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1 Numerical methods and results for solving
the TBA equation in 1D

1.1 Numerical methods

To facilitate numerical computations, the scaled dressed en-
ergy ϵ̃ is rewritten as follows:

ϵ̃(q̃, µ̃, c̃)

≡ q̃2 − µ̃ −
∫ ∞

−∞

dl̃
2π

2c̃
c̃2 + (q̃ − l̃)2

ln
[
1 + e−ϵ̃(l̃,µ̃,c̃)

]
= q̃2 − µ̃ −

∫ ∞

0

dl̃
2π

W(l̃, q̃, c̃) ln
[
1 + e−ϵ̃(l̃,µ̃,c̃)

]
(S1)

where q̃ and l̃ are scaled quasi-momenta, and the function W
is defined as

W(l̃, q̃, c̃) =
2c̃

c̃2 + (l̃ − q̃)2
+

2c̃
c̃2 + (l̃ + q̃)2

(S2)

It has been proved that the TBA equation can be solved itera-
tively [2]. The key to performing efficient numerical compu-
tations here is to identify the major contribution that is diffi-
cult to derive analytically for the integral in Eq. S1.

As Q(q̃, l̃, µ̃, c̃) = W(q̃, l̃, c̃) ln
[
1 + e−ϵ̃(q̃,µ̃,c̃)

]
decreases ex-

ponentially for large q̃ values, an integration over a finite

range of q̃ already dominates the full integration to a high
precision. Practically, we verified that an integral of Q over
5 < q̃ < ∞ is on the order of 10−10 or lower, which is
negligible in typical computations. Therefore, we choose
[0, q̃max] = [0, 5] as the integral region.

For a single iteration, instead of doing the integration in
the TBA equation, we compute the Riemann sum of the func-
tion Q(q̃, l̃, µ̃, c̃) with respect to an isometric tagged partition
of the scaled quasi-momentum:

q̃m = ∆q̃ × m, m ∈ Z

S [Q(q̃, l̃, µ̃, c̃)] =
q̃max/∆q̃∑

m=0

Q(q̃m, l̃, µ̃, c̃)(q̃m+1 − q̃m). (S3)

Due to the Riemann-integrability of Q, the discrete Riemann
sum S approaches the corresponding integral as the scaled
momentum spacing ∆q̃ reduces to zero. We perform compu-
tations under several ∆q̃ values, and use an extrapolation to
∆q̃ = 0 in order to remove the ∆q̃ dependence of the results.

The above method works very well for c̃ ≥ 10−2. How-
ever, in order to reach a certain computation precision, the re-
quired computing time increases significantly as c̃ approaches
zero for two reasons. First, the needed ∆q̃ to reach the pre-
cision goal becomes smaller as c̃ decreases, resulting a larger
number (q̃max/∆q̃) of intervals. Second, when using an it-
erative method to solve the TBA equation under a decreas-
ing c̃, the change of the scaled dressed energy function after
one iteration decreases correspondingly. Thus, in order to
reach a certain precision, the number of iterations inevitably
increases a lot. With increased computation time, the cases
for 10−3 ≤ c̃ < 10−2 can also be numerically solved. With-
out significant simplifications of the computing algorithm, it
is rather difficult to compute the scaled dressed energy for c̃
below 10−3.

To simplify the computing tasks at small c̃, we first note
that exactly at c̃ = 0, the dressed energy takes the non-
interacting form [2]:

ϵ̃(q̃, µ̃, c̃ = 0) ≡ ϵ̃0(q̃, µ̃)

= ln
[
eq̃2−µ̃ − 1

]
. (S4)

At a certain small c̃, one expect that the large-scaled-quasi-
momentum behavior of ϵ̃ is dominated by that of ϵ̃0. We
thus introduce a characteristic scaled quasi-momentum q̃NI as
a function of c̃, such that at the quantum critical point µ̃ = 0,
the dressed energy takes the non-interacting form for those
scaled quasi-momenta that satisfy |q̃| ≥ q̃NI :

ϵ̃(q̃, µ̃ = 0, c̃) = ϵ̃0(q̃, µ̃ = 0)

= ln
[
eq̃2 − 1

]
, |q̃| ≥ q̃NI (S5)

Based on Eq. S5, we greatly reduce the computation intensity
of solving the TBA equation, and thus numerically solve this
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equation to obtain the scaled dressed energy at the remaining
small scaled momenta in the range of |q̃| ≤ q̃NI .

The assumption of Eq. S5 can be numerically verified
by comparing a full computation and a computation using
Eq. S5. We indeed observe that proper values of q̃NI can
be chosen such that the computed results for typical ther-
modynamic quantities such as S c/N remain accurate to six
significant digits (relative error ∼ 10−6 or lower). For ex-
ample, for c̃ = 0.005, 0.002, 0.001, 0.0005, it is sufficient to
choose q̃NI = 2.5, 1.75, 1.6, 1.4, respectively. As the interac-
tion strength decreases to a smaller value, we start the com-
putation by using the q̃NI value determined to be “safe” for
the previous larger c̃, and further perform computations un-
der several decreasing q̃NI values. In this way, we determine
a new “safe” q̃NI value for the current c̃. As c̃ reduces towards
zero, the corresponding q̃NI also decreases towards zero. We
also verify that the choice of q̃NI is fairly independent of the
choice of scaled momentum spacing ∆q̃.

Below we further explain the process of numerically solv-
ing the TBA equation under Eq. S5. For |q̃| ≤ q̃NI , we rewrite
the TBA equation as

ϵ̃(q̃, µ̃ = 0, c̃)

= q̃2 − 1
2π

∫ ∞

0
dl̃W(q̃, l̃, c̃) ln(1 + e−ϵ̃(l̃,0,c̃))

= q̃2 − 1
2π

∫ q̃NI

0
dl̃W(q̃, l̃, c̃) ln(1 + e−ϵ̃(q̃,0,c̃))

− 1
2π

∫ ∞

q̃NI

dl̃W(q̃, l̃, c̃) ln
(
1 +

1
el̃2 − 1

)
≡ q̃2 − I1(q̃, q̃NI , c̃) − I2(q̃, q̃NI , c̃). (S6)

Here, I2 can be conveniently computed by performing a nu-
merical integration for each q̃ at a given c̃ and a properly cho-
sen q̃NI . It is I1 that needs to be computed via a large number
of iterations.

To further improve the numerical integrations to an accu-
racy better than Eq. S3, we introduce a linear interpolation
for the function ln(1+ e−ϵ̃(q̃,µ̃,c̃)) and analytically derive an ap-
proximate form of the integral as follows:

S 1[Q(q̃, l̃, µ̃, c̃)]

=

q̃max/∆q̃∑
m=0

∫ q̃m+1

q̃m

dq̃W(q̃, l̃, c̃) ln(1 + e−ϵ̃(q̃,µ̃,c̃))

≈
q̃max/∆q̃∑

m=0

∫ q̃m+1

q̃m

dq̃W(q̃, l̃, c̃)

×Xm(q̃m+1 − q̃) + Xm+1(q̃ − q̃m)
∆q̃

≡
q̃max/∆q̃∑

m=0

Im (S7)

where Xm ≡ ln(1 + e−ϵ̃(q̃m,µ̃,c̃)), and the integral Im is given by

Im = 2(am + bm l̃)
[
arctan

(
q̃m+1 − l̃

c̃

)
− arctan

(
q̃m − l̃

c̃

)]
+ 2(am − bm l̃)

[
arctan

(
q̃m+1 + l̃

c̃

)
− arctan

(
q̃m + l̃

c̃

)]
+ bmc̃

[
ln

(q̃m+1 − l̃)2 + c̃2

(q̃m − l̃)2 + c̃2
+ ln

(q̃m+1 + l̃)2 + c̃2

(q̃m + l̃)2 + c̃2

]
, (S8)

with the following coefficients am and bm:

am =
Xmq̃m+1 − Xm+1q̃m

∆q̃
, (S9)

bm =
Xm+1 − Xm

∆q̃
. (S10)

By introducing a characteristic q̃NI and the above partial
interpolation method, we effectively reduce the computing
time for reaching a certain precision, which enables us to
determine the scaled dressed energy, the critical entropy per
particle and other thermodynamic quantities for very small c̃
(down to 5 × 10−8).

1.2 The critical scaled compressibility

Based on the algorithm described in the previous subsec-
tion, we numerically solve the TBA equation and extract
thermodynamic quantities. In addition to S c/N and ñc, the
scaled critical compressibility κ̃c ≡ dñ

dµ̃

∣∣∣∣
µ̃=0

is computed and

shown in Figure S1. We observe a power-law scaling of κ̃c
with respect to c̃, namely κ̃c ∝ c̃βκ̃ , with a scaling exponent
βκ̃ = −0.993±0.005, which agrees well with the prediction of
Eq. 16 and provides clear evidence for our generic approach
of studying these weakly interacting Bose gases at the quan-
tum critical point.
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Figure S1 Critical scaled compressibility κ̃c of a 1D interacting Bose gas
as a function of scaled interaction strength g̃1D = c̃.
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2 An analytical derivation for the β1D = 1/3
power-law scaling under an infrared momen-
tum cut-off approximation)

In this section we analytically derive the β1D = 1/3 power-
law scaling in the small-interaction limit by solving the TBA
equation under a one-parameter infrared momentum cut-off
approximation.

We first notice that for c̃ → 0 and any finite q̃, the scaled
dressed energy ϵ̃(q̃, µ̃, c̃) approaches its non-interacting limit,
ϵ̃0(q̃, µ̃) = ln(eq̃2−µ̃ − 1). Deviation from the non-interacting
form happens only for infinitesimal q̃ values. We thus aim to
determine the infinitesimal-q̃ behavior of the scaled dressed
energy at the critical point µ̃ = 0.

We make an approximation to ϵ̃(q̃, µ̃ = 0, c̃) by introduc-
ing a characteristic scaled momentum q̃∗(c̃) that serves as a
“flat-bottom” infrared momentum cut-off such that

lim
c̃→0

q̃∗ = 0 (S11)

and

ϵ̃FB(q̃, µ̃ = 0, c̃) =

ln
(
eq̃2
∗ − 1

)
, |q̃| ≤ q̃∗

ln
(
eq̃2 − 1

)
, |q̃| ≥ q̃∗

(S12)

For simplicity, we ignore the subscript “FB” (denoting “flat
bottom”) in the following parts of this section. Because q̃∗
is the only parameter in this approximation, we solve it by
writing the TBA equation at q̃ = 0:

ln
(
eq̃2
∗ − 1

)
= ϵ̃(q̃ = 0, µ̃ = 0, c̃)

= − 1
2π

∫ ∞

−∞
dl̃

2c̃
c̃2 + l̃2

ln
(
1 + e−ϵ̃(l̃,µ̃=0,c̃)

)
(S13)

Based on Eq. S13, we obtain that

q̃2
∗ =

4
π

∫ ∞

q̃∗
dl̃

(
arctan

c̃
l̃

) l̃

el̃2 − 1
(S14)

We note that part of the integrand, l̃
el̃2−1

, behaves roughly as
1/l̃ for small l̃ values on the order of q̃∗. This suggests that,
unless arctan c̃

l̃
provides a sufficiently small suppression fac-

tor, the integral on the right side of Eq. S14 will diverge as
ln(q̃∗), which cannot match the vanishing q̃2

∗ on the left side
of Eq. S14. Therefore, we conclude that c̃ must be a higher-
order infinitesimal with respect to q̃∗, namely,

lim
c̃→0

c̃
q̃∗
= 0. (S15)

Thus for |l̃| ≥ q̃∗, the function arctan(c̃/l̃) can be approxi-
mated by c̃/l̃, and Eq. S14 reduces to

q̃2
∗ ≈

4c̃
π

∫ ∞

q̃∗
dl̃

[
1
l̃2
+

(
1

el̃2 − 1
− 1

l̃2

)]

=
4c̃
π

[
1
q̃∗
+ I1

]
≈ 4c̃
πq̃∗
, (S16)

where I1 =
∫ ∞

0 dx(− 1
x2 +

1
ex2−1

) ≈ −1.294. From the above
equation, we derive the characteristic scaling relation of q̃∗
with respect to c̃:

q̃∗ ≈
(

4
π

)1/3

c̃1/3 (S17)

Accordingly, we obtain the scaled dressed energy at zero
quasi-momentum and at the quantum critical point:

ϵ̃(q̃ = 0, µ̃ = 0, c̃) = ln(eq̃2
∗ − 1) ≈ 2

3
ln(c̃) (S18)

We further obtain the critical scaled pressure

p̃c =
1

2π

∫ ∞

−∞
ln(1 + e−ϵ̃(l̃,0,c̃))dl̃

= I0 −
2
π

∫ q̃∗

0

l̃2

el̃2 − 1
dl̃

≈ I0 −
(

32
π4

)1/3

c̃1/3, (S19)

where I0 =
1

2π

∫ ∞
−∞ ln(1 + 1/(ex2 − 1))dx ≈ 0.736937.

We then compute the critical scaled density as follows:

ñc ≡
[
∂ p̃
∂µ̃

]
µ̃=0
=

1
2π

∫ ∞

−∞

e−ϵ̃

1 + e−ϵ̃
(− ∂ϵ̃
∂µ̃

)dl̃. (S20)

To compute ∂ϵ̃
∂µ̃

, we perform differentiation to both sides of
the TBA equation, and obtain

∂ϵ̃(l̃, µ̃, c̃)
∂µ̃

≈ −1 − −e−ϵ̃(l̃,µ̃,c̃)

1 + e−ϵ̃(l̃,µ̃,c̃)

∂ϵ̃(l̃, µ̃, c̃)
∂µ̃

(S21)

Thus

∂ϵ̃(l̃, µ̃, c̃)
∂µ̃

≈ −1 − e−ϵ̃(l̃,µ̃,c̃), (S22)

and we obtain

ñc ≈
1

2π

∫ ∞

−∞
e−ϵ̃(l̃,µ̃=0,c̃)dl̃

≈ 1
π

(
2
q̃∗
+ I1

)
≈

(
2
π2

)1/3

c̃−1/3 (S23)
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Based on the above results, the critical entropy per particle
is given by

S c

N
=

3
2

p̃c
∂ p̃
∂µ̃

(µ̃ = 0, c̃)
− c̃

2
∂p̃
∂c̃
/
∂p̃
∂µ̃

≈ 3I0

2

(
π2

2

)1/3

c̃1/3, (S24)

where the second term is much smaller than the first term for
small c̃ and is thus neglected.

Other thermodynamic observables can be similarly com-
puted based on their relation to the pressure and Eq. S19. For
example, the critical scaled compressibility can be derived to
be

κ̃c =
dñ
dµ̃

∣∣∣∣∣
µ̃=0

≈ 1
2π

∫ ∞

−∞

[
e−ϵ̃(l̃,µ̃=0,c̃) + e−2ϵ̃(l̃,µ̃=0,c̃)

]
dl̃

≈ 4
3π

1
q̃3
∗
∝ 1

c̃
=

1
g̃1D
, (S25)

where lower-order constant terms and those proportional to
1/q̃∗ are neglected.

Eqs. S24 and S25 show that in the small interaction
strength limit and under this one-parameter infrared momen-
tum cut-off approximation, the critical entropy per particle
S c/N and critical scaled compressibility κ̃c both obey sim-
ple power-law scalings with respect to the scaled interaction
strength, with scaling exponents being 1/3 and −1, respec-
tively. These analytical results serve as independent and
complementary evidences for the generic predictions in the
main text (Eqs. 13, 14 and 16 ) for interacting Bose gases at
a quantum critical point.
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