$*\rm CHO \to *\rm CHO{-}\rm CO$	0.82	0.45	0.15	

Fig. S2 Free energy profile from CO_2 to $CHO-CH_2$ via CHO-CHO intermediate on NiZn(110), NiZn₃(001) and Cu(100). *CHO-CO as the intermediate for C-C coupling.

Fig. S3 Free energy profile from CO_2 to $CHO-CH_2$ via CHO-COH intermediate on NiZn(110), NiZn₃(001) and Cu(100). *CHO-CO as the intermediate for C-C coupling.

Fig. S4 Free energy profile from CO_2 to $CHO-CH_2$ via CHOH-CO intermediate on NiZn(110), NiZn₃(001) and Cu(100). *CHO-CO as the intermediate for C-C coupling.

Table S7 Calculated free energy barriers of C_2 products formation from CO_2 to *CHO-CH₂ via *CHO-CHO, *CHO-CO as the intermediate for C-C coupling.

	Free energy	Free energy	Free energy
	barrier on	barrier on	barrier on
Reaction steps	NiZn(110) (eV)	NiZn ₃ (001) (eV)	Cu(100) (eV)
$*CO_2 \rightarrow *CO_2$	-0.02	-0.01	-0.02
*CO ₂ →*COOH	0.09	0.21	0.53
$*COOH \rightarrow *CO$	-0.55	-0.45	-0.60
$*CO \rightarrow *CHO$	0.57	0.60	0.70
$*CHO \rightarrow *CHO-CO$	0.82	0.45	0.15
*CHO–CO \rightarrow *CHO–CHO	-0.16	-0.23	-0.68
*CHO–CHO \rightarrow *CHO–CHOH	0.23	-0.07	-0.29
*CHO–CHOH \rightarrow *CHO–CH	-1.18	-0.86	-0.27
*CHO–CH \rightarrow *CHO–CH ₂	0.14	0.15	0.03

Table S8 Calculated free energy barriers of C_2 products formation from CO_2 to *CHO–CH₂ via *CHO–COH, *CHO–CO as the intermediate for C–C coupling.

	Free energy	Free energy	Free energy
	barrier on	barrier on	barrier on
Reaction steps	NiZn(110) (eV)	NiZn ₃ (001) (eV)	Cu(100) (eV)
$*CO_2 \rightarrow *CO_2$	-0.02	-0.01	-0.02
*CO ₂ →*COOH	0.09	0.21	0.53
$*COOH \rightarrow *CO$	-0.55	-0.45	-0.60
*CO →*CHO	0.57	0.60	0.70
$*CHO \rightarrow *CHO-CO$	0.82	0.45	0.15
*CHO–CO \rightarrow *CHO–COH	-0.13	0.10	0.19
$^{*}\mathrm{CHO-COH} \rightarrow ^{*}\mathrm{CHO-C}$	-0.24	-0.47	-0.39
$* \text{CHO-C} \rightarrow * \text{CHO-CH}$	-0.75	-0.79	-0.67
*CHO–CH \rightarrow *CHO–CH ₂	0.14	0.15	0.03

	Free energy	Free energy	Free energy
	barrier on	barrier on	barrier on
Reaction steps	NiZn(110) (eV)	NiZn ₃ (001) (eV)	Cu(100) (eV)
$*CO_2 \rightarrow *CO_2$	-0.02	-0.01	-0.02
*CO ₂ →*COOH	0.09	0.21	0.53
$*COOH \rightarrow *CO$	-0.55	-0.45	-0.60
$*CO \rightarrow *CHO$	0.57	0.60	0.70
$*\rm CHO \rightarrow *\rm CHO-\rm CO$	0.82	0.45	0.15
*CHO–CO \rightarrow *CHOH–CO	0.22	0.34	0.15
$^{*}\mathrm{CHOH}\text{-}\mathrm{CO} \rightarrow ^{*}\mathrm{CH}\text{-}\mathrm{CO}$	-1.04	-1.14	-1.35
*CHO–CHOH \rightarrow *CHO–CH	-0.31	-0.36	-0.19
*CHO–CH \rightarrow *CHO–CH ₂	0.14	0.15	0.03

Table S9 Calculated free energy barriers of C_2 products formation from CO_2 to *CHO-CH₂ via *CHO-COH, *CHO-CO as the intermediate for C-C coupling.

Fig. S5 Three pathways of *CHO-CO hydrogenation to *CHO-CH on Cu(100).

Fig. S6 Side view of intermediate species along the pathways from CO_2 to *CHO-CH₂ via *CHO-COH intermediate on NiZn(110).

Fig. S7 Side view of intermediate species along the pathways from CO_2 to *CHO-CH₂ via *CHO-CHO intermediate on NiZn₃(001).

Fig. S8 Side view of intermediate species along the pathways from CO_2 to *CHO-CH₂ via *CHO-CHO intermediate on Cu(100).