

https://doi.org/10.1007/s11467-022-1173-2

RESEARCH ARTICLE

Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing

Shanwu Ke^{1,*}, Li Jiang^{1,*}, Yifan Zhao¹, Yongyue Xiao¹, Bei Jiang^{1,†}, Gong Cheng¹, Facai Wu³, Guangsen Cao¹, Zehui Peng¹, Min Zhu^{2,‡}, Cong Ye¹

 ¹Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China
 ²Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
 ³Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan, China
 *These two authors contributed equally to this work. Corresponding authors. E-mail: [†]jiangbei@whu.edu.cn, [‡]minzhu@mail.sim.ac.cn <u>Received March 29, 2022; accepted May 12, 2022</u>

Supporting Information

Supporting Information S1 (a)-(d) Four states *I-V* curves in the RESET process of HRS at 3 mA C. C..

Supporting Information S2 (a)-(d) The HRS and LRS distributions of four devices.

Supporting Information S3 Nonlinearity of LTP and LTD, and conductance adjustment curves under ideal condition(α =0).

To analyze the impact of nonlinear weight on recognition accuracy, the conductance change of LTP (G_{LTP}) and LTD (G_{LTD}) with the number of pulses (P) can be fitted by the following equations: [1]

$$B = \frac{G_{max} - G_{min}}{1 - \exp(\frac{-P_{max}}{A})}$$
(1)

$$G_{LTP} = B\left(1 - \exp\left(\frac{-P}{A}\right)\right) + G_{\min}$$
⁽²⁾

$$G_{LTD} = -B\left(1 - \exp\left(\frac{P - P_{max}}{A}\right)\right) + G_{max}$$
(3)

$$\alpha = \frac{1.726}{A + 0.162} \tag{4}$$

where G_{max} , G_{min} and P_{max} represent the maximum conductance, minimum conductance and pulse number in the experimental data. A is the parameter that controls the nonlinear behavior of the weight update, and B is simply a function of A that fits the functions(1). The experimental results show that the nonlinear factors of LTP and LTD are 1.84 and 3.26, respectively, which is better than the pure SiO₂ memristor in these paper [2-4].

References

- H. Liu, M. Wei, Y. Chen. Optimization of non-linear conductance modulation based on metal oxide memristors. *Nanotechnol. Rev.* 7(5), 443 (2018)
- X. Wu, B. Dang, H. Wang, X. Wu, Y. Yang. Spike-Enabled Audio Learning in Multilevel Synaptic Memristor Array-Based Spiking Neural Network. *Adv. Intell. Syst.* 4(3), 2100151(2022).
- D. Sakellaropoulos, P. Bousoulas, C. Papakonstantinopoulos, S. Kitsios, D. Tsoukalas. Impact of active electrode on the synaptic properties of SiO₂-based forming-free conductive bridge memory. *IEEE Trans. Electron Devices*. 68(4), 1598 (2021)
- P. Y. Chen, B. Lin, I. T. Wang, T. H. Hou, J. Ye, S. Vrudhula, S. Yu, Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. *in Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD)* 194 (2015)